Applications of Automated Mechanism Design*

Vincent Conitzer and Tuomas Sandholm
{conitzer, sandholm }@cs.cmu.edu
Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213

Abstract

Mechanism design is the art of designing the
rules of the game so that desirable systemwide
outcomes are obtained even though every
agent in the system acts based on self-interest.
Mechanism design has traditionally been a
manual process. We recently (UAI-02) pro-
posed automated mechanism design (AMD),
and studied its worst-case complexity. This
paper contains the first experimental work
on AMD. We describe our implementation of
AMD using a mixed integer/linear program-
ming package (CPLEX 8.0), which we applied
to a variety of scenarios that arise in differ-
ent real-world settings. It created new opti-
mal mechanisms for (divorce) dispute settle-
ment, reinvented the Myerson optimal auc-
tion, invented optimal combinatorial auctions
(a well-known important open research prob-
lem), and created new optimal mechanisms
for public goods problems (both single-good
and multi-good problems). We contrast the
generated optimal mechanisms to the avail-
able mechanisms in the game theory litera-
ture. Finally, we present experimental scala-
bility results of our implementation of AMD.

1 Introduction

Mechanism design is the art of designing the rules of
the game so that a desirable outcome is reached even
though the agents in the game behave selfishly. This
is a difficult problem because the designer is uncertain
about the agents’ preferences and the agents may lie
about their preferences. Mechanism design is receiving
growing attention in the general Al literature, and in
the UAI community in particular [5, 13].

Traditionally, the focus in mechanism design has been

* This material is based upon work supported by NSF
under CAREER Award IRI-9703122, Grant IIS-9800994,
ITR I1S-0081246, and ITR IIS-0121678.

on designing mechanisms that are appropriate for a
range of settings. While this approach has produced a
number of famous mechanisms (for example, the VCG
mechanism [14, 4, 8], the dAGVA mechanism [6, 2], and
the Myerson optimal auction [12]), much of the space
of possible settings is still left uncovered. In many
(arguably most) cases where a mechanism is needed,
the classical mechanisms are not satisfactory because
they make assumptions on what the agents can do (for
example, side payments are required for the mecha-
nism to work); they pursue the wrong objective (for
example, social welfare is pursued instead of maximal
revenue); or they do not make use of all available in-
formation (such as probability distributions over the
agents’ preferences, or types), at the cost of the objec-
tive pursued.

In contrast, in an approach we call automated mecha-
nism design (AMD) (introduced at UAI-02 [5], a mech-
anism is computed on the fly for the setting at hand—a
universally applicable approach. In our previous work
on automated mechanism design, we studied the worst-
case complexity of some versions of the abstract prob-
lem. (We showed the computational benefits of al-
lowing for randomized mechanisms, by showing that
the complexity of various problems is thereby reduced
from NP-complete to solvable in polynomial time.) In
this paper, we describe the results of our first imple-
mentation of an algorithm for automated mechanism
design. Apart from some scalability results we pro-
vide towards the end of the paper, the paper’s focus
is on showing a variety of settings where we applied
the AMD approach, and the results from doing so.
We looked at some settings for which classical mech-
anisms are available (and are optimal). In these, the
automated mechanism design approach rederived the
classical mechanisms. We also looked at some settings
for which (to our knowledge) no classical mechanisms
are available (or classical mechanisms are available but
nonoptimal—for example, a VCG mechanism can be
used in an auction in which the auctioneer is actually
seeking revenues), including some well-known open re-
search areas. In these, the automated design approach
was successful in deriving novel optimal mechanisms.

2 Automated mechanism design

We now formalize the automated mechanism design
setting.

Definition 1 In an automated mechanism design set-
ting, we are given: 1. a finite set of outcomes O (in
some cases, there may also be a cost function over
these indicating how much needs to be paid for each
outcome, e.g. in a public goods problem); 2. a finite
set of N agents; 3. for each agent i, A. a finite set of
types ©;, B. a probability distribution v; over ©; (in
the case of correlated types, there is a single joint dis-
tribution v over ©1 X ... X O), C. a utility function
u; 1 ©; x O — R;Y 4. an objective function whose ex-
pectation the designer wishes to mazximize; 5. a specifi-
cation of what tools are available to the designer (e.g.,
are payments possible, is randomization possible).

