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Abstract

Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent
systems where the items are complementary or substitutable. Determining the winners is NP-
complete and inapproximable, but it was recently shown that optimal search algorithms do very
well on average. This paper presents a more sophisticated search algorithm for optimal (and
anytime) winner determination, including structural improvements that reduce search tree size,
faster data structures, and optimizations at search nodes based on driving toward, identifying and
solving tractable special cases. We also uncover a more general tractable special case, and design
algorithms for solving it as well as for solving known tractable special cases substantially faster.
We generalize combinatorial auctions to multiple units of each item, to reserve prices on singletons
as well as combinations, and to combinatorial exchanges. All of these generalizations support both
complementarity and substitutability of the items. Finally, we present algorithms for determining the
winners in these generalizations.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Auctions are important mechanisms for resource and task allocation in multiagent
systems. In many auctions, a bidder’s valuation for a combination of items is not the
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sum of the individual items’ valuations—it can be more or less. This is often the case for

example in electricity markets, equities trading, bandwidth auctions [14,15], transportation
exchanges [21,22], pollution right auctions, auctions for airport landing slots [18], and
auctions for carrier-of-last-resort responsibilities for universal services [10].

In a traditional auction format where the items are auctioned separately (sequentially
or in parallel), to decide what to bid on an item, an agent needs to estimate which other
items it will receive in the other auctions, requiring intractable lookahead in the game tree.
Even after lookahead, residual uncertainty would remain due to incomplete information
about the other bidders. This leads to inefficient allocations where bidders do not get the
combinations that they want and get combinations that they do not [2,22].

Combinatorial auctions can be used to overcome these deficiencies [3,15,18,21]. In a
combinatorial auction, bidders may submit bids on combinations of items. This allows the
bidders to express complementarities between items instead of having to speculate into an
item’s valuation the impact of possibly getting other, complementary items.

2. Winner determination problem

The auctioneer has a set of items, M = {1,2, . . . ,m}, to sell, and the buyers submit a set
of bids, B = {B1,B2, . . . ,Bn}. A bid is a tuple Bj = 〈Sj ,pj 〉, where Sj ⊆M is a nonempty
set of items and pj is the price offer for this set. Assume for now (this is relaxed later),
that pj � 0 for all j ∈ {1,2, . . . , n}. Assume also that each bid is on a distinct set of items:
if multiple bids concern the same set of items, all but the highest bid can be discarded
during a preprocessing step, breaking ties arbitrarily. The winner determination problem is
to label the bids as winning (xj = 1) or losing (xj = 0) so as to maximize the auctioneer’s
revenue under the constraint that each item can be allocated to at most one bidder:

max
n∑

j=1

pjxj

s.t.
∑

j |i∈Sj
xj � 1, i = 1,2, . . . ,m,

xj ∈ {0,1}.
This problem is intractable: it is equivalent to weighted set packing, a well-known NP-

complete problem. It can be solved via dynamic programming, but that takes �(2m) and
O(3m) time independent of the number of bids, n [19].

One approach is to solve the problem approximately [6,9,12,18]. However, it was re-
cently shown (via a reduction from the maximum clique problem which is inapprox-
imable [8]) that no polynomial time algorithm for the winner determination problem can
guarantee a solution that is close to optimum [23]. Certain special cases can be approxi-
mated slightly better, as reviewed in [23].

The second approach is to restrict the allowable bids [17,19,27]. For certain restrictions,
which are severe in the sense that only a vanishingly small fraction of the combinations
can be bid on, winners can be determined in polynomial time. Restrictions on the bids give
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rise to the same economic inefficiencies that prevail in noncombinatorial auctions because

bidders may not be able to bid on the combinations they prefer.

The third approach is to solve the unrestricted problem using search. This was shown
to work very well on average, scaling optimal winner determination up to hundreds of
items and thousands of bids depending on the problem instance distribution [23] and
improvements to the algorithm have been developed since [6].

