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Abstract. Combinatorial exchanges are trading mechanisms that allow
agents to specify preferences over bundles of goods. When agents’ pref-
erences exhibit complementarity and/or substitutability, this additional
expressiveness can lead to more efficient allocations than is possible us-
ing traditional exchanges. In the context of combinatorial exchanges,
this paper examines arbitrage, a risk-free profit opportunity. We show
that some combinatorial exchanges allow agents to perform arbitrage
and thus extract a positive payment from the market while contribut-
ing nothing, something that is not possible in traditional exchanges. We
analyze the extent to which arbitrage is possible and computationally fea-
sible in combinatorial exchanges. We show that the surplus-maximizing
combinatorial exchange with free disposal is resistant to arbitrage, but
without free disposal arbitrage is possible. For volume-maximizing and
liquidity-maximizing combinatorial exchanges, we show that arbitrage is
sometimes possible and we propose an improved combinatorial exchange
that achieves the same economic objective but eliminates a particularly
undesirable form of arbitrage. We show that the computational complex-
ity of detecting winning arbitraging bids is NP-complete and that the
ability for an agent to submit arbitraging bids depends on the type of
feedback in the exchange. We also show that a variant of combinatorial
exchanges in which arbitrage is impossible becomes susceptible to ar-
bitrage if certain side constraints are placed on the allocation or if an
approximating clearing algorithm is used.

1 Introduction

A combinatorial exchange (CE) is a trading mechanism where agents are able
to specify preferences over bundles of good. This additional expressiveness can
lead to more economically desirable outcomes than is possible in traditional
exchanges. However, CEs also present problems not found in traditional markets
that need to be studied before CEs can safely be put to use.

Despite the theoretical advantages inherent in CEs, they have been of little
practical use thus far. CEs have been proposed by the Federal Communications
Commission (FCC) as a method of efficiently trading wireless spectrum licenses.
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The FCC is currently in the process of designing a CE suitable for their purposes,
but is still probably several years away from implementing a CE. BondConnect,
a combinatorial exchange for bond trading, was deployed, but is no longer in use.
For a related description of CEs in the context of financial markets see [1]. In this
infant stage of CE development, there are still many challenges for researchers.

One of the challenges faced by implementers of CEs is that most forms of
the clearing problem are NP-complete [2]. The first special-purpose algorithm
for clearing CEs was presented in [3] and clearing time for different variants
of this problem was experimentally studied in [2]. Another challenge in CEs is
that of preference elicitation [4], in which the market maker solicits information
from participating agents so as to achieve the desired economic objective while
minimizing communication and/or computational costs. Yet another challenge
is mechanism design for CEs [5, 6], in which the rules governing the exchange
are carefully designed so as to achieve various economic goals.

In this paper, we study an additional problem that arises in CEs: arbitrage.
Typically, agents participating in a CE possess an endowment of money or some
subset of the goods (or both) and wish to exchange goods and money with other
agents so as to increase their well-being (i.e. utility). This paper examines how
well an agent that initially has no endowment can do in various combinatorial
marketplaces. Put simply, where are the free lunches in CEs?

The computational complexity of arbitrage has previously been studied for
various frictional markets [7], including frictional markets in foreign exchange [8]
and frictional markets in securities [9]. A frictional market is defined as a mar-
ket in which assets are traded in integer numbers and when there is a maximum
limit on the number of assets that can be traded at a fixed price. Via a reduction
from 3SAT, it has been shown that it is strongly NP-hard to compute an arbi-
trage opportunity in frictional markets. This result has important consequences
because a fundamental assumption in many theories of finance is the arbitrage-
free assumption (for example, see [10]). This assumption is based on the belief
that if an arbitrage opportunity ever existed, it would disappear in an arbitrarily
short period of time. If generating an arbitrage opportunity is a computationally
hard problem, then this assumption may not hold in practice. In this paper, we
show that many problems related to arbitrage in CEs are also hard and depend
heavily on the amount of information available to participating agents. Thus,
any theories about CEs should be cautious when making assumptions regarding
the existence of arbitrage opportunities in CEs.

