
Endgame Solving in Large Imperfect-Information Games

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

Abstract

The leading approach for computing strong game-theoretic
strategies in large imperfect-information games is to first
solve an abstracted version of the game offline, then per-
form a table lookup during game play. We consider a mod-
ification to this approach where we solve the portion of the
game that we have actually reached in real time to a greater
degree of accuracy than in the initial computation. We call
this approach endgame solving. Theoretically, we show that
endgame solving can produce highly exploitable strategies in
some games; however, we show that it can guarantee a low
exploitability in certain games where the opponent is given
sufficient exploitative power within the endgame. Further-
more, despite the lack of a general worst-case guarantee, we
describe many benefits of endgame solving. We present an
efficient algorithm for performing endgame solving in large
imperfect-information games, and present a new variance-
reduction technique for evaluating the performance of an
agent that uses endgame solving. Experiments on no-limit
Texas Hold’em show that our algorithm leads to significantly
stronger performance against the strongest agents from the
2013 AAAI Annual Computer Poker Competition.

1 Introduction
Sequential games of perfect information can be solved in
linear time by a straightforward backward induction pro-
cedure in which solutions to endgames are propagated up
the game tree.1 However, this procedure does not work in
general in imperfect-information games because different
endgames can contain nodes that belong to the same infor-
mation set and cannot be treated independently. More so-
phisticated algorithms are needed for this class of games.
One algorithm for solving two-player zero-sum imperfect-
information games is based on a linear program (LP) for-
mulation (Koller, Megiddo, and von Stengel 1994), which
scales to games with around 108 nodes in their game
tree (Gilpin and Sandholm 2006). Many interesting games
are significantly larger; for example, two-player limit Texas

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Prior work has demonstrated that precomputing solutions to
endgames offline can be effective in large perfect-information
games (Bellman 1965; Schaeffer et al. 2003). In contrast, we solve
endgames online.

Hold’em has about 1017 nodes, and a popular variant of two-
player no-limit Texas Hold’em has about 10165 nodes (Jo-
hanson 2013). To address such large games, newer approx-
imate equilibrium-finding algorithms have been developed
that scale to games with around 1014 nodes, such as coun-
terfactual regret minimization (CFR) (Zinkevich et al. 2007)
and an algorithm based on the excessive gap technique
(EGT) (Hoda et al. 2010). These algorithms are iterative and
guarantee convergence to equilibrium in the limit.

The leading approach for solving extremely large games
such as Texas Hold’em (TH)2 is to abstract the game down
to a game with only around 1012 nodes, then to compute
an approximate equilibrium in the abstract game using one
of the algorithms described above (Billings et al. 2003;
Gilpin and Sandholm 2006). In order to perform such a
dramatic reduction in size, significant abstraction is often
needed. Information (aka card) abstraction involves reduc-
ing the number of nodes by bundling signals (e.g., forcing
a player to play the same way with two different hands),
and action (aka betting) abstraction involves reducing the
number of actions by discretizing large action spaces into a
small number of actions. All of the computation (both for
constructing the abstraction and computing an approximate
equilibrium in the abstraction) is done offline, and a table
lookup is performed in real time to implement the strategy.

We consider a modification to this approach where we re-
tain the abstract equilibrium strategies for the initial portion
of the game tree (called the trunk), and discard the strate-
gies for the final portion (called the endgames). Then, in real
time, we solve the relevant endgame that we have reached
to a greater degree of accuracy than the initial abstract strat-
egy, where we use Bayes’ rule to compute the distribution of
players’ private information leading into the endgames from
the precomputed trunk strategies. This approach, which we
call endgame solving, is depicted in Figure 1.

We present the first theoretical analysis of endgame solv-
ing in imperfect-information games, and show that it can ac-
tually produce highly exploitable strategies in some games.
In fact, we show that it can fail even in a simple game with
a unique equilibrium and a single endgame, even if our base
strategy were an exact equilibrium (of the full game) and we
were able to compute an exact equilibrium in the endgame.

2See Appendix A for background on Texas Hold’em poker.

Figure 1: Endgame solving (re-)solves the relevant endgame
that we have actually reached in real time to a greater degree
of accuracy than in the offline computation.

However, we show that endgame solving can guarantee a
low exploitability (difference between game value and pay-
off against a nemesis) in some games when the opponent is
given sufficient exploitative power within the endgame.

Endgame solving has been used by several prior agents
for the limit variation of TH (where bets must be of a sin-
gle fixed size). The agent GS1 precomputed strategies only
for the first two rounds, using rough approximations for
the payoffs at the leaves of that trunk based on the (un-
realistic) assumption that there was no betting in future
rounds (Gilpin and Sandholm 2006). Then in real time, the
relevant endgame consisting of the final two rounds was
solved using the LP algorithm. GS2 precomputed strate-
gies for the first three rounds, using simulations to estimate
the payoffs at the leaves of that trunk; it then solved the
endgames for the final two rounds in real time (Gilpin and
Sandholm 2007).