In the vein of the third approach, this paper presents a more sophisticated algorithm
for optimal winner determination. The enhancements include structural improvements that
reduce search tree size, faster data structures, and optimizations at search nodes based on
driving toward, identifying and solving tractable special cases. We also uncover a more
general tractable case, and design algorithms for solving it as well as for solving known
tractable cases substantially faster. We generalize combinatorial auctions to auctions with
multiple units of each item, to auctions with reserve prices on singletons as well as
combinations, and to combinatorial exchanges—all allowing for substitutability. We also
give algorithms for determining the winners in these generalizations.

3. A sophisticated search algorithm

In this section we present an algorithm for optimal winner determination. The
improvements over previous algorithms are classified into structural improvements,
capitalizing on tractable subproblems at nodes, and faster data structures.

3.1. Structural improvements

This section presents improvements that reduce search tree size by changing its
structure.

3.1.1. Branching on bids (BOB)
The skeleton of our algorithm is a depth-first branch-and-bound tree search that

branches on bids. The set of bids that are labeled winning on the path to the current search
node is called IN, and the set of bids that are winning in the best allocation found so far
is IN∗. Let f̃ ∗ be the value of the best solution found so far. Initially, IN = ∅, IN∗ = ∅,
and f̃ ∗ = 0. Each bid, Bj , has an exclusion count, ej , that stores how many times Bj has
been excluded by bids on the path. Initially ej = 0 for all j ∈ {1,2, . . . , n}. M ′ is the set
of items that are still unallocated, and g is the revenue from the bids with xj = 1 on the
search path so far. h is an upper bound on how much the unallocated items can contribute
(let max{∅} = 0). The search is invoked by calling BOB(M,0).

Algorithm 1. BOB(M ′, g)

1. If g > f̃ ∗, then IN∗ ← IN and f̃ ∗ ← g

2. h ← ∑
i∈M ′ c(i), where c(i)← maxj |i∈Sj ,ej=0 pj/|Sj | (Any admissible heuristic

could be used here)
3. If g + h � f̃ ∗, then return /* Bounding */



36 T. Sandholm, S. Suri / Artificial Intelligence 145 (2003) 33–58

4. Choose a bid Bk for which ek = 0 /* Choose a bid to branch on */

If no such bid exists, then return

5. IN← IN ∪ {Bk}, ek← 1
6. For all Bj such that Bj �= Bk and Sj ∩ Sk �= ∅,

ej ← ej + 1
7. BOB(M ′ − Sk, g +pk) /* Branch Bk in */
8. IN← IN − {Bk}
9. For all Bj such that Bj �= Bk and Sj ∩ Sk �= ∅,

ej ← ej − 1
10. BOB(M ′, g) /* Branch Bk out */
11. ek← 0, return

Both of the previous search algorithms for winner determination, de facto, branch on
items [6,23]. An example is shown in Fig. 1(left). The children of a search node are
those bids that (1) include the lowest-numbered item that is still unallocated, and (2) do
not share items with any bid on the path so far. In the branch-on-items formulation, as
a preprocessing step, a dummy bid of price zero is submitted on every individual item
that received no bids alone (to represent the fact that the auctioneer can keep items) [23].
It is important that dummy bids are used because if they are not, the optimal solution
to the winner determination problem might not be represented in the tree. For example

Fig. 1. Branching on items vs. branching on bids.
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in Fig. 1(left), if a dummy bid on item 1 were not used, the possibility of the auctioneer

keeping item 1 would not be explored (the right-most subtree at the root would be ignored).
If dummy bids are used, all optimal solutions will be part of the tree [23]. Let us call the
number of dummy bids ndummy. Because there are m items and each bid uses at least one
item, the depth of the branch-on-items tree is at most m. Because there are n+ndummy bids,
the branching factor is at most n+ ndummy. So, it is trivial to see that the number of leaves
is no greater than (n+ ndummy)

m. However, a tighter upper bound, ((n+ ndummy)/m)m,
on the number of leaves has been established [23]. Because ndummy � m, the number of
leaves in the branch-on-items tree is no greater than (n/m+ 1)m.