2 Combinatorial Exchanges

In this section, we formally define our model of a combinatorial exchange, and
define the various different types of exchanges that we treat in this paper. We
also present hardness results for the clearing problems of each type of exchange.

2.1 Model

We assume the presence of an exchange administrator (i.e., mediator) that
runs the centralized clearing algorithm. Our model for a CE consists of M =



{1, 2, . . . ,m} goods, determined by an exchange administrator. Goods can be
discrete (e.g. automobiles) or continuous (e.g. oil). In this paper, we do not
make any distinction among these two possibilities; all of our results apply to
markets with discrete or continuous goods.

Definition 1. A combinatorial bid is a tuple Bj = 〈(λ1
j , λ

2
j , . . . , λ

m
j ), pj〉 with

λkj ∈ IR and pj ∈ IR. λkj is the amount of good k demanded by bid j (negative
values indicate supply). Similarly, pj indicates the amount the agent will pay for
the bundle (a negative value indicates that the agent requires a payment).

The following special cases of combinatorial bids will be discussed later in
the paper.

Definition 2. A combinatorial bid Bj = 〈(λ1
j , λ

2
j , . . . , λ

m
j ), pj〉 with either λij ≥

0 for each i, or λij ≤ 0 for each i, is called a pure combinatorial bid (i.e., it is
purely supplying or purely demanding). Otherwise, it is called a mixed combina-
torial bid (i.e., it is both supplying and demanding).

Definition 3. A combinatorial bid Bj = 〈(λ1
j , λ

2
j , . . . , λ

m
j ), pj〉 is called a single-

item bid if only one of λij is non-zero and the rest are zero.

Definition 4. A combinatorial bid Bj = 〈(λ1
j , . . . , λ

m
j ), pj〉 with λij ∈ {−1, 0, 1}

is called a single-unit bid. A CE consisting of only single-unit bids is called a
single-unit CE.

Given a collection of combinatorial bids, the exchange administrator is faced
with the problem of clearing the exchange. There are several variations of this
problem that we treat in this paper: the surplus-maximizing CE clearing problem,
the liquidity-maximizing CE clearing problem, and the volume-maximizing CE
clearing problem.

Definition 5. Given a set B = {B1, B2, . . . , Bn} of combinatorial bids, the gen-
eral CE clearing problem is to label the bids as winning or losing so as to maxi-
mize an objective function f : {0, 1}n → IR subject to the constraint that demand
does not exceed supply:

max f(x)

such that
n∑
j=1

λijxj ≤ 0 i = 1, 2, . . . ,m

xj ∈ {0, 1} j = 1, 2, . . . , n

In the situation where good i is not freely disposable (i.e. buyers are not willing
(or unable) to take extra units, and sellers are not willing (or unable) to keep any
units of their winning bids), then the inequality in the first constraint is replaced
with an equality.

Definition 6. The surplus-maximizing CE clearing problem is the general CE
clearing problem with f(x) =

∑n
j=1 pjxj.



Definition 7. The liquidity-maximizing CE clearing problem is the general CE
clearing problem with f(x) =

∑n
j=1 xj.

Definition 8. The volume-maximizing CE clearing problem is the general CE
clearing problem with f(x) =

∑m
i=1

∑n
j=1

∣∣λij
∣∣xj.

2.2 Complexity of Clearing

This paper is primarily concerned with computational complexity results related
to CEs. An important starting point is the computational complexity of the
various clearing problems. We begin with the following result from [2].

Proposition 1. [2] The decision version of the surplus-maximizing CE clearing
problem with free disposal is NP-complete.

This was proven in [2] by noting that clearing a combinatorial auction with
free disposal, which is a special case of a surplus-maximizing CE with free dis-
posal, isNP-complete [11] since it is equivalent to WEIGHTED SET PACKING.
This proof only applies to the surplus-maximizing CE with free disposal clearing
problem, but as the following two propositions show, the clearing problem is also
NP-complete for the liquidity-maximizing and volume-maximizing versions of
the CE.

Proposition 2. The decision version of the liquidity-maximizing CE clearing
problem with free disposal is NP-complete.

Proposition 3. The decision version of the volume-maximizing CE clearing
problem with free disposal is NP-complete.