However endgame solving has not been implemented by
any competitive agents for the significantly larger and more
challenging domain of no-limit Texas Hold’em (NLTH)
prior to our work. We present a new algorithm that is ca-
pable of scaling to extremely large games such as no-limit
Texas Hold’em, and incorporates several algorithmic im-
provements over the prior approaches (the benefits described
in this paragraph would be improvements over the prior
approaches even for the limit variant). First, the prior ap-
proaches assume that the private hand distributions lead-
ing into the endgame are independent, while they are ac-
tually dependent and the full joint distribution should be
computed. The naı̈ve way of accomplishing this would re-
quire O(n2) strategy table lookups, where n is the number
of private hands (1081 for the final round of poker), and
computing these distributions would become the bottleneck
of the algorithm and make the real-time computation in-
tractable; however, we developed a technique for computing
the joint distributions that requires just O(n) strategy table
lookups. Second, the prior approaches use a single perfect-
recall card abstraction that has been precomputed offline
(which assumes a uniform random distribution for the oppo-
nent’s hand distributions). In contrast, we use an imperfect-
recall card abstraction3 that is computed in real time in a
finer granularity than the initial offline abstraction and that is
tailored specifically to the relevant distribution of the oppo-
nent’s hands at the given hand history. Furthermore, the prior
approaches did not compare performance between endgame

3Imperfect-recall abstractions allow for greater flexibility in
which hands can be grouped together, and have been shown
to significantly improve performance over perfect-recall abstrac-
tions (Waugh et al. 2009; Johanson et al. 2013).

solving and not using it (since the base strategies were not
computed for the endgames), while we provide such a com-
parison.

Very recent work, which appeared subsequently to the
first version of this work, has presented approaches for de-
composing imperfect-information games into smaller games
that can be solved independently offline, and provides some
theoretical guarantees on full-game exploitability. One of
these approaches has only been applied to the small do-
main of limit Leduc Hold’em, which has 936 information
sets in its game tree, and is not practical for larger games
such as NLTH due to its running time (Burch, Johanson,
and Bowling 2014). A second related (offline) approach in-
cludes counterfactual values for game states that could have
been reached off the path to the endgames (Jackson 2014).
This approach has been demonstrated to be effective in limit
Leduc Hold’em, and has also been implemented in NLTH,
though no experimental results are given for that domain.
For NLTH, it is implemented by first solving the game in
a coarse abstraction, then fixing the strategies for the pre-
flop (first) round, and re-solving for certain endgames start-
ing at the flop (second round) after common preflop bet-
ting sequences have been played. All of this computation
is done offline. In contrast, our approach enables us to solve
endgames at the river (final round) in real time. It is infeasi-
ble to solve the river endgames using the prior approach for
several reasons. First, there are far too many of them to be
solved individually in advance (there is a different one for
each sequence of public cards and betting actions). Second,
by the time play gets down to the river, there are many possi-
ble alternative actions that a player could have taken to avoid
reaching the given endgame, and counterfactual values for
each of these would need to be computed and then included
in the solution to the endgame solver; this would likely be in-
feasible to do in real time. Solving the river endgames, as op-
posed to the flop endgames which the prior approach does,
is very important because CFR only occasionally samples
from a specific river endgame during the course of the initial
equilibrium computation, while it very frequently samples
from the flop endgames that follow common preflop betting
sequences. So, our approach is addressing a more pressing
limitation.

Our approach has significant benefits over the standard
approach for solving large imperfect-information games,
including computation of exact (rather than approximate)
equilibrium strategies (within a given abstraction), the abil-
ity to compute certain equilibrium refinements that cannot
be computed in the full offline computation, finer-grained
abstraction in the endgames, abstraction that takes into ac-
count realistic distributions of players’ private information
entering the endgame (as opposed to the typical assumption
of uniform random distributions), and a solution to the “off-
tree” problem that arises when the opponent has taken ac-
tions that are not allowed in the abstraction. We present an
efficient algorithm for performing endgame solving in large
imperfect-information games, and present a novel variance-
reduction technique for evaluating the performance of an
agent that uses endgame solving. Experiments on no-limit
Texas Hold’em show that using our algorithm leads to a sig-

nificantly stronger performance against the strongest 2013
poker competition agents.

2 Endgame Solving
Definition 1. E is an endgame of game G if the following
two properties hold:

1. If s′ is a child of s in G and s is a node in E, then s′ is
also a node in E.

2. If s is in the same information set as s′ in G and s is a
node in E, then s′ is also a node in E.

For example, we can consider endgames in poker where
several rounds of betting have taken place and several pub-
lic cards have already been dealt. In these endgames, we can
assume players have a joint distribution of private informa-
tion from nodes prior to the endgame that are induced from
the precomputed base approximate-equilibrium strategy us-
ing Bayes’ rule. Given this distribution as input, we can then
solve individual endgames in real time using more accurate
abstractions.

Unfortunately, this approach has some fundamental theo-
retical shortcomings. It turns out that even if we computed
an exact equilibrium in the trunk (which is an unrealistically
optimistic assumption in large games) and in the endgame,
the combined strategies for the trunk and endgame may fail
to be an equilibrium in the full game. One obvious reason
for this is that the game may contain many equilibria, and
we might choose one for the trunk that does not match up
correctly with the one for the endgame; or we may compute
different equilibria in different endgames that do not balance
appropriately. However, Proposition 1 shows that it is pos-
sible for this procedure to output a non-equilibrium strategy
profile in the full game even if the full game has a unique
equilibrium and a single endgame.

Proposition 1. There exist games—even with a unique equi-
librium and a single endgame—for which endgame solving
can produce a non-equilibrium strategy profile.

Proof. Consider a sequential version of Rock-Paper-Scis-
sors where player 1 acts, then player 2 acts without observ-
ing player 1’s action. This game has a single endgame—
when it is player 2’s turn to act—and a unique equilibrium—
where each player plays each action with probability 1

3 .Now
suppose we restrict player 1 to follow the equilibrium in
the initial portion of the game. Any strategy for player 2
is an equilibrium in the endgame, because each one yields
her expected payoff 0. In particular, suppose our equilibrium
solver outputs the pure strategy Rock for her. This is clearly
not an equilibrium of the full game.