There are many possible objective functions the de-
signer might have. In this paper, we study the two
best-known types of objective function: social welfare
(both with and without taking payments into account),
where the designer attempts to maximize the expected
sum of the agents’ utilities; and payment maximiza-
tion, where the designer attempts to maximize the ex-
pected (net) sum of payments made to the center. For
social welfare maximization, we study both settings
where payments are possible, and where they are not
possible. (In the former case, we assume quasilinear
preferences—every agent’s utility is linear in the net
payment that agent makes.)

The mechanism designer has to construct a game for
the agents to play; how this game is played will de-
termine the outcome chosen. (Additionally, it deter-
mines any side payments.) In designing the game, the
mechanism designer seeks to maximize the expected
value of the objective, under the assumption that the
agents will play the game strategically. A useful result
called the revelation principle states that the mecha-
nism designer can restrict his attention to direct reve-
lation mechanisms, where the agents report their types
directly and where they never have any incentive to re-
port them falsely. Thus, a deterministic mechanism is
given by a function from reported type vectors to out-
comes (and possibly to payment vectors). A random-
ized mechanism is given by a function from reported
type vectors to probability distributions over outcomes
(and possibly to payment vectors—but the agents will
only care about the expected payment they have to

!Though this follows standard game theory notation [9],
the fact that the agent has both a utility function and a type
is perhaps confusing. The types encode the various possi-
ble preferences that the agent may turn out to have, and
the agent’s type is not known to the aggregator. The util-
ity function is common knowledge, but because the agent’s
type is a parameter in the agent’s utility function, the ag-
gregator cannot know what the agent’s utility is without
knowing the agent’s type.

make as long as they are risk-neutral.)

Furthermore, we need a definition of a truthful mech-
anism (one in which agents do not have incentives to
lie about their types). The two best-known such defini-
tions, and the ones studied in this paper, are the follow-
ing. In implementation in dominant strategies (DS),
an agent never has an incentive to misreport her type
even if she knows what all the other agents reported. In
implementation in Bayes-Nash equilibrium (BNE), an
agent never has an incentive to misreport her type pre-
suming that she knows nothing more about the other
agents’ types than the commonly known prior, and pre-
suming that all the other agents will report truthfully.
(We do not give formal definitions because of the space
constraint.)

Finally, in many cases, the designer needs to make sure
that the agents do not incur a loss as a result of par-
ticipating in the mechanism (because the agent may
then choose not to participate). This is known as an
individual rationality (IR) constraint. We study ex in-
terim IR, where it always makes sense for the agent
to participate if she knows her own type but only the
priors for the other agents; and ex post IR, where it
always makes sense for the agent to participate even if
she knows everyone’s type.

3 Owur implementation

As we observed in the previous work on automated
mechanism design [5], the problem of designing a ran-
domized mechanism can typically be phrased as a lin-
ear program. Similarly, the problem of designing a
deterministic mechanism can typically be phrased as a
mixed integer program. (We do not describe these pro-
grams here because of the space constraint.) Our algo-
rithm generates these mixed integer/linear programs,
and subsequently uses a package (CPLEX 8.0) to solve
them.

4 Divorce settlement

The first application setting in which we demonstrate
AMD is divorce settlement. We show several variants
of the mechanism design problem, and the optimal so-
lutions (mechanisms) to those variants generated by
our AMD implementation. We first study a benevo-
lent arbitrator, then a benevolent arbitrator that uses
side payments to structure the agents’ incentives, and
finally a greedy arbitrator that wants to maximize the
sum of side payments from the agents—while still mo-
tivating the agents to come to the arbitration.

4.1 A benevolent arbitrator

A couple is getting a divorce. They jointly own a paint-
ing and the arbitrator has to decide what happens to

the painting. There are 4 options to decide between:
(1) the husband gets the painting, (2) the wife gets
the painting, (3) the painting remains in joint owner-
ship and is hung in a museum, and (4) the painting is
burned. The husband and wife each have two possi-
ble types: one that implies not caring for the painting
too much (low), and one that implies being strongly
attached to the painting (high). (low) is had with
probability .8, (high) with .2, by each party. To maxi-
mize social welfare, the arbitrator would like to give the
painting to whoever cares for it more, but even some-
one who does not care much for it would prefer having
it over not having it, making the arbitrator’s job in as-
certaining the preferences nontrivial. Specifically, the
utility function is (for either party)

u(low,get the painting)=2

u(low,other gets the painting)=0

u(low, joint ownership)=1

u(low,burn the painting)=-10 (both parties feel

that burning the painting would be a terrible
thing from an art history perspective)

u(high,get the painting)=100
u(high,other gets the painting)=0
u(high, joint ownership)=50
u(high,burn the painting)=-10