So far, we have shown that the clearing problems as defined in Definitions 6-8
are NP-complete for the case where there is free disposal. Proposition 4 shows
that even finding a non-trivial feasible allocation is NP-complete for the case
without free disposal.

Definition 9. Let B = {B1, B2, . . . , Bn} be the bids in a CE. Let xj be the
binary decision variable for Bj in some feasible allocation. We say that the al-
location is a non-trivial feasible allocation if there is at least one bid Bj in the
allocation such that xj 6= 0 (i.e., at least one item is traded).

Proposition 4. [2] Without free disposal, finding a non-trivial feasible alloca-
tion for each of the problems in Definitions 6-8 is NP-complete, even if there is
only one item.

To summarize Propositions 1-4, each of the problems defined in Definitions 6-
8 with free disposal is NP-complete. Without free disposal, even finding a non-
trivial feasible allocation is NP-complete.

In the liquidity-maximizing and volume-maximizing CE clearing problems,
it is possible for a negative surplus to occur. Some exchange administrators may
wish to constrain the allocations so that the allocation is budget-nonnegative.



Definition 10. Let x = {x1, . . . , xn} be the allocation given by an exchange
clearing algorithm. If

∑n
j=1 pjxj ≥ 0 then the allocation is said to be budget-

nonnegative.

The surplus-maximizing CE clearing problem always results in a budget-
nonnegative allocation. It can easily be shown that that each of the clearing
problems remains NP-complete if the budget-nonnegative constraint is added.

3 Existence of Arbitrage in Combinatorial Exchanges

In this section we formally define what arbitrage is in the context of a CE.
We discuss types of exchanges for which arbitrage is provably impossible, and
discuss other exchanges for which arbitrage is sometimes possible and sometimes
impossible. We also present a new CE clearing method that curtails some types
of arbitrage.

Definition 11. A combinatorial bid Bj = 〈(λ1
j , λ

2
j , . . . , λ

m
j ), pj〉 is an arbitrag-

ing bid if the following two conditions hold:

1. λij ≥ 0 for all i (i.e. the bid is not supplying any goods);
2. pj < 0 (i.e. the bid, if accepted, gives a positive payoff to the agent who

placed the bid).

The way we have defined arbitrage in a CE reinforces the point that arbitrage
is risk-free to the agent submitting the bid. It is possible for an agent to receive
a positive payment from an exchange without providing any net supply of goods
to the exchange while not submitting any arbitraging bids as defined above. This
could be accomplished, for example, by submitting a set of bids, none of which
is arbitraging, but in aggregate the sum of the prices of the bids is negative and
the sum of the quantities of the items is nonnegative. However, this is not a
risk-free situation for the agent, and so we do not consider it as arbitrage.

Before discussing the possibility and impossiblity of arbitrage in combina-
torial exchanges, it is worth first noting that arbitrage is never possible in a
combinatorial auction or combinatorial reverse auctions.

3.1 Impossibility of Arbitrage

An arbitraging bid, if accepted, results in a positive payoff to the agent that
submitted it, and the agent does not supply any goods. This is indeed a very
profitable situation for the agent, possibly at the expense of other agents in
the exchange. However, as the following theorem shows, in some variants it is
impossible for an agent to place a winning arbitraging bid.

Theorem 1. (Main Impossibility Result) In a surplus-maximizing CE with free
disposal, an arbitraging bid will never be in an optimal allocation.



Proof. Let x∗ = {x∗1, x∗2, . . . , x∗n} ∈ {0, 1}n be the optimal (surplus-maximizing)
allocation. By way of contradiction, say that x∗k = 1 and Bk is an arbitraging
bid. Consider what happens when we change the allocation to have x∗k = 0 (i.e.
we remove the arbitraging bid from the allocation). For some i ∈ {1, 2, . . . ,m},
consider the constraint

∑n
j=1 λ

i
jxj ≤ 0 in the clearing problem. Since λik ≥

0, we have
∑k−1
j=1 λ

i
jx
∗
j +

∑n
j=k+1 λ

i
jx
∗
j ≤

∑n
j=1 λ

i
jx
∗
j ≤ 0. So the allocation

remains feasible. Since pk < 0, subtracting pk from the objective value results
in a strictly higher surplus. Thus the arbitraging bid xk can be discarded while
raising surplus. This contradicts the optimality of the allocation x∗. ut

3.2 Possibility of Arbitrage

In contrast to the impossibility results above, the following example shows that
an arbitraging bid may be accepted in surplus-maximizing CEs without free dis-
posal and in liquidity-maximizing and volume-maximizing CEs with or without
free disposal.