Unlike the earlier algorithms for winner determination that branched on items, BOB
branches on bids (winning or losing, that is, xj = 1 or xj = 0), see Fig. 1(right). So, each
interior node of the search tree has two children: the world where the bid chosen at that
node is labeled winning, and the world where that bid is labeled losing. The branching fac-
tor is 2 and the depth is at most n (the depth of the left branch is at most min{m,n}, but the
right branch can have depth up to n). No dummy bids are used in the branch-on-bids formu-
lation; the items that are not allocated in bids on the search path are kept by the auctioneer.

Given the branching factor and tree depth, a naive analysis shows that the number of
leaves in a branch-on-bids tree is at most 2n, which is exponential in bids. This is perhaps
the reason why this search formulation has not been used for the winner determination
problem before. However, with a deeper analysis we establish a significantly tighter worst-
case upper bound on the size of the tree:

Theorem 1. Let κ be the number of items in the bid with the smallest number of items. The
number of leaves in the branch-on-bids tree is no greater than(

n

�m/κ� + 1

)�m/κ�
.

The number of nodes in the tree is 2 · #leaves− 1.

Proof. There is a 1-to-1 correspondence between leaves of the branch-on-bids tree and
feasible solutions to the winner determination problem. Therefore, the number of leaves is
the same as the number of feasible solutions. We formulate an upper bound on the number
of feasible solutions as a problem where, given n, m, and κ , an adversary constructs a
problem instance (a set of bids) so as to maximize the number of feasible solutions.

The first key observation is that for each item, only one bid that includes that item can
be accepted. So, the first item can be given to at most n alternative bids (or to no bid).
Then the second item can be given to at most n alternative bids (or to no bid), and so on.
This already gives an upper bound

∏m
i=1(n+ 1)= (n+ 1)m on the number of solutions.

However, we can tighten the upper bound by not counting the same bid multiple times
(once for each item), but rather counting each bid once (by associating it with one item
that it includes).

We say that an item i has a lower index than item j if i < j . Let us denote by Ni the set
of bids that include item i as the lowest-indexed item. Let ni = |Ni |. Each bid includes at
least one item and the items within a bid are distinct. Therefore each bid has exactly one
lowest-indexed item. Thus we have

∑m
i=1 ni = n.
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Now, one can consider constructing the feasible solutions as leaves of a different kind

of tree T where the root is at level 1, and at any node at level i , the children correspond
to those bids in Ni whose items have not been used by other bids on the path yet, plus an
extra child for the possibility that in the feasible solution, the item is not used by any bid.1

Clearly, the branching factor at level i is at most (ni + 1). So,
∏m

i=1(ni + 1) is an upper
bound on the number of solutions.

Next we incorporate the knowledge that each bid includes at least κ items. This means
that at most �m/κ� bids can be included in a feasible solution. In other words, on any path
from the root to a leaf in T , at most �m/κ� nodes can have a branching factor other than 1
(which represents the fact that there is no choice of bid at that node). We call those nodes
branching nodes, and the nodes with branching factor 1 non-branching nodes.

The adversary (who implicitly chooses T by choosing the bids) would have done at least
as well by choosing a tree where on every path from the root, branching nodes are first, and
non-branching nodes are last. This is because the branching factor at any level i is at most
(ni + 1) and

∑m
i=1 ni = n. In this setting, if the adversary “spends” part of n toward ni at

some level i , he achieves the largest number of leaves in the tree by branching as much
as possible (branching factor at most (ni + 1)) at every node at that level. So, if there is
some branching node at level i , then all the nodes at level i should be branching nodes.2

Therefore, for any given level, all the nodes are either branching or non-branching. If there
is some level of non-branching nodes closer to the root than a level of branching nodes,
then we can swap (without changing the number of leaves) these levels. This is because
a level of non-branching nodes does not change the number of leaves. Now, we can keep
applying such swaps until all the levels with branching nodes are adjacent to the root and
the levels with non-branching nodes are adjacent to the leaves.