Rock-Paper-Scissors (RPS) is somewhat of an extreme
example though, because player 1 does not actually make
any moves in the endgame. At the other extreme, if the
endgame were the entire game, then endgame solving would
produce an exact equilibrium. As a slightly less extreme
example, consider the game in Figure 2, where P1 selects
an action ai, and then a sequential imperfect-information
game Gi is played. Suppose we are solving endgames af-
ter P1’s initial action. Then we will solve the endgame Gi

and produce strategies with zero exploitability in the full
game. Endgame solving could be very useful in this game
for several reasons. First, if the number of initial actions n
for P1 were extremely large, it may be infeasible to solve
and/or store solutions to all of the endgames in advance of
game play. Endgame solving would only require solving the
endgames that are actually reached during game play, and
would be feasible even if n is extremely large as long as the
number of game repetitions were relatively small. And sec-
ond, the typical approach would actually not even involve
solving each of the Gi separately advance; it would be to
solve the full game, which includes each of the Gi as well
as P1’s initial actions. It is very possible that equilibrium-
finding algorithms would not scale to the full game and/or it
would not fit in memory, while equilibria could be computed
quickly and fit into memory for the individual endgamesGi.

Figure 2: Player 1 selects his action ai, then the players play
imperfect-information game Gi.

One could imagine much more complex trunk games than
the above example with imperfect information and multi-
ple actions for both players where it is difficult to know
for sure how “important” the trunk strategies are for the
endgames. In such games, it may be possible for endgame
solving to still guarantee a reasonably low exploitability in
the full game. As Proposition 2 shows, in general, the more
exploitative power the opponent has within the endgame, the
lower the full-game exploitability of the strategies produced
by (approximate) endgame solving are.
Proposition 2. If every strategy that has exploitability
strictly more than ε in the full game has exploitability of
strictly more than δ within the endgame, then the strategy
output by a solver that computes a δ-equilibrium in the
endgame induced by a trunk strategy t would constitute an
ε-equilibrium of the full game when paired with t.

Proof. Suppose a strategy is a δ-equilibrium in the endgame
induced by t, but not an ε-equilibrium in the full game when
paired with t. Then by assumption, it has exploitability of
strictly more than δ within the endgame, which leads to a
contradiction.

Intuitively, Proposition 2 says that endgame solving pro-
duces strategies with low exploitability in games where the
endgame is a significant strategic portion of the full game,
that is, in games where any endgame strategy with high full-
game exploitability can be exploited by the opponent by
modifying his strategy just within the endgame.

One could classify different games according to how they
fall regarding the premise of Proposition 2, given a subdi-
vision of the game into a trunk and endgames, and given
fixed strategies for the trunk. If the premise is satisfied, then

we can say that the game/subdivision satisfies the (ε, δ)-
endgame property. An interesting property would be the
smallest value ε∗(δ) such that the game satisfies the (ε, δ)-
endgame property for a given δ. For instance, the game in
Figure 2 would have ε∗(δ) = δ for all δ ≥ 0, while RPS
would only have ε∗(δ) = 1 for each δ ≥ 0. While Propo-
sition 2 is admittedly somewhat trivial, such a classification
could be useful in developing a better understanding of when
endgame solving would be helpful in general.

3 Benefits of Endgame Solving
Even though we showed in the previous section that end-
game solving may lead to highly exploitable strategies in
some games, it has many clear benefits in large imperfect-
information games, which we now describe. These bene-
fits and techniques are enabled by using endgame solving
(rather than being techniques that help alongside endgame
solving).

3.1 Exact Computation of Nash Equilibrium in
Abstracted Endgames

The best algorithms for computing approximate equilibria
in large games of imperfect information scale to games with
about 1014 nodes. However, they are iterative and guarantee
convergence only in the limit; in practice they only produce
approximations of equilibrium strategies (within a given ab-
straction). Sometimes the approximation error can be quite
large. For example, one recent NLTH agent reported having
an exploitability of 800 milli big blinds per hand (mbb/h)
even within the abstract game (Ganzfried and Sandholm
2012). This is extremely large, since an agent that folds ev-
ery hand would only have an exploitability of 750 mbb/h.
The best general-purpose LP algorithms find an exact equi-
librium, though they only scale to games with around 108

nodes (Gilpin and Sandholm 2006). While the LP algorithms
do not scale to reasonable abstractions of full TH, we can
use them to exactly solve abstracted endgames that have up
to around 108 nodes. We do exact endgame solving in the
experiments.

3.2 Ability to Compute Certain Equilibrium
Refinements

The Nash equilibrium (NE) solution concept has some theo-
retical limitations, and several equilibrium refinements have
been proposed which rule out NEs that are not rational in
various senses. In general, these solution concepts guaran-
tee that we behave sensibly against an opponent who does
not follow his prescribed equilibrium strategy (i.e., he takes
actions that should be taken with probability zero in equi-
librium). Specialized algorithms have been developed for
computing many of these concepts (Miltersen and Sørensen
2006; 2008; 2010). However, those algorithms do not scale
to large games. In TH, computing a reasonable approxima-
tion of a single Nash equilibrium already takes months (us-
ing the leading algorithms, CFR or EGT), and there are no
known algorithms for computing any of the common re-
finements that scale to games of that size. However, when
solving endgames that are significantly smaller than the full

game, it can be possible to compute certain refinements.
An undominated Nash equilibrium (UNE) can be computed
by solving two LPs instead of one and an ε-quasi-perfect-
equilibrium by solving a single LP (though the second one
is not technically a refinement and has documented numer-
ical stability issues). We have implemented algorithms for
computing both of these on large NLTH endgames, which
demonstrates for the first time that they are feasible to com-
pute in imperfect-information games of this magnitude. Pre-
liminary experiments indicate that in NLTH endgames UNE
is useful, though those results were not statistically signifi-
cant, so we do not report on those experiments here.