Example 1. Consider the following CE:

M = {1, 2},B = {B1, B2}, B1 = {〈(−1, 0),−8〉, B2 = 〈(1,−1), 10〉}.
(In the first bid, an agent is offering to sell one unit of good 1 for $8. In the
second bid, an agent wishes to buy one unit of good 1 and sell one unit of good
2, and is offering to pay $10.)

In any of the CEs defined in Definitions 6-8 with no free disposal for good
2, the exchange administrator is unable to clear the market since there is no
available demand for the second good. Now consider what happens if an agent
submits the bid B3 = 〈(0, 1),−1〉 indicating that she will accept one unit of good
2, and is asking for $1. This is clearly an arbitraging bid, but since it satisfies
the no free disposal constraint that demand equals supply, it allows the market
to clear. So the arbitraging agent receives one unit of good 2, and also receives
$1.

Now consider a liquidity-maximizing exchange with free disposal. Considering
only bids B1 and B2 the exchange will clear with a trading volume of 2 (both
bids are accepted). When we add bid B3, the exchange will clear with a trading
volume of 3. Again, the arbitraging agent is receiving a positive payment yet is
not supplying anything. This same example can be used to show that arbitrage
is possible in volume-maximizing exchanges with free disposal.

An argument could be made that arbitrage in an exchange without free
disposal is unlikely to occur for the very reason that ownership (or disposal) of
the good entails some costs. However, in some situations the presence of free
disposal may be different among different agents. If one agent is able to dispose
of the good for free, then she would be able to gain from arbitraging bids.

The above example simply showed that an arbitrage opportunity existed for
certain instances of CEs. As the following example illustrates, even if arbitrage
is possible in a given variant, there may be no arbitrage opportunities available
to an arbitraging agent in a given instance.



Example 2. Consider the surplus-maximizing CE without free disposal and with
M = {1, 2} and B = {B1, B2, B3} with B1 = {〈(−1, 0),−8〉, B2 = 〈(1,−1), 10〉},
and B3 = 〈(0, 1), 2〉. The exchange administrator faces the following optimization
problem:

max −8x1 + 10x2 + 2x3

such that −x1 + x2 = 0
−x2 + x3 = 0
x1, x2, x3 ∈ {0, 1}

The optimal solution to this problem is to accept all three bids which results
in a surplus of 4. Consider an agent trying to place an arbitraging bid in this
exchange. The agent can create an arbitraging bid to either accept item 1, item
2, or both items. Consider the problem faced by the agent if she tries to arbitrage
by accepting item 1:

find p
such that −8x1 + 10x2 + 2x3 − p ≥ 4

−x1 + x2 = 1
−x2 + x3 = 0
x1, x2, x3 ∈ {0, 1}

Routine computation shows that this problem is infeasible. Similar computations
show the same for when the agent tries to compute an arbitraging bid accepts
item 2 or accepts both items. Thus there is no arbitrage opportunity currently
available in this exchange.

Unlike surplus-maximizing exchanges, the objective function in liquidity-
maximizing and volume-maximizing exchanges does not depend on the prices
of bids. As we will see below, this difference has important consequences in the
existence of arbitrage opportunity.

One aspect of allocations that has been ignored until now is that of unique-
ness. In general, there can be multiple optimal allocations. This is especially
likely to occur in liquidity-maximizing and volume-maximizing exchanges. Since
bid prices are irrelevant in these exchanges, bids on the same bundles are treated
equally regardless of their prices. The following theorem gives a sufficient condi-
tion for the existence of an arbitrage opportunity.