So, from now on we can focus on the case where the adversary picked a tree T ′ where
the branching nodes are adjacent to the root, and the non-branching nodes are adjacent to
the fringe. In fact, we can ignore the entire non-branching part of the tree since it does
not affect the number of leaves. So, what we have is a tree T ′′ of depth �m/κ� where
the branching factor at level i is at most (ni + 1) and

∑m
i=1 ni = n. An upper bound on

1 T is not a branch-on-items tree because it incorporates the possibility of not using an item in any bid, even
if bids on that singleton item have been submitted. This corresponds to adding a dummy bid on every item, not
just those items that received no singleton bids.

2 One might worry about the issue that at different nodes at a given level, different sets of items might be used
up by the bids on the path from the root to the node. This would lead to different sets of bids being available at
different nodes at the same level. However, we avoid this problem by pessimistically allowing the adversary to
submit multiple bids on the same combination of items. This allows the adversary to maximize the set of available
bids at every node of the level.

If multiple bids on the same combination of items are actually allowed in the input to the search algorithm,
the upper bound of the theorem is tight. There is an easy way to construct a worst case. For example, when n= 12,
m= 6, and κ = 3, a worst case is obtained by submitting six bids on {1,2,3} and six bids on {4,5,6}. The number
of leaves in the corresponding branch-on-bids tree is 49, which equals the upper bound of the theorem.

Even if multiple bids on the same set of items do not exist in the input to the search algorithm (for example, a
preprocessor has removed all but the highest bid for each combination of items), our upper bound applies because
it is constructed under the pessimistic assumption that gives the adversary too much power.
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the number of leaves in T ′′ is given by the following mathematical program where the

adversary is trying to maximize.

max
n1,...,nm

�mκ �∏
i=1

(ni + 1)

such that

�mκ �∑
i=1

ni = n ∀i ∈
{

1, . . . ,

⌊
m

κ

⌋}
, ni � 0.

The maximum is obtained by distributing n evenly across the variables ni where
i ∈ {1, . . . , �m/κ�}, giving ni = n/�m/κ�. (Even distribution is not actually possible if
n is not divisible by �m/κ�, but it does give an upper bound as desired even in that case.)
Therefore, the objective function value of the mathematical program above is at most(

n

�m/κ� + 1

)�m/κ�
.

Because the number of leaves in T ′′ is the same as the number of feasible solutions, which
is the same as the number of leaves in the branch-on-bids tree, this upper bound also applies
to the number of leaves in the branch-on-bids tree.

Because the branch-on-bids tree is a binary tree, the number of nodes in the tree is
2 · #leaves− 1. ✷

While this tree size is exponential in items, it is polynomial in bids—unlike the naive
upper bound 2n would suggest. This is desirable because the auctioneer can usually control
the items that are for sale in one auction, but not the number of bids that are submitted.
Furthermore, even though the complexity is exponential in items, this is only a worst-case
bound and the average case tends to be significantly better.3 By contrast, the dynamic
programming algorithm for winner determination [19] is exponential in items even in the
best case.

In the branch-on-bids formulation, there is a 1-to-1 correspondence between leaves and
feasible solutions. In the branch-on-items formulation, each leaf corresponds to a distinct
feasible solution, but there are feasible solutions that are not represented by any leaf. The
leaves correspond 1-to-1 to those feasible solutions where all items have been allocated to
bids (actual bids or dummy bids). So, some feasible solutions are not represented by any
leaf. Furthermore, some feasible solutions are not represented by any node! For example,
if two bids have been submitted, {1} and {2}, then there will be the root node where no
items are allocated, the next node where 1 is allocated, and the leaf node where 1 and 2 are
allocated. There is no node corresponding to the feasible solution where only 2 is allocated.
Finally, multiple nodes of the branch-on-items tree can represent the same feasible solution.
For example, on the right-most branch, all nodes correspond to the feasible solution where
the auctioneer keeps all of the items.