Let us assume (for now) that side payments are not
possible, randomization is not possible, and that imple-
mentation in dominant strategies is required. Now we
have a well-specified AMD instance. Our solver gener-
ated the following optimal mechanism for this setting:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

That is, we cannot do better than always giving the
painting to the husband (or always giving it to the
wife). (The solver does not look for the “fairest” mech-
anism because fairness is not part of the objective we
specified.) Now let us change the problem slightly,
by requiring only implementation in BNE. For this
instance, our solver generated the following optimal
mechanism:
husband_low husband_high

wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility con-
straint to BNE, we can do better by sometimes burning
the painting! The burning of the painting (with which
nobody is happy) is sufficiently helpful in tailoring the
incentives that it becomes a key part of the mechanism.
(This is somewhat similar to the item not being sold in
an optimal auction—more on optimal auctions later.)

Now let us see whether we can do better by also allow-
ing for randomization in the mechanism. It turns out
that we can, and the optimal mechanism generated by
the solver is the following:

husband_low husband_high

.57: husband, .43: wife 1: husband
.45: burn; .55: husband

wife_low
wife_high 1: wife

The randomization helps us because the threat of burn-
ing the painting with some probability when both report
high is enough to obtain the incentive effect that al-
lows us to give the painting to the right party in other
settings. Interestingly, the mechanism now chooses to
randomize over the party that receives the painting
rather than awarding joint ownership in the setting
where both report low.

4.2 A benevolent arbitrator that uses
payments

Now imagine that we can force the parties to pay
money, depending on the types reported—that is, side
payments are possible. The arbitrator (for now) is still
only concerned with the parties’ welfare—taking into
account how much money they lose because of the pay-
ment rule, as well as the allocation of the painting.?
Thus, it does not matter to the arbitrator whether the
agents’ net payment goes to the arbitrator, a charity, or
is burned, but other things being equal the arbitrator
would like to minimize the payments that the agents
make.

Now the optimal deterministic mechanism in dominant
strategies generated by the solver has the following al-
location rule:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high wife gets painting wife gets painting

The payment function is as follows (the wife’s payment
is listed first):

husband_a husband_high
wife_low 0,0 0,0
wife_high 2,0 2,0

In this mechanism, the allocation of the painting is
always optimal. However, the price (in terms of so-
cial welfare) that is paid for this is that the wife must
sometimes pay money; the fact that she has to pay 2
whenever she reports her high type removes her incen-
tive to falsely report her high type.

4.3 An arbitrator that attempts to maximize
the payments extracted

Now we imagine a non-benevolent arbitrator, who is
running an arbitration business. The agents’ net pay-
ments now go to the arbitrator, who is seeking to max-
imize these payments. Of course, the arbitrator can-
not extract arbitrary amounts from the parties; rather,
the parties should overall still be happy with their de-
cision to go to the arbitrator. Thus, we need an IR

2(Classical mechanism design often separates the pay-
ments made from the social welfare calculation, allowing
for easier analysis; one of the benefits of automated mech-
anism design is that the payments made can be easily in-
tegrated into the social welfare calculation in designing the
mechanisms.

constraint. If we require ex post IR and implementa-
tion in dominant strategies, the optimal deterministic
mechanism generated by the solver has the following
allocation rule:

husband_low husband_high

wife_low painting is burned husband gets painting
wife_high wife gets painting wife gets painting

Now the painting is burned when both parties report
their low types! As for the mechanism’s payment func-
tion: in this setting, the arbitrator is always able to
extract all of each agent’s utility from the allocation as
her payment (but note that the allocation is not always
optimal: the painting is burned sometimes, in which
case the arbitrator obtains no revenue, but rather has
to compensate the parties involved for the loss of the
painting).

Many other specifications of the problem are possible;
we do not give them here because of space constraint.

5 Optimal auctions

In this section we show how AMD can be used to design
auctions that maximize the seller’s expected revenue
(these are called optimal auctions). In many—if not
most—auction settings, the seller would like to design
the rules of the auction to accomplish this. This is
a known difficult mechanism design problem; for one,
it is much more difficult than designing a mechanism
that allocates the goods efficiently (among bidders with
quasilinear preferences, ex post efficiency and IR can be
accomplished in dominant strategies using the general-
purpose Vickrey-Clarke-Groves (VCG) mechanism [14,
4, 8]).