Theorem 2. (Main Possibility Result) In liquidity- and volume-maximizing ex-
changes, if there is at least one pure demand bid in an optimal allocation, then
there always exists an arbitrage opportunity where the arbitraging bid can be ac-
cepted in an equally optimal allocation. This holds with and without free disposal
and holds even if the exchange is constrained to be budget-nonnegative.

Proof. Let Bj ∈ B be a pure demand bid that is currently in an optimal al-
location. So λij ≥ 0 for all i ∈ M . We can create an arbitraging bid Bk with

λik = λij for all i ∈ M that can be interchanged with Bj in the optimal alloca-
tion. Thus we can set pj to any value we choose. If the exchange is constrained
to be budget-nonnegative, then we can set the price equal to the negative of the
current surplus. ut



In addition to the possibility of arbitrage that is present in the above CE
variants, it is easy to see that in any CE that uses a non-optimal (i.e. approxi-
mating) clearing algorithm, arbitrage is always a possibility.

3.3 Curtailing Arbitrage Opportunities

Theorem 2 shows that in very common circumstances an arbitrage opportu-
nity exists. What allows this to happen is the fact that in liquidity-maximizing
and volume-maximizing exchanges, bids on the same bundle are treated equally
regardless of their prices. A natural question arises: can we define liquidity-
maximizing and volume-maximizing exchanges in which this type of arbitrage
is impossible? We answer that question in the affirmative for the variant with
free disposal by showing that a modification of the liquidity-maximizing and
volume-maximizing exchanges results in a new exchange that achieves the same
economic objective, but also eliminates the possibility of this type of arbitrage.

Definition 12. Let f(x) be defined as in Definitions 6-8. Let x∗ be the allocation
determined using f(x) as the objective function and the optimization problem
defined as in Definition 5. Let z = f (x∗) be the objective value. Now consider
the following optimization problem:

max
n∑
j=1

pjxj

such that
n∑
j=1

λijxj ≤ 0 i = 1, 2, . . . ,m

f(x) ≥ z
xj ∈ {0, 1} j = 1, 2, . . . , n

This is the surplus-constrained CE clearing problem. As with the general CE
clearing problem, in the situation where good i is not freely disposable (i.e. buyers
are not willing (or unable) to take extra units, and sellers are not willing (or
unable) to keep any units of their winning bids), then the inequality in the first
constraint is replaced with an equality.

Theorem 3 shows that in a surplus-constrained CE, the type of situation
described in Theorem 2 can never occur.

Theorem 3. In a surplus-constrained CE with free disposal, an arbitraging bid
will never be in an optimal allocation when a non-arbitraging bid on the same
bundle is not in the optimal allocation. This holds with and without free disposal.

Proof. Assume, by way of contradiction, that there is an arbitraging bid that is
in an optimal allocation and there is a non-arbitraging bid on the same bundle
that is not in the optimal allocation. Let Bk be the arbitraging bid and let Bj
be the non-arbitraging bid on the same bundle. Replacing Bk with Bj in the
allocation results in a strictly higher surplus. Since the bids are on the same
bundle, the new allocation is feasible and it achieves both the same level of
volume and liquidity. ut



Although Theorem 3 does not rule out the possibility of arbitrage, it does
perform a form of tie-breaking that eliminates nondeterminism in the clearing
problem.

4 Detecting Arbitraging Bids

As discussed in the previous section, the presence of arbitraging bids can lead
to less desirable outcomes. The exchange administrator may be interested in
detecting arbitraging bids so as to remove them from consideration or to identify
agents attempting arbitrage. Also, identifying arbitrage opportunities can be
used by the exchange administrator as an analysis tool to indicate segments of
the market where demand is weak. If a bundle of goods is identified as allowing
for an arbitrage opportunity, this is a signal to the exchange administrator that
there is insufficient demand on the items in the bundle by agents with a positive
valuation of the goods. Furthermore, identifying arbitrage opportunities can lead
to a new form of feedback to agents participating in the exchange. Instead of
just providing price feedback, agents can be told which areas of the market are
currently lacking competition.