3 This occurs, for example, if the bid graph is densely connected (the path from the root to any given leaf will
be short in that case). Furthermore, due to bounding (step 3 of the BOB algorithm), only a small portion of the
tree is actually visited during the search.
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Sometimes the branch-on-bids formulation leads to a larger tree (in leaves and nodes)

than the branch-on-items formulation; Fig. 1 shows an example. On the other hand, the
reverse can also occur. Examples can easily be constructed by having several items on
which no singleton bids have been submitted (dummy bids would be added for them in the
branch-on-items formulation).

The main advantage of BOB compared to the branch-on-items formulation is that BOB
is in line with the AI principle of least commitment [20]. In a branch-on-items tree, all
bids containing an item are committed at a node, while in BOB, choosing a bid to branch
on does not constrain future bid selections. BOB allows more refined search control—in
particular, better bid ordering. At any search node, the bid to branch on can be chosen in
an unconstrained way using information about the subproblem that remains at that node.
Many of the techniques of this paper capitalize heavily on that possibility.

3.1.2. Bid ordering heuristics (HEU)
Search speed can be increased by improving the pruning that occurs in step 2. Our

algorithm does this by constructing many high-revenue allocations early. We do this by bid
ordering in step 4. We choose bids that contribute a lot to the revenue, and do not retract
from the potential contribution of other bids by using up many items. At a search node,
we choose a bid that maximizes pj /|Sj |α (to avoid scanning the list of bids repeatedly, the
bids are sorted in descending order before the search begins) and has ej = 0.

Intuitively, α = 0 gives too much preference to bids with many items. That corresponds
to simply choosing the bid that has highest price. But such bids are likely to use up a large
number of items in practice, thus reducing significantly the revenue that can be collected
from other bids.

Similarly, it seems that α = 1 gives too much preference to bids with few items. That
corresponds to selecting a bid with the highest per-item price. If a bid with few items is
chosen, it seems unlikely that the same (and never higher) per-item revenue can be obtained
from the remaining items. So, if there are two bids with close to equal pre-item price, it
would be better to choose a bid with a larger number of items so that the high level of
per-item revenue could be obtained for a larger number of items.

It was recently shown that in a greedy algorithm that simply inserts bids into IN∗ in
highest pj /|Sj |α first order (as a bid is inserted, bids that share items with it are discarded),
α = 1/2 gives the best worst case bound over all α [12] (but not necessarily over all
possible bid ordering formulas). In other words, α = 1/2 strikes the tradeoff outlined above
in the worst-case-optimal way for that greedy algorithm. This result does not necessarily
mean that α = 1/2 is the best setting for a complete search algorithm such as BOB. We
suggest the choice of α as an experimental future research problem. Similarly, one could
use entirely different bid ordering heuristics in step 4 of BOB.

In addition to finding the optimal solution faster via more pruning, bid ordering
improves the algorithm’s anytime performance: f̃ ∗ increases faster.

3.1.3. Lower bounding (LOW)
We also prune using a lower bound, L (obtained, for example, using the greedy

algorithm described above) at each node. If g + L > f̃ ∗, then f̃ ∗ ← g + L and IN∗ is
updated. This reduces search by enhanced pruning in the subtree rooted at the current
search node.
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3.1.4. Exploiting decomposition (DEC)

If the set of items can be divided into subsets such that no bid includes items from more

than one subset, the winner determination can be done in each subset separately. Because
the search is superlinear in the size of the problem (both n and m), such decomposition
leads to a speedup.