We first study auctioning off a single good, and show
that AMD reinvents a known ladmark optimal auction
mechanism for that setting. We then move to multi-
item (combinatorial) auctions, where the optimal auc-
tion has been unknown in the literature to date. We
show that AMD can design optimal auctions for this
setting as well.

5.1 An optimal 2-bidder, 1-item auction

In this section, we show how automated mechanism de-
sign can rederive known results in optimal single-item
auction design. Say there is one item for sale. The auc-
tioneer can award it to any bidder, or burn it (say the
auctioneer’s valuation for the good is 0). There are two
bidders, 1 and 2. For each of them, their distribution
of valuations is uniform over {0,0.25,0.5,0.75,1}.

In designing the auction automatically, we required ex-
interim IR and implementation in Bayes-Nash equilib-
rium. Randomization was allowed (although in this
setting, it turned out that the probabilities were all 0
or 1). The allocation rule of the mechanism generated
by the solver is as follows. If both bid below 0.5, burn

the item; otherwise, give the item to the highest bid-
der (a specific one of them in the case of a tie). This
is exactly?® the celebrated Myerson auction [12]. (Al-
though the Myerson auction was originally derived for
a continuous valuation space.) In other words, AMD
quickly reinvented a landmark mechanism from 1981.

5.2 Multi-item (combinatorial) auctions

We now move to combinatorial auctions where there
are multiple goods for sale. The design of a mechanism
for this setting that maximizes the seller’s expected
revenue is a recognized open research problem [3, 15].
The problem is open even if there are only two goods
for sale. (The two-good case with a very special form
of complementarity and no substitutability has been
solved recently [1].) We show that AMD can be used
to generate optimal combinatorial auctions.

5.2.1 An optimal 2-bidder, 2-item
combinatorial auction with
complementarity

In our first combinatorial auction example, two items,
A and B, are for sale. The auctioneer can award each
item to any bidder, or burn it (the auctioneer’s valu-
ation is 0). There are two bidders, 1 and 2, each of
whom has four possible, equally likely types: LL, HL,
LH, and HH. The type indicates whether each item is
strongly desired or not; for instance, the type H L indi-
cates that the bidder strongly desires the first item, but
not the second. Getting an item that is strongly desired
gives utility 2; getting one that is not strongly desired
gives utility 1. The utilities derived from the items
are simply additive (no substitution or complementar-
ity effects), with the exception of the case where the
bidder has the type HH. In this case there is a com-
plementarity bonus of 2 for getting both items (thus,
the total utility of getting both items is 6). (One way
to interpret this is as follows: a bidder will sell off any
item it wins and does not strongly desire, on a market
where it is a price taker, so that there are no substitu-
tion or complementarity effects with such an item.)

In designing the auction, we required ex-interim IR and
implementation in Bayes-Nash equilibrium. Random-
ization was allowed (although in this setting, it turned
out that the probabilities were all 0 or 1). The objec-
tive to maximize was the expected payments from the
bidders to the seller. The mechanism generated by the
solver has the following allocation rule:

1. If one bidder bid LL, then the other bidder gets all
the items he bid high on, and all the other items (that
both bid low on) are burned.

2. If exactly one bidder bid H H, that bidder gets both

3Apart from the payment rule generated, because
CPLEX chooses to distribute the payments slightly differ-
ently across different type vectors.

items. If both bid H H, bidder 1 gets both items.

3. If both bidders bid high on only one item, and they
did not bid high on the same item, each bidder gets his
preferred item.

4. If both bidders bid high on only one item, and they
bid high on the same item, bidder 2 gets the preferred
item, and bidder 1 gets the other item.

LL | LH | HL | HH
LL | 0,002 |20 |22
LH | 0,112 21|22
HL | 10 | 1,2 [2,1 | 2,2
HH | 1,1 | 1,1 | 1,1 | 1,1

The allocation rule in the optimal combinatorial auction. The row
indicates bidder 1’s type, the column bidder 2’s type. 4, j indicates
that item A goes to bidder ¢, and item B to bidder j. (0 means the

item is burned.)

It is interesting to observe that suboptimal allocations
occur only when one bidder bids LL and the other
other does not bid HH. All the inefficiency stems from
burning items, never from allocating items to a subop-
timal bidder.