Exchanges can be parameterized based on whether or not bids are allowed
to be deleted. Clearly, allowing for the deletion of winning bids can change the
current allocation.1 From the perspective of the clearing problem objective, the
exchange administrator may do better by not removing arbitraging bids. (The
exchange administrator certainly does no worse by leaving them all in.) For this
reason, we advocate not allowing for the deletion of bids.

Finding an arbitraging bid is trivial: simply check each bid to see if it satisfies
the conditions specified in Definition 11. However, locating an arbitraging bid
in the input does not indicate whether or not the arbitraging bid will be in an
optimal allocation, and thus does not indicate anything about the strength or
weakness of demand in the market. In order to compute the outcome of placing
a given arbitraging bid, we need to take into account all of the other submitted
bids. In fact, as Theorem 4 below indicates, determining if a given arbitraging
bid is winning is as hard as clearing the market.

Before presenting Theorem 4, consider a CE where the exchange adminis-
trator continuously solves the market-clearing problem so as to give feedback to
the agents participating. In this case, when determining if a submitted bid is a
winning arbitraging bid, the exchange administrator already knows the current
optimal allocation. A natural question arises: is it easier to determine if the new
bid is a winning arbitraging bid when the current optimal allocation is known?
Clearly this problem is no harder than answering the same question when the
current optimal allocation is unknown. As the following theorem shows, this
problem is hard even if the current optimal allocation is known.2

1 Unless certain assumptions are made about the clearing algorithm, allowing for the
deletion of losing bids can also change the current allocation.

2 In practice, however, it is likely that knowing the current optimal allocation will
allow the exchange administrator to solve the new problem more quickly.



Theorem 4. Given a set of combinatorial bids and a corresponding optimal
allocation, determining if there is a better allocation that contains a newly sub-
mitted arbitraging bid is NP-complete for any of the clearing problems defined
in Definitions 6-8, with and without free disposal.

Proof. We show that a polynomial-time algorithm for the problem implies the
existence of a polynomial-time algorithm for SUBSET SUM. For simplicity, we
only prove this for the liquidity-maximizing CE. The proof is similar for the
other types of exchanges.

Assume, by way of contradiction, that we have a polynomial-time algorithm
A for the problem. Given a collection C of finite subsets of some domain X and
an integer K, we first create an item for each element in X. We also create a
single-item supply bid for each item. (Recall that an arbitraging bid is never a
supply bid.) Given just these single-item bids, an optimal allocation will be to
accept all of the bids. Thus we have the current optimal allocation. Now examine
the first set c ∈ C. In the reduction, we make a pure demand bid with one unit of
demand for each item in c. Using our algorithm A, we can determine if this new
bid (which can be considered an arbitraging bid) is in a new optimal allocation.
Thus we have a new optimal allocation considering this bid. We can repeat this
process for each additional c ∈ C. Since, by assumption, A runs in polynomial-
time, we can solve SUBSET SUM in polynomial time. This is true if and only if
P = NP. ut

5 Generating Arbitraging Bids

In the previous section we showed that it is hard for the exchange administrator
to determine if a given arbitraging bid is guaranteed to be winning (i.e., in an
optimal allocation). In this section, we discuss the problem faced by an agent
that is attempting to arbitrage (i.e., to generate an arbitraging bid).

CEs can be parameterized according to the type of feedback given to par-
ticipating agents. We define four types of feedback: NONE, OWN-WINNING,
ALL-WINNING, and ALL. With feedback NONE, the agents are not told which
(if any) of their submitted bids are currently in the optimal allocation, nor are
they told any information about the current optimal allocation. (This mecha-
nism corresponds to a sealed-bid mechanism.) In this variant, it is possible for
an agent to place arbitraging bids, but it is impossible for an agent to place an
arbitraging bid that she knows for sure will be in the optimal allocation.3 For
this assurance, the agent needs to know something about the other bids.

3 An agent determined to find an arbitrage opportunity could place a large number
of arbitraging bids in the hope that some of them would be accepted. The exchange
administrator could prevent this type of strategy from occurring (for example) by
charging a small payment for each bid placed. However, this could result in a smaller
revenue (and thus a less efficient outcome) for the exchange administrator. A reason-
able policy for the exchange administrator to use is to limit the number of arbitraging
bids an agent can place to a small constant, possibly even zero.