3.3 Finer-Grained, History-Aware, and
Strategy-Biased Abstraction

Another important benefit of endgame solving in large
games is that we can compute better abstractions in the
endgame that is actually played than if we are forced to ab-
stract the entire game at once in advance. In addition to al-
lowing us to compute finer-grained abstractions, endgame
solving enables us to compute an abstraction specifically for
the situation at hand. In other words, we can condition the
abstraction on the path of play so far (both the players’ ac-
tions and nature’s actions). For example, in poker, we can
condition the abstraction on the betting history (which of-
fline game-solving approaches do not do) and on the board
cards (which offline game-solving approaches cannot afford
to do at an equally fine granularity).

The standard approach for performing information ab-
straction is to bucket information sets together for hands
that perform similarly against a uniform distribution of the
opponent’s private information (Gilpin and Sandholm 2006;
Johanson et al. 2013). However, the assumption that the op-
ponent has a hand uniformly at random is extremely unre-
alistic in many situations; for example, if the opponent has
called large bets throughout the hand, he is unlikely to hold
a very weak hand. Ideally, a successful information abstrac-
tion algorithm would group hands together that perform sim-
ilarly against the relevant distribution of hands the opponent
actually has—not a naı̈ve uniform random distribution. For-
tunately, we can accomplish such strategy-biased informa-
tion abstraction in endgames. Our algorithm is detailed in
Section 4.

3.4 A Solution to the Off-Tree Problem
When we perform action abstraction, the opponent may take
an action that falls outside of our action model for him.
When this happens, an action translation mapping (aka re-
verse mapping) is necessary to interpret his action by map-
ping it to an action in our model (Ganzfried and Sandholm
2013; Schnizlein, Bowling, and Szafron 2009). However,
this mapping may ignore relevant game state information. In
poker, action translation works by mapping a bet of the op-
ponent to a ‘nearby’ bet size in our abstraction; however, it
does not account for the size of the pot or remaining stacks.
For example, suppose remaining stacks are 17,500, the pot
is 5,000, and our abstraction allows for bets of size 5,000
and 17,500. Suppose the opponent bets 10,000, which we

map to 5,000 (if we use a randomized mapping, we will do
this with some probability). So we map his action to 5,000,
and simply play as if he had bet 5,000. If we call his bet, we
will think the pot has 15,000 and stacks are 12,500. How-
ever, in reality the pot has 25,000 and stacks are 7,500. These
two situations are completely different and should be played
very differently (for example, we should be more reluctant
to bluff in the latter case because the opponent will be get-
ting much better odds to call). This is known as the off-tree
problem. Even if one is using a very sophisticated translation
algorithm, one will run into the off-tree problem.

When performing endgame solving in real time, we can
solve the off-tree problem completely. Regardless of the ac-
tion translation used to interpret the opponent’s actions prior
to the endgame, we can take the stack and pot sizes (or
any other relevant game state information) as inputs to the
endgame solver. Our endgame solver in poker takes the cur-
rent pot size, stack sizes, and prior distributions of the cards
of both players as inputs. Therefore, even if we mapped the
opponent’s action to 5,000 in the above example, we cor-
rect the pot size to 25,000 (and the stack sizes accordingly)
before solving the endgame.

4 Endgame Solving Algorithm
In this section we present our algorithm for endgame solv-
ing in imperfect-information games with very large state and
action spaces. Pseudocode is given in Algorithm 1. The core
algorithm is domain independent, although we present the
signals as card-playing hands for concreteness. An example
poker hand illustrating each step of the algorithm is given in
Appendix B.

Algorithm 1 Algorithm for endgame solving
Inputs: number of information buckets per agent ki; ab-
straction parameter T ; action abstractions Bi with bi action
sequences; clustering algorithms Ci; equilibrium-finding al-
gorithm Q; number of private hands H; hand rankings R[]

Compute joint hand-strength distribution D[i][j]
E1, E2 ← array of dimension H of zeroes
for h1 = 1 to H do

r1 ← R[h1]
s1, s2 ← 0
for h2 = 1 to H do

r2 ← R[h2]
s1 += D[h1][h2], s2 += D[h2][h1]
if r2 < r1 then

E1[h1] += D[h1][h2], E2[h1] += D[h2][h1]
else if r1 == r2 then

E1[h1] += D[h1][h2]
2 , E2[h1] += D[h2][h1]

2

E1[h1] =
E1[h1]
s1

, E2[h1] =
E2[h1]
s2

ki ← b Tbi c for i = 1, 2
Ai ← information abstraction created by clustering ele-
ments of Ei into ki buckets using Ci for i = 1, 2
Solve game with information abstractions Ai and action
abstractions Bi using Q

The first step is to compute the joint input distribution of

private information using Bayes’ rule. The naı̈ve approach
for doing this would require iterating over all possible pri-
vate hand combinations h1, h2 for the players, and for each
pair looking up the probability that the base agent would
have taken the given action sequence. This requires O(n2)
lookups to the strategy table, where n is the number of pos-
sible hands (n = 1081 for the final round in poker). It
turns out that this computation would become the bottle-
neck of the entire endgame-solving algorithm and would
make real-time endgame solving computationally infeasible.
For this reason, prior approaches for endgame solving have
made the (significantly) simplifying assumption that the
distributions are independent (Gilpin and Sandholm 2006;
2007). However, we developed an algorithm that does this
with just O(n) table lookups. Pseudocode for our algorithm
is given in Algorithm 2.