We omit the payment rule because of space constraint.
The expected revenue from this mechanism is 3.9375.
For comparison, the expected revenue from the VCG
mechanism is only 2.6875. It is interesting to view this
in light of a recent result that the VCG mechanism is
asymptotically optimal in multi-item auctions, that is,
it maximizes revenue in the limit [10]. Apparently the
auction will need to get much bigger before no signif-
icant fraction of the revenue is lost by using the VCG
mechanism.

5.2.2 An optimal 3-bidder, 2-item
combinatorial auction with
substitutability and complementarity

We now move on to designing a bigger auction, with
again 2 items, but now with 3 bidders (for a total of 16
possible allocations of items) and a bigger type space.
Again, the bidders could have a high or low type for
each item, resulting in a utility for that item alone of
3 or 1, respectively; part of their type now also in-
cluded whether the items had complementarity or sub-
stitutability to them, resulting in a total of 8 types
per bidder—that is, 8% = 512 type vectors (possible
joint preference revelations by the bidders). In the
case where the items have substitutability, the utility
of getting both items is the sum of the items’ individual
values, minus 0.2 times the value of the lesser valued
item 4. In the case of complementarity, 0.2 times the
value of the lesser-valued item is added.

“Subtracting a fraction from the lesser valued item guar-
antees free disposal, meaning that additional items cannot
make a bidder worse off.

This is the only instance in this paper (besides the
scalability results) where CPLEX took more than 0.00
seconds to solve the instance. (It took 5.90 seconds.)
The optimal auction generated has an expected rev-
enue of 5.434. The allocation rule generated (an 8x8x8
table) is too large to present in this paper (as we did
in the previous subsection), but we point out some in-
teresting properties of the optimal auction generated
nonetheless:

1. Burning of items occurs again, for example, when
two bidders report a low valuation for both items and
the remaining bidder does not report a high valuation
on both items;

2. Randomization now does occur, for instance some-
times (but not always) when one item is valued lowly
by everyone and two of the three value the other item
highly (the randomization is over which of the two gets
the desired item);

3. The optimal auction takes the complementarity and
substitutability into account, for instance by doing the
following. When one bidder bids high on both items
and the other two each bid high on one item (not the
same one), then the mechanism awards the items to the
first bidder if that bidder revealed complementarity,
but to the other bidders if the first bidder revealed
substitutability. (Each one gets his/her desired item.)

6 Public goods problems

Public goods problems are another key area of mecha-
nism design [9]. In such problems, the agents have to
make a joint decision that pertains to all of the agents.
For example, the agents may vote over whether or not
to build a bridge, but once the bridge is built, no agent
can be excluded from using it. This gives rise to a free-
riding problem. The Groves mechanism is a general
solution to this problem (for agents with quasilinear
preferences). It guarantees that the ex post social wel-
fare maximizing choice is made, that the mechanism is
ex post IR, and the truthful revelation of preferences is
each agent’s dominant strategy [8]. The Groves mech-
anism collects payments from the agents depending
on what preferences they revealed; these payments set
the correct incentives for the agents to tell the truth.
Unfortunately, the Groves mechanism does not main-
tain budget balance. Usually the sum of payments is
greater than the cost of the project, and these extra
payments have to be burned (redistributing them back
to the agents or to any cause that the agents care
about would distort the incentives for truth-telling).
In fact, for the general class of quasilinear preferences,
there exists no mechanism that achieves budget bal-
ance, truth-dominance, and ex post efficiency (social
welfare maximization) [7].

The advantage of applying AMD in this setting is that
we do not desire to design a mechanism for general

(quasilinear) preferences, but merely for the specific
mechanism design problem instance at hand. In some
settings this may allow one to circumvent the impossi-
bility entirely, and in all settings it minimizes the pain
entailed by the impossibility. We use AMD to design
a truth-dominant, ex post IR mechanism that is as ex
post efficient as possible—taking into account money
burning as a loss in efficiency.

6.1 Building a bridge

Two agents are deciding whether to build a good that
will benefit both (say, a bridge). The bridge, if it is to
be built, must be financed by the payments made by
the agents. Building the bridge will cost 6. The agents
have the following type distribution: with probability
4, agent 1 will have a low type and value the bridge at
1. With probability .6, agent 1 will have a high type
and value the bridge at 10. Agent 2 has a low type
with probability .6 and value the bridge at 2; with
probability .4, agent 2 will have a high type and value
the bridge at 11. (Thus, agent 2 cares for the bridge
more in both cases, but agent 1 is more likely to have
a high type.)