At every search node (between steps 1 and 2), our algorithm checks whether the problem
has decomposed. We maintain a bid graph, G, whose vertices V are the bids with ej = 0,
and two vertices share an edge if the bids share items (see dotted graphs in Fig. 1). Call
the set of edges E. Clearly, |V | � n and |E|� n(n− 1)/2. Using an O(|E| + |V |) time
depth-first-search of graph G, the algorithm checks whether G has decomposed. Every
tree in the depth-first-forest corresponds to an independent subproblem (subset of bids
and the associated subset of items). The winners are determined by calling BOB on each
subproblem separately (bids not in that subproblem are marked ej ← 1).4

3.1.5. Upper and lower bounding across subproblems (ACROSS)
The straightforward approach is to call BOB on each subproblem with g = 0 and

f̃ ∗ = 0. Somewhat unintuitively, we can achieve further pruning, without compromising
optimality, by exploiting information across the independent subproblems. Say there are k

subproblems at the current search node θ : 1, . . . , k. Let gθ be the g-value of θ before any
of the subproblems have been solved. Let f ∗q be the value of the optimal solution found
for subproblem q . Let hq be the h-value of subproblem q . Let Lq be a lower bound (ob-
tained, for example, using the greedy algorithm described above, but even Lq = 0 works)
for subproblem q .

Now, consider what to do to solve subproblem z after subproblems 1, . . . , z − 1 have
been solved and the other subproblems have not. Let lz be a lower bound (obtained, for
example, using the greedy algorithm described above) on the value that the unallocated
items of subproblem z can contribute. Let gz be the g-value within subproblem z only, and
let hz be the h-value within subproblem z only. Let

F ∗solved = gθ +
z−1∑
q=1

f ∗q , Hunsolved=
k∑

q=z+1

hq,

LOunsolved =
k∑

q=z+1

Lq.

At every search node within the subproblem z, we update the global lower bound f̃ ∗ as
follows:

f̃ ∗ ←max
{
f̃ ∗, F ∗solved + gz + lz + LOunsolved

}
and we update IN∗ accordingly.

4 This decomposition check was used as a preprocessor before [23]. That is, it was used at the root of the tree,
but not at every node.
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Now we can cut the search path whenever
F ∗solved + gz + hz +Hunsolved � f̃ ∗.

Since both the straightforward approach and this approach are correct, we use both. If
either one allows the search path to be cut, the algorithm does so in step 3.

Due to the upper and lower bounding across subproblems, the order of tackling the
subproblems makes a difference in speed, providing further opportunities for optimization
via subproblem ordering.

3.1.6. Forcing a decomposition via articulation bids (ART)
In addition to checking whether a decomposition has occurred, our algorithm strives for

a decomposition. In the bid choice in step 4, we pick a bid that leads to a decomposition,
if such a bid exists. Such bids whose deletion disconnects G are called articulation bids.
Articulation bids can be identified during the depth-first-search of G in O(|E| + |V |) time,
as follows.

The depth-first-search assigns each node v of G a number d(v), which is the order
in which nodes of G are “discovered”. The root has number 0. (See [28] for details.) In
order to identify articulation bids, we assign to each node v one additional number, low(v),
which is defined inductively:

x =min
{
low(w) |w is a child of v

}
,

y =min
{
d(z) | (v, z) is a back edge

}
,

low(v)=min(x, y).

An internal node v is an articulation bid if and only if low(v) � d(v). (The root node
is an articulation bid if and only if it has two or more children in the depth-first-search
tree.) Since low(v) depends only on the low( ) values of v’s children and the back edges
incident to v, we can calculate low(v) for all the nodes during the depth-first search. If
there are multiple articulation bids, we branch on the one that minimizes the size of the
larger subproblem, measured by the number of bids.