Algorithm 2 Algorithm for computing hand distributions
Inputs: Public board B; number of possible private hands
H; betting history of current hand h; array of index conflicts
IC[][]; base strategy s∗

D1, D2 ← array of dimension H of zeroes
for p1 = 0 to 50, p1 not already on B do

for p2 = p1 + 1 to 51, p2 not already on B do
I ← IndexFull(B, p1, p2)
IndexMap[I]← IndexHoles(p1, p2)
P1 ← probability P1 would play according to h
with p1, p2 in s∗
P2 ← probability P2 would play according to h
with p1, p2 in s∗
D1[I] += P1, D2[I] += P2

Normalize D1 and D2 so all entries sum to 1
for i = 0 to H do

for j = 0 to H do
if !IC[IndexMap[i]][IndexMap[j]] then

D[i][j]← D1[i] ·D2[j]
else

D[i][j]← 0

Normalize D so all entries sum to 1 return D

In short, the algorithm first computes the distributions
separately for each player (as done by the independent ap-
proach), then multiplies the probabilities together for hands
that do not share a common card (and setting the joint proba-
bility to zero otherwise). In order to make sure hands are in-
dexed properly in the array, we must make use of two helper
indexing functions, Algorithms 3 and 4. The former gives an
algorithm for indexing the two-card private hands, and the
latter gives an algorithm for indexing the 7-card river hand
consisting of the two private cards and five public cards.
Then, in Algorithm 2, we iterate over all sets of private hands
(p1, p2), and create an array called IndexMap that maps the
7-card hand index to the corresponding 2-card hand index.
In the course of this loop, we also look up the probability
that each player would play according to the observed bet-
ting history in the precomputed trunk strategies, which we
then normalize in accordance with Bayes’ rule.

In advance of applying Algorithm 2, we compute a table

Algorithm 3 Algorithm for computing private hand index
Inputs: Private hole cards h1, h2

if h2 < h1 then
t← h1
h1 ← h2
h2 ← t

return
(
h2

2

)
+
(
h1

1

)
Algorithm 4 Algorithm for computing index of 7-card
hands on a given board
Inputs: Private hole cards h1, h2, board B consisting of five
public cards

if h2 < h1 then
t← h1
h1 ← h2
h2 ← t

n1 ← 0, n2 ← 0
for i = 1 to 5 do

for j = 1 to 2 do
if B[i] < hj then ++nj

return
(
h2−n2

2

)
+
(
h1−n1

1

)
of the conflicts between each pair of private-hand indices,
where we set IC[i][j] to 1 if hand with indices i and j share
a card in common, and 0 otherwise. Then, we set the joint
probability D[i][j] to equal the product of the two indepen-
dent probabilities D1[i], D2[j] if there is no constraint be-
tween the indices, and we set it to zero otherwise. Note that
this algorithm actually runs in O(n2), where n is the num-
ber of private hands. However, the n2 loop only involves
the simple step of looking up an element in the IC array,
which is perfomed extremely quickly. The time-consuming
part of the computation is looking up the strategy probabil-
ities P1, P2, which involves accessing several elements in
the massive binary strategy file. Our algorithm peforms this
task only O(n) times, while the naı̈ve approach would do
this O(n2) time, and make real-time endgame solving in-
tractable. (Note that each private hand consists of the two
cards p1, p2, so while the main loop in Algorithm 2 iterates
over both p1 and p2, it is only iterating once over the H pri-
vate hands and is O(n)).

Next we compute arrays E1, E2 that contain the equities
for each state of private information against the opponent’s
distribution. For player 1, we do this by adding D[h1][h2]
to E1[h1] for each hand h2 such that the rank of it on the
given board is lower than that of h1, and adding D[h1][h2]

2 for
each hand with equal rank.4 We then normalize the entries
of E1[h1], and compute E2 analogously. E1[h1] is now the
probability that player 2 has a hand worse than h1, given the
prior distribution D and the current history of betting and
public cards.

In advance of gameplay, we have computed separate ac-

4The rank of a hand R[hi] given a set of public board cards B
is an integral-valued mapping such that stronger hands on B have
a higher value; for example, a royal flush has the highest rank.

tion abstractions for the endgame solver to use for each
pot/stack size that could be encountered. This allows us to
solve the “off-tree problem,” since we are taking into ac-
count the actual pot size even the opponent took an action
outside the action abstraction earlier in the hand. We have
constructed these abstractions so that the larger pot sizes
(which have shallower stacks) have more bet sizes available
for each history, for several reasons; the first is that the tree
is smaller in these situations due to the shallower stack sizes
(once players are “all-in,” no additional bets are allowed),
and the second is that hands with larger pot sizes are more
important, since more money is won and lost on them, and
we would like to ensure that more bet sizes are accounted
for on these hands. Bi denotes the action abstraction to use
for the given pot size at hand, and bi denotes the number of
betting sequences of Bi, for i = 1, 2.

Next, we compute a card abstraction Ai by grouping Ei
into ki buckets, using some clustering algorithm Ci, for
i = 1, 2. Here ki = T

bi
, where T is a parameter of the algo-

rithm (for our agent we used T = 7500). While much prior
work on poker has used k-means as the standard cluster-
ing algorithm, the following example demonstrates why this
would be problematic. Suppose there are many hands with
an equity of 0.7643, and also many hands with an equity
of 0.7641. Then k-means would likely create separate clus-
ters for these two equity values, and possibly group hands
with very different equities (e.g., 0.2 and 0.3) together if few
hands have those equities. To address this concern we used
percentile hand strength, which also happens to be easier
to compute. To do this, we break up the interval [0,1] into
ki regions of equal length (each of size 1

ki
). We then group

hand hi into bucket bEi[hi]
ki
c. (For our poker agent we ac-

tually use a slight modification of this approach where we
create a special bucket just for the hands withEi[hi] ≥ α, to
ensure that the strongest hands are grouped separately (we
used α = 0.99 for our agent). Then the remaining α mass
is divided according to the previously described procedure.)
Sometimes this algorithm results in significantly fewer than
ki buckets, since there may be zero hands with Ei within
certain intervals. We take this into account, and reduce the
number of buckets in the card abstraction accordingly be-
fore solving the endgame. Note that the card abstractions Ai
may be very different for the two players (and have different
numbers of buckets).