We used AMD to design the optimal randomized
dominant-strategy mechanism that is ex post IR, and
as ex post efficient as possible—taking into account
money burning as a loss in efficiency. The optimal
mechanism generated by our AMD implementation has
the following outcome function (here the entries of the
matrix indicate the probability of building the bridge
in each case):

Low | High
Low | O .67
High | 1 1

The payment function is as follows (here a, b gives the
payments of agents 1 and 2, respectively):

Low | High
Low | 0,0 .67,3.33
High | 42 | 4,2

The payments in the case where agent 1 bids low but
agent 2 bids high are the expected payments (as we ar-
gued before, risk-neutral agents only care about this);
the agents will need to pay more than this when the
good is actually built, but can pay less when it is not.
(The constraints on the expected payments in the lin-
ear program are set so that the good can always be af-
forded when it is built.) It is easy to see that no money
is burned: all the money the agents pay goes towards
building the bridge. However, we do not always build
the bridge when this is socially optimal—namely, when
the second agent has a high type (which is more than
enough to justify building the bridge) we do not always
build the bridge.

If we relax our solution concept to implementation in

Bayes-Nash equilibrium, however, we get a mechanism
with the following outcome function:

Low | High
Low | O 1
High | 1 1

The payment function is now as follows:

Low | High
Low | 0,0 0,6
High | 4,2 .67,5.33

Again, no money is burned, but now also, the optimal
outcome is always chosen. Thus, with implementation
in Bayes-Nash equilibrium, our mechanism achieves ev-
erything we hope for.

For Bayes-Nash implementation among agents with
quesilinear preferences, the dAGVA mechanism
achieves budget balance, truth-telling as the equilib-
rium strategy, and ex post efficiency [6, 2]. However,
no mechanism achieves these properties and ex post IR
for general (quasilinear) preferences [11]. As our mech-
anism above shows, AMD can circumvent this impos-
sibility in specific settings.

6.2 Building a bridge and/or a boat

Now let us move to the more complex public goods
setting where two goods could be built: a bridge and a
boat. There are 4 different outcomes corresponding to
which goods are built: None, Boat, Bridge, Boat and
Bridge. The boat costs 1 to build, the bridge 2, and
building both thus costs 3.

The two agents each have one of four different types:
None, Boat Only, Bridge Only, Boat or Bridge. These
types indicate which of the two possible goods would
be helpful to the agent (for instance, maybe one agent
would only be helped by a bridge because this agent
wants to take the car to work, which will not fit on the
boat). All types are equally likely; if something is built
which is useful to a agent (given that agent’s type), the
agent gets a utility of 2, otherwise 0.

We used AMD to design the optimal randomized
dominant-strategy mechanism that is ex post IR, and
as ex post efficient as possible—taking into account
money burning as a loss in efficiency. The mechanism
has the following outcome function, where a vector
(a,b,c,d) indicates the probabilities for None, Boat,
Bridge, Boat and Bridge, respectively.

None Boat Bridge Either
None (1,0,0,0) (0,1,0,0) | (1,0,0,0) (0,1,0,0)
Boat (.5,.5,0.0) | (0,1,0,0) | (0,.5,0,.5) | (0,1,0,0)
Bridge | (1,0,0,0) (0,1,0,0) | (0,0,1,0) (0,0,1,0)
Either | (.5,.5,0.0) | (0,1,0,0) | (0,0,1,0) (0,1,0,0)

The (expected) payment function is as follows:

None | Boat | Bridge | Either
None 0,0 0,1 0,0 0,1
Boat .5,0 0,1 1,1 0,1
Bridge | 0,0 0,1 1,1 1,1
Either | .5,0 0,1 1,1 0,1

Again, no money is burned, but we do not always
build the public goods that are socially optimal—for
example, sometimes nothing is built although the boat
would have been useful to someone.

As in previous sections, there are many other possi-
ble versions of the problem that we could have studied
(no randomization, ex interim IR, ...); we chose these
merely as interesting examples, given our space con-
straint.