Similarly, when the exchange is using feedback OWN-WINNING, then agents
are told which of their own bids are currently winning. With this amount of
information, it is generally not possible for an agent to compute an arbitraging
bid that is guaranteed to be in an optimal allocation.

When the exchange is using feedback ALL-WINNING, agents are told what
the current winning bids are in the current optimal allocation. In general, this
is not enough information to compute an arbitraging bid that is guaranteed to
be in an optimal allocation. For example, in Example 1, initially there were no
winning bids. With feedback ALL-WINNING, there would not be any infor-
mation available to the arbitraging agent, and thus she could not compute an
arbitraging bid that is guaranteed to be winning.

When the exchange is using feedback ALL, then all agents are told about all
of the bids that have been submitted, as well as what the winning bids are. In this
variant, it is clear that an agent has enough information to find an arbitraging
bid that is guaranteed to be in an optimal allocation, if such a bid exists.

We know from Theorem 2 that if a pure demand bid is in the optimal alloca-
tion, then an allocation exists that has the same objective value and contains an
arbitraging bid in the liquidity-maximizing and volume-maximizing CEs. So, for
example, if the exchange only contains pure demand and pure supply bids, an
arbitraging bid can be found in polynomial time by simply scanning the winning
bids and finding a demand bid. By Theorem 3, we know that this method will
not necessarily find an arbitraging bid that is guaranteed to be in an optimal
allocation when our surplus-constrained version of the liquidity-maximizing or
volume-maximizing CE is used.

We can generalize this idea to a method for generating arbitraging bids that
is guaranteed to create an arbitrage opportunity for an agent exactly when an
arbitrage opportunity exists. If all bids have integer item quantities, an agent
wishing to arbitrage can perform the following. For each item being supplied
in each combinatorial bid, create a single-item unit demand bid for each unit
of quantity in the bid with a small ask price, say p. For a small enough value
of |p|, this method is guaranteed to find an arbitrage opportunity, if such an
opportunity exists.

There are three drawbacks to this method: it does not compute an optimal
value of p, it potentially requires submitting a huge number of bids, and it
does not work when item quantities are allowed to be fractional. The following
method addresses each of these issues. In the more general setting where item
quantities can be fractional, an arbitraging agent needs to compute the correct
item quantities for an arbitraging bid. It is easy to show that the following
optimization problem is guaranteed to compute the appropriate item quantities
yi for an arbitraging bid, if one exists.

max f(x) + p

such that
n∑
j=1

λijxj + yi ≤ 0 i = 1, 2, . . . ,m

xj ∈ {0, 1} j = 1, 2, . . . , n
yi ≤ 0 i = 1, 2, . . . ,m



If p is defined appropriately for the type of objective function in use, solving this
problem also computes the most profitable arbitraging bid.

Although these approaches will find an arbitraging bid, they are unlikely to be
used in practice by agents participating in the exchange. The main drawback to
these methods for an arbitraging agent is that they require the arbitraging agent
to know every bid that has been submitted. This level of transparency is unlikely
to be present in exchanges (e.g. due to privacy concerns). Even with this level
of feedback, an exchange administrator can discourage this type of arbitraging
strategy, for example, by charging a small price for each bid submitted. As
discussed previously, this arbitraging bid strategy is most likely to be used by
the exchange administrator to locate segments of the market in which demand
is weak and as a form of feedback to bidders to indicate which segments of the
market currently have low demand, so the bidders can be guided into bidding
on certain items with weak demand.

6 Side Constraints

In this paper thus far we have mainly considered unconstrained allocations. The
only constraints that we have placed on allocations is that the demand of each
item must meet the supply, or that the surplus is nonnegative. However, ex-
change administrators may wish to place other constraints on the allocation.
We refer to these additional constraints as side constraints. There are many
types of side constraints that have been studied in the literature including as-
signment constraints [12], budget constraints, volume/capacity constraints (see
Example 3), and number of winners constraints (see Example 4) [13]. In this
section we present some examples of side constraints that can lead to arbitrage
opportunities even in variants where arbitrage is impossible without side con-
straints.