Finally, we compute an (exact) equilibrium in the ab-
stracted endgame by applying an equilibrium-finding algo-
rithm Q to the game with card abstractions Ai and betting
abstractions Bi. While the card abstractions were computed
independently (based on equities derived from the joint dis-
tribution), we use the joint distribution for determining the
probabilities that players are dealt hands from their respec-
tive buckets when constructing the endgame. For our agent,
we used Gurobi’s parallel LP solver (Gurobi Optimization
2014) as Q.

5 Experiments on No-Limit Texas Hold’em
We tested our algorithm against the two strongest agents
from the 2013 poker competition. The base agent was a ver-

Algorithm 5 Algorithm for computing endgame informa-
tion abstractions
Inputs: Equity arrays Ei; desired number of buckets per
agent ki; parameter for top bucket α; total number of pos-
sible private hands H
J ← α

k1−1
A1 ← array of zeroes of size H
U1 ← array of booleans initialized to false of size H
for h = 1 to H do

if E1[h] ≥ α then
b← k1 − 1

else
b← bE1[h]

J c
if U1[b] == FALSE then

U1[h]← TRUE
M1 ← array of zeroes of size k1
g ← 0
for i = 0 to ki do

M1[i]← g
if U1[i] == TRUE then

g = g + 1

for h = 1 to H do
if E1[h] ≥ α then

A1[h]←M1[k1 − 1]
else

A1[h]←M1

[
bE1[h]

J c
]

Compute A2 analogously

sion the agent we submitted to the 2014 AAAI computer
poker competition (that came in first place) from shortly be-
fore the competition. Ordinarily it would be very time con-
suming to differentiate the performance of the base strate-
gies from the endgame solver with statistical significance,
since the endgame solver plays relatively slowly (it averaged
around 8 seconds per hand, which still kept us well within
the competition time limit of 7 seconds per hand on aver-
age, since only around 25% of hands make it to the final bet-
ting round). A useful variance-reduction technique is to only
consider hands where both agents make it to an endgame. In
Appendix C we prove that this technique is unbiased. The re-
sults using this evaluation metric are given in Table 1, where
the ± indicates 95% confidence intervals.

O1 O2
+87 ± 50 +29 ± 25

Table 1: Improvement by using endgame solving against the
strongest agents from the 2013 poker competition over all
hands where both agents made it to some endgame (i.e., to
the river betting round). Units are milli big blinds per hand.

The base agent used a procedure called purification on all
rounds (except for the first preflop action); this procedure
selects the maximal probability action at each information
set with probability 1 instead of randomizing according to
the abstract equilibrium strategy (ties are broken uniformly

at random) (Ganzfried, Sandholm, and Waugh 2012). This
parameter setting was shown to be the best in our thorough
experiments in prior years, and we had used this as the stan-
dard setting when evaluating our base agent. The main mo-
tivation for purification is that it compensates for the fail-
ure of iterative equilibrium-finding algorithms to fully con-
verge to equilibrium in the abstract game (a phenomenon
that has been documented by prior agents, e.g., (Ganzfried
and Sandholm 2012)). The endgame solving agent did not
use any rounding for the river, as the endgame equilibria
are exact (within the chosen abstraction), and the problem
of the equilibrium-finding algorithm failing to converge is
not present. Both agents used the pseudoHarmonic action
translation mapping (Ganzfried and Sandholm 2013) for all
rounds to interpret actions taken by the opponent that fall
outside of the action abstraction.

The results are from 100 duplicate matches against O1
and 155 duplicate matches against O2. Since each match is
3000 hands, this means we played 600,000 hands against
O1 and 930,000 hands againt O2. Out of these hands, both
versions of our agent made it to the river round on 173,568
hands against O1 and on 318,700 hands against O2. If we
had used the standard duplicate approach for evaluating per-
formance, we would not have been able to statistically dif-
ferentiate the base agent from the endgame solver over this
sample. However, we were able to obtain statistically signif-
icant results using our new evaluation approach.

6 Conclusions and Future Research
We demonstrated that endgame solving can be successful
in practice in large imperfect-information games despite the
fact that the strategies it computes is not guaranteed to con-
stitute an equilibrium in the full game (which we showed).
We also showed that endgame solving guarantees a low ex-
ploitability in certain games, and presented a framework
that can be used to evaluate its applicability more broadly.
We described several benefits of endgame solving in large
imperfect-information games, including exact computation
of Nash equilibria in abstracted endgames, the ability to
compute certain equilibrium refinements, the ability to com-
pute finer-grained, history-aware, and strategy-biased ab-
stractions in endgames, and a solution to the off-tree prob-
lem. We presented an efficient algorithm for performing
endgame solving in very large imperfect-information games,
and showed that our algorithm led to a significantly stronger
performance against the strongest agents from the 2013
computer poker competition.

This work opens many interesting avenues for future re-
search. We showed that endgame solving can produce strate-
gies with high exploitability in certain games, while it guar-
antees low exploitability in others. It would be interesting to
study where different game classes fall on this spectrum. It is
possible that for interesting classes of games—perhaps even
classes that include variants of poker—endgame solving is
guaranteed to produce strategies with low exploitability. It
would also be interesting to study various subdivisions of a
game into a trunk and endgames and to experiment on addi-
tional game classes.