7 Scalability experiments

To assess the scalability of the automated mechanism
design approach in general, we generated random in-
stances of the automated mechanism design problem.
Each agent, for each of its types, received a utility
for each outcome that was uniformly randomly cho-
sen from the integers 0, 1,2,...,99. (All random draws
were independent.) Real-world automated mechanism
design instances are likely to be more structured than
this (for example, in allocation problems, if one agent
is happy with an outcome, this is because it was al-
located a certain item that it wanted, and thus other
agents who wanted the item will be less happy); such
special structure can typically be taken advantage of
in computing the optimal mechanism, even by nonspe-
cialized algorithms. For instance, a random instance
with 3 agents, 16 outcomes, 8 types per agent, with
payment maximization as its goal, ex-interim IR, im-
plementation in Bayes-Nash equilibrium, where ran-
domization is allowed, takes 14.28 seconds to solve on
average in our implementation. The time required to
compute the optimal combinatorial auction from sub-
section 5.2.2, which had exactly the same parameters
(but much more structure in the utility functions),
compares (somewhat) favorably to this at 5.90 seconds.

We are now ready to present the scalability results.
For every one of our experiments, we consider both
implementation in dominant strategies and implemen-
tation in Bayes-Nash equilibrium. We also consider
both the problem of designing a deterministic mecha-
nism and that of designing a randomized mechanism.
All the other variables that are not under discussion
in a particular experiment are fixed at a default value
(4 agents, 4 outcomes, 4 types per agent, no IR con-
straint, no payments, social welfare is the objective);
these default values are chosen to make the problem
hard enough for its runtime to be interesting. Experi-
ments taking longer than 6 hours were cancelled.

The next table shows that the runtime increases fairly
sharply with the number of agents. Also (as will be

confirmed by all the later experiments), implemen-
tation in dominant strategies is harder than imple-
mentation in BNE, and designing deterministic mech-
anisms is harder than designing randomized mecha-
nisms. (The latter part is consistent with the transi-
tion from NP-completeness to solvability in polynomial
time by allowing for randomness in the mechanism [5].)

#agents | D/DS | R/DS | D/BNE | R/BNE
2 02 00 | .00 00
3 04 00 | .05 01
4 832 | 1.32 | 1.68 06
5 709.85 | 48.19 | 10.47 | .52

The time (in seconds) required to solve randomly generated AMD
instances for different numbers of agents, for deterministic (D) or
randomized (R) mechanisms, with implementation in dominant
strategies (DS) or Bayes-Nash equilibrium (BNE). All experiments
had 4 outcomes and 4 types per agent, required no IR constraint,

did not allow for payments, and had social welfare as the objective.

The next table shows that the runtime tends to increase
with the number of outcomes, but not sharply.

#outcomes || D/DS | R/DS | D/BNE | R/BNE
2 .07 .07 .04 .03
3 .36 .08 .46 .05
4 8.32 1.32 1.68 .06
5 10.91 | .59 .69 .07

The next table shows that the runtime increases fairly
sharply with the number of types per agent.

#types || D/DS | R/DS | D/BNE | R/BNE
2 00 00 .00 .00
3 04 01 30 01
1 832 | 132 | 1.68 .06
5 563.73 | 14.33 | 36.60 | .21

The next table shows that the impact of IR constraints
on runtime is entirely negligible.

IR constraint | D/DS | R/DS | D/BNE | R/BNE
None 8.32 1.32 1.68 .06
Ex post 8.20 1.38 1.67 12
Ex interim 8.11 1.42 1.65 A1

The next table studies the effects of allowing for pay-
ments and changing the objective. Allowing for pay-
ments (without taking the payments into account) in
social welfare maximization reduces the runtime. This
appears consistent with the fact that for this setting,
a general mechanism exists that always obtains the
maximum social welfare—the VCG mechanism . How-
ever, this speedup disappears when we start taking the
payments into account. Interestingly, payment maxi-
mization appears to be much harder than social welfare
maximization. In particular, in one case (designing a

deterministic mechanism without randomization), an
optimal mechanism had not been constructed after 6
hours!

Objective || D/DS | R/DS | D/BNE | R/BNE
SW (1) |[820 |138 | 1.67 12

SW (2) Al 14 92 10

SW (3) 798 | .51 444 10

P - 1.89 | 84.66 | 347

SW=social welfare (1) without payments, (2) with payments that
are not taken into account in social welfare calculations, (3) with
payments that are taken into account in social welfare calculations;

m=payment maximization.