Example 3. Consider a single-unit surplus-maximizing CE with free disposal.
Recall from Theorem 1 that arbitrage is impossible in this type of exchange. Now
suppose that the exchange administrator limits the volume of any one consumer
to at most 40% of the traded demand volume. (The exchange administrator may,
for example, desire to place this constraint on the allocation so as to limit the
effects of a single consumer going bankrupt.) Let B = {B1, B2, B3, B4, B5} be
the current bids. Let B1 = 〈(−1),−2〉, B2 = 〈(−1),−2〉, and B3 = 〈(−1),−3〉
be single-unit supply bids asking for $2, $2, and $3, respectively. Let B4 =
〈(1), 4〉 and B5 = 〈(1), 5〉 be single-unit demand bids willing to pay $4 and $5,
respectively. Without any side constraints, this market will clear, accepting B1,
B2, B4, and B5 in the optimal allocation with a surplus of 4. However, in this
allocation, the demand bids B1 and B2 are each demanding 50% of the total
traded demand volume, violating the constraint. Taking the side constraint, into
consideration, the market does not clear and no trade takes place. Now suppose
an agent submits an arbitraging bid B6 = 〈(1),−1〉 indicating that she is willing
to accept one unit of the item and also receive $1. Now the exchange will clear
by accepting all items with a surplus of $1.



Example 4. Consider a single-unit surplus-maximizing CE with free disposal.
Recall from Theorem 1 that arbitrage is impossible in this type of exchange. Now
suppose that the exchange administrator requires there to be at least 3 winning
bidders in the exchange. If there are only two bidders that have submitted bids,
then there is potentially an arbitrage situation. If ignoring the minimum number
of winners constraint results in a positive surplus, then there is an arbitrage
opportunity. A third bidder could place an arbitraging bid which, as long as the
price on the bid is such that its value is more than the negative of the surplus
in the unconstrained exchange, will allow the market to clear, thus resulting in
an arbitrage opportunity for the third bidder.

7 Conclusions and Future Research

Combinatorial exchanges are trading mechanisms that allow agents to specify
preferences over bundles of goods. When the agents’ preferences exhibit comple-
mentarity and/or substitutability, this can lead to more efficient allocations than
is possible using traditional exchanges. Before CEs can be widely implemented,
many aspects need to be further examined. This paper has studied arbitrage,
a risk-free profit opportunity, in the context of CEs. Arbitrage is a particular
aspect of CEs that has not been studied until now.

In this paper, we have shown that some CEs allow agents to perform arbi-
trage and thus extract a positive payment from the market while contributing
nothing, something that is not possible in traditional exchanges. We analyzed
the extent to which arbitrage is possible and computationally feasible in CEs. In
particular we showed that while arbitrage is impossible in surplus-maximizing
CEs with free disposal, it is possible in surplus-maximizing CEs without free dis-
posal and in volume-maximizing and liquidity-maximizing CEs with and with-
out free disposal. We also showed that even in the surplus-maximizing CE with
free disposal, the use of side constraints can lead to arbitrage opportunities.
For volume-maximizing and liquidity-maximizing CEs we have proposed an im-
proved CE that achieves the same economic objective as the original exchange,
but it curtails a particularly undesirable form of arbitrage in which an arbitrag-
ing bid is included in the optimal allocation while a non-arbitraging bid on the
same bundle is not included in the optimal allocation. Despite the existence of
arbitraging bids in most types of CEs, we showed that in order for an agent to
take advantage of an arbitrage opportunity, she needs to be equipped with all
of the information about an exchange in order to generate arbitraging bids that
are guaranteed to be in an optimal allocation.

In this paper we have mentioned the possibility of an exchange administra-
tor computing arbitrage opportunities as a method for providing useful feedback.
Agents participating in a CE face a difficult decision problem. The space of pos-
sible bundles to bid on is large. Further, agents often are constrained by time
and computational limits. Any guidance they receive from the exchange admin-
strator would be quite useful. Future research includes exploring this possibility



of using arbitrage to provide more effective feedback and guidance to agents in a
CE, and to study this in the context of other preference elicitation mechanisms.
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