References
Bellman, R. E. 1965. On the application of dynamic pro-
gramming to the determination of optimal play in chess and
checkers. National Academy of Sciences of the United States
of America 53:244–247.
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing game-theoretic optimal strategies for full-scale poker. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI).
Burch, N.; Johanson, M.; and Bowling, M. 2014. Solving
imperfect information games using decomposition. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI).
Ganzfried, S., and Sandholm, T. 2012. Tartanian5: A heads-
up no-limit texas hold’em poker-playing program. In Com-
puter Poker Symposium at the National Conference on Arti-
ficial Intelligence (AAAI).
Ganzfried, S., and Sandholm, T. 2013. Action translation
in extensive-form games with large action spaces: Axioms,
paradoxes, and the pseudo-harmonic mapping. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence (IJCAI).
Ganzfried, S.; Sandholm, T.; and Waugh, K. 2012. Strat-
egy purification and thresholding: Effective non-equilibrium
approaches for playing large games. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Gilpin, A., and Sandholm, T. 2006. A competitive Texas
Hold’em poker player via automated abstraction and real-
time equilibrium computation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI).
Gilpin, A., and Sandholm, T. 2007. Better automated ab-
straction techniques for imperfect information games, with
application to Texas Hold’em poker. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Gurobi Optimization, I. 2014. Gurobi optimizer reference
manual.
Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of
sequential games. Mathematics of Operations Research
35(2):494–512. Conference version appeared in WINE-07.
Jackson, E. 2014. A time and space efficient algorithm for
approximately solving large imperfect information games.
In AAAI Workshop on Computer Poker and Incomplete In-
formation.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).
Johanson, M. 2013. Measuring the size of large no-limit
poker games. Technical report, University of Alberta.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.

In Proceedings of the 26th ACM Symposium on Theory of
Computing (STOC), 750–760.
Miltersen, P. B., and Sørensen, T. B. 2006. Computing
proper equilibria of zero-sum games. In Computers and
Games, 200–211.
Miltersen, P. B., and Sørensen, T. B. 2008. Fast algorithms
for finding proper strategies in game ttrees. In Proceed-
ings of the Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 874–883.
Miltersen, P. B., and Sørensen, T. B. 2010. Computing a
quasi-perfect equilibrium of a two-player game. Economic
Theory 42(1):175–192.
Schaeffer, J.; Björnsson, Y.; Burch, N.; Lake, R.; Lu, P.; and
Sutphen, S. 2003. Building the checkers 10-piece endgame
databases. In Advances in Computer Games 10.
Schnizlein, D.; Bowling, M.; and Szafron, D. 2009. Proba-
bilistic state translation in extensive games with large action
sets. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Waugh, K.; Zinkevich, M.; Johanson, M.; Kan, M.; Schni-
zlein, D.; and Bowling, M. 2009. A practical use of imper-
fect recall. In Proceedings of the Symposium on Abstraction,
Reformulation and Approximation (SARA).
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 905–912.

A No-Limit Texas Hold’em Poker
No-limit Texas Hold’em is the most popular variant of poker
among humans, and the two-player version is the game of
most active research in the computer poker community cur-
rently. This game works as follows. Initially two players
each have a stack of chips (worth $20,000 in the computer
poker competition). One player, called the small blind, ini-
tially puts $50 worth of chips in the middle, while the other
player, called the big blind, puts $100 worth of chips in the
middle. The chips in the middle are known as the pot, and
will go to the winner of the hand.

Next, there is an initial round of betting. The player whose
turn it is can choose from three available options:
• Fold: Give up on the hand, surrendering the pot to the

opponent.
• Call: Put in the minimum number of chips needed to

match the number of chips put into the pot by the oppo-
nent. For example, if the opponent has put in $1000 and
we have put in $400, a call would require putting in $600
more. A call of zero chips is also known as a check.

• Bet: Put in additional chips beyond what is needed to call.
A bet can be of any size up to the number of chips a player
has left in his stack. If the opponent has just bet, then our
additional bet is also called a raise.
The initial round of betting ends if a player has folded,

if there has been a bet and a call, or if both players have
checked. If the round ends without a player folding, then
three public cards are revealed face-up on the table (called

the flop) and a second round of betting occurs. Then one
more public card is dealt (called the turn) and a third round
of betting, followed by a fifth public card (called the river)
and a final round of betting. If a player ever folds, the other
player wins all the chips in the pot. If the final betting round
is completed without a player folding, then both players re-
veal their private cards, and the player with the best hand
wins the pot (it is divided equally if there is a tie).

In the experiments, we will be solving endgames after the
final public card is dealt but before the final round of betting.
(Thus, the endgame contains no more chance events, and
only publicly observable actions of both players remain.)

B Example Demonstrating Our
Endgame-Solving Algorithm on No-Limit

Texas Hold’em
In this section we demonstrate the operation of our algo-
rithm on an example hand of no-limit Texas Hold’em. Recall
that blinds are $50 and $100 and that both players start with
$20,000. In the example hand, we are in the small blind with
8dTh. We raise to $250, the opponent re-raises to $750, and
we call (there is now $1500 in the pot). The flop is Jc6s2c.
The opponent checks and we check. The turn is Kd. The
opponent checks, we bet $375, and he calls (there is now
$2250 in the pot). The river is Qc. Up until this point we
have just played according to the precomputed base strat-
egy; the endgame-solving algorithm begins now.

According to the pseudocode for Algorithm 1, the first
step is to compute the joint prior hand distribution D from
the base strategies, using Algorithm 2. This took 0.433 sec-
onds. We then compute the equitiesEi for each player, using
Algorithm 1. This took 0.015 seconds.