8 Conclusions and future research

In this paper, we presented the first applications of au-
tomated mechanism design (AMD), an approach that
we introduced in UAI-02. This yielded several mecha-
nisms for a divorce settlement scenario (each of them
optimal for a particular purpose); it rederived the My-
erson optimal auction for selling a single good; it pro-
duced novel optimal combinatorial auction mechanisms
for maximizing the seller’s expected revenue (a rec-
ognized difficult problem in the combinatorial auction
literature); and it produced novel optimal mechanisms
for public goods problems (both with a single good and
with multiple goods). As the examples show, AMD can
circumvent seminal impossibility results in mechanism
design because the mechanism is not designed for a
general class of problems, but rather for the specific
setting at hand. Even when the optimal mechanism—
created using AMD—does not circumvent the impossi-
bility, it always minimizes the pain entailed by impos-
sibility.

Finally, we studied the scalability of AMD on unstruc-
tured problems. The experiments show that the run-
time is heavily dependent upon 1. the number of agents
(the more the harder), 2. the number of types per agent
(the more the harder), 3. whether implementation in
dominant strategies or in Bayes-Nash equilibrium is
required (the former is harder), 4. whether random-
ization is allowed (deterministic mechanism design is
harder), and 5. which objective is pursued (from social
welfare with payments that are not taken into account
(easy) to payment maximization (hard)). Other vari-
ables, such as the number of outcomes and which (if
any) IR constraint is used, turned out to matter much
less. In the case that some of these variables in the
problem can be changed in order to achieve feasibility,
these results are a valuable guideline in selecting which
variables to change. On the other hand, given that in
many settings, we will not be able to change these vari-
ables, these results also indicate in which settings new,
faster algorithms will be most valuable.

AMD in a very new fertile research area with numer-

ous promising directions for future research. First,
there would be great value in designing AMD algo-
rithms that are faster than the general-purpose MIP
solver used here (CPLEX 8.0) on the general AMD
problem or special cases of it. It may be possible to
speed up AMD using theoretical characterizations of
mechanisms for special settings (where the character-
ization is not complete enough to actually identify a
mechanism); this would allow AMD to focus its search
of an optimal mechanism in a smaller space of mech-
anisms. Second, one could apply AMD to large-scale
real-world problems. Third, it would be interesting to
use AMD as a tool for finding mechanisms for classes of
mechanism design settings; this would most likely en-
tail solving several instances using AMD, and trying to
identify the commonality of the resulting mechanisms.

References

[1] Mark Armstrong. Optimal multi-object auctions. Review of
Economic Studies, 67:455—481, 2000.

[2] Kenneth Arrow. The property rights doctrine and demand reve-
lation under incomplete information. In M Boskin, editor, Eco-
nomics and human welfare. New York Academic Press, 1979.

[3] Christopher Avery and Terrence Hendershott. Bundling and
optimal auctions of multiple products. Review of Economic
Studies, 67:483-497, 2000.

[4] E H Clarke. Multipart pricing of public goods. Public Choice,
11:17-33, 1971.

[5] Vincent Conitzer and Tuomas Sandholm. Complexity of mech-
anism design. In Proceedings of the 18th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-02), pages 103~
110, Edmonton, Canada, 2002.

[6] C d’Aspremont and L A Gérard-Varet. Incentives and incom-
plete information. Journal of Public Economics, 11:25-45,
1979.

[7] J Green and J-J Laffont. Characterization of satisfactory mech-
anisms for the revelation of preferences for public goods. Econo-
metrica, 45:427-438, 1977.

[8] Theodore Groves. Incentives in teams. Econometrica, 41:617—
631, 1973.

[9] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green. Mi-
croeconomic Theory. Oxford University Press, 1995.

[10] Dov Monderer and Moshe Tennenholtz. Asymptotically optimal
multi-object auctions for risk-averse agents. Technical report,
Faculty of Industrial Engineering and Management, Technion,
Haifa, Israel, February 1999.

[11] Roger Myerson and Mark Satterthwaite. Efficient mechanisms
for bilateral exchange. Journal of Economic Theory, 28:265—
281, 1983.

[12] Roger B Myerson. Optimal auction design. Mathematics of
Operation Research, 6:58-73, 1981.

[13] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz. Fault
tolerant mechanism design. In Proceedings of the 18th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-
02), Edmonton, Canada, 2002.

[14] W Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8-37, 1961.

[15] Rakesh V. Vohra. Research problems in combinatorial auctions.
Mimeo, version Oct. 29, 2001.