The next step is to look at the betting abstraction that has
been precomputed for this specific pot/stack size (pot size of
$2250 and stack sizes of $18875). Note that for this partic-
ular hand all of the opponent’s actions before the river fell
inside of our betting abstraction; however, if they had not,
and we were forced to use an action translation mapping to
map his action to an action in our betting abstraction, we
would be able to correct our misperception of the pot size at
this point, by selecting the precomputed betting abstraction
for the actual pot/stack size (as opposed to the size that as-
sumed he played an action in our betting abstraction). This
solves the “off-tree” problem, discussed in the paper.

The betting abstraction for a pot size of $2250 has 196
betting sequences for each player. For this hand we used a
betting abstraction parameter of T = 10000 (while for the
experiments described in the paper, we used T = 7500).
Therefore, we will use ki = b 10000196 c = 51 card buckets for
each player for this hand.

Next, we compute card abstractions for both players We
used used a top bucket parameter of α = 0.995 (while for
the experiments described in the paper, we used α = 0.99).
After applying our card abstraction algorithm for both play-
ers, the resulting abstractions had 38 and 35 buckets respec-
tively for the two players (since not all of the 51 hand equity
intervals contained hands). Computing these took 0.008 sec-
onds.

Our actual hand (8dTh) had rank 296 (out of 1081) and
actually had an equity of 0 vs. the opponent’s hand distribu-
tion (we thought the opponent would never play the hand the
way he did so far with a worse hand than 8dTh). This places
us in bucket 0 (the worst bucket, out of 35). By contrast,
if the opponent had our hand, he would have an equity of
0.336 against our hand distribution, and would be in bucket
8 (where his buckets range from 0–37).

We then construct the LP matrices for the resulting ab-
stracted endgame, which took 0.15 seconds, and then com-
pute an exact equilibrium by solving the LP using Gurobi’s
parallel LP solver (it took 1.051 seconds to construct the
LP instance and 5.328 seconds to solve it). Overall, the
endgame-solving algorithm took 6.985 seconds for this
hand.

The opponent checked for his initial action on the river.
The betting abstraction for this hand had nine available op-
tions for the first action for each player: check, 0.1 pot, 1

3 pot,
2
3 pot, pot, 1.5 pot, 2 pot, 3 pot, all-in. The strategy from our
endgame solver said for us to check with probability 0.742,
bet 2

3 pot with probability 0.140, bet pot with probability
0.103, and bet 2 pot with probability 0.014.

C Variance-Reduction Technique
When comparing the performance of one version of an agent
A1 to another version that is identical except that it plays
differently on endgames A2, one would like to take advan-
tage of the fact that the agents play identically up until the
endgames in order to evaluate the performance difference
more efficiently. Ideally, we could play A1 against a given
opponent, and when the endgame is reached, evaluate how
both A1 and A2 would do on that same endgame given the
trunk history. However, such a technique is not possible on
the poker competition test server. All that is allowed is to
playA1 andA2 against an opponent for a full set of matches.
The agents may reach endgames on different hands, or may
reach different endgames even on the same hands (since
both our agent and the opponent may be playing random-
ized strategies before the endgames).

One possible approach for reducing variance would be
to only consider hands where both A1 and A2 arrive at
the same endgame (the same betting history was played).
It turns out that this approach is actually biased, so it cannot
be applied to accurately measure performance. A second ap-
proach, that it turns out is unbiased, would be to only con-
sider the hands where both agents arrive at some endgame
(though not necessarily the same one). If we only consider
these hands, then the difference in performance between the
two agents is an unbiased estimator of their true performance
difference. This would allow us to achieve statistical signif-
icance using a smaller sample of hands.
Proposition 3. Let A1 and A2 be two algorithms that differ
in play only for endgames. Then the difference in perfor-
mance looking at only the hands where both make it to the
same endgame is not an unbiased estimator of the overall
performance difference.

Proof. Suppose there were only two betting sequences and
both make it to the river, where the first one (A) happens

99% of the time and the second one (B) happens 1% of the
time. Then the probability that both hands hit the river with
B on any particular hand is 0.01%, and the probability that
both hands hit the river with A with any particular hand is
98.01%. So if you look at all hands where both hit the river
with the same sequence, there would be only 1 (B) for every
9802 (A) sequences.

Proposition 4. Let A1 and A2 be two algorithms that dif-
fer in play only for endgames. Then the difference in per-
formance looking at only the hands where both make it to
some (but not necessarily the same) endgame is an unbiased
estimator of the overall performance difference.

Proof. For each history that leads into an endgame hi, let
pi be the probability that hi is played when we use the base
strategy against the opponent O. Then the expectation of the
difference in payoff between playing A1 (base strategy) and
A2 (endgame solver) against O is

∑
i

[pi (U(A1, O, hi)− U(A2, O, hi))]

=
∑
i

[piU(A1, O, hi)]−
∑
i

[piU(A2, O, hi)]

Suppose that we look at performance over all hands where
both algorithms make it to some endgame. The probability
that A1 makes it to the endgame with history hi and A2

makes it to the endgame with history hj is pipj . Thus, the
expectation of the payoff difference is

∑
i

∑
j

[pipj (U(A1, O, hi)− U(A2, O, hj))]

=
∑
i

∑
j

[pipjU(A1, O, hi)]−
∑
i

∑
j

[pipjU(A2, O, hj)]

=
∑
i

piU(A1, O, hi)
∑
j

pj

−∑
j

[
pjU(A2, O, hj)

∑
i

pi

]

=
∑
i

[piU(A1, O, hi)]−
∑
j

[pjU(A2, O, hj)]

=
∑
i

[piU(A1, O, hi)]−
∑
i

[piU(A2, O, hi)]