The strategy of branching on articulation bids may conflict with our price-based
branching. Does one of these schemes dominate the other? To answer this question, we
first define the two classes of schemes:

Definition 1. In an articulation-based bid choosing scheme, the next bid to branch on is
an articulation bid if one exists. Ties can be resolved arbitrarily, as can cases where no
articulation bid exists.

Definition 2. In a price-based bid choosing scheme, the next bid to branch on is

Bk = arg max
Bj∈B|ej=0

ν
(
pk, |Sk|

)
,

where ν is a function that is nondecreasing in pk and nonincreasing in |Sk|. Ties can be
resolved arbitrarily, for example, preferring bids that articulate.
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Theorem 2. For any given articulation-based bid choosing scheme and any given price-

based bid choosing scheme, there are instances where the former leads to less search, as
well as instances where the latter leads to less search.

Proof. We first demonstrate an example where any articulation-based scheme leads to
more search than any price-based scheme. Fig. 2 shows an example with 5 bids, labeled
A through E. The set of items for each bid is shown in curly brackets above the bid node,
and the price for the bid is shown below the bid node. In this bid graph, node D is the only
articulation bid. The quantity e is an arbitrarily small positive constant.

Fig. 3 shows the search tree for any articulation-based scheme. We first branch on D.
Choosing D excludes bids B,C and E, leaving A as the only remaining bid. We then
branch on A. Thus, the best allocation obtained from the “in” branch at D is {A,D}. We
next follow the “out” branch for D. Removing D from the graph disconnects G into two
components: {A,B,C} and {E}. The search trees for the two components are shown side-
by-side in the figure. The graph for component {A,B,C} has an articulation bid A, so
we branch on that. Choosing A excludes both B and C, terminating the search, as shown.
Next we follow the “out” branch of A, which decomposes the graph into two singleton

Fig. 2. A set of bids where any articulation-based scheme searches more than any price-based scheme.

Fig. 3. The search tree for the articulation-based scheme. Articulation bids are shown as filled black circles.
Rectangular boxes group together the decomposed subproblems that result from including or excluding a bid.
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Fig. 4. The search tree for the price-based scheme. X marks nodes where the upper-bounding function cuts off
the search.

Fig. 5. A set of bids where any articulation-based scheme searches less than any price-based scheme.

components {B} and {C}. Their search trees are shown side-by-side below the out branch
of A. The total amount of search (number of edges) is 12.5

Since all bids have the same number of items, all price-based orderings will lead to bid
ordering B,C,A,E,D. We first branch on B . The “in” branch excludes A,D, leaving
two singleton components {C} and {E}. Their search trees are shown side-by-side below
the “in” branch at B . The best allocation found during the “in” branch of B is {B,C,E},
giving a total revenue of $(3+2e). We next follow the “out” branch of B . The next highest
bid is C, so we branch on that. Taking C in excludes A and D, leaving only E. At this
point, the upper-bounding function cuts off the search since p(C) + p(E) < (3 + 2e).
Similarly, when we follow the out branch of C, the upper-bounding function again cuts off
the search. In total, the price-based scheme leads to 8 edges of search, that is, fewer than
the articulation-based scheme.

5 Throughout this proof we do not count the cost of the calls to BOB that lead to a decomposition, because
those calls only incur negligible effort. In other words, in the figures, there are no edges from a rectangle to the
roots of the subtrees at the top of that rectangle. The theorem also applies if one did count such edges, but a
different bid graph in Fig. 5 would be required in the proof.
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Table 1
Bid Items included in the bid

A 1, 2, 9, 10
B 2, 3, 11, 12
C 1, 4, 13, 14
D 3, 4, 5, 6
E 6, 7, 15, 16
F 5, 8, 17, 18
G 7, 8, 19, 20

Fig. 6. Articulation-based search tree for the example of Fig. 5.

Next we demonstrate an example (Fig. 5) where any articulation-based scheme leads to
less search than any price-based scheme. Again, e is an arbitrarily small positive constant,
used to enforce the price-based bid ordering A,G,D,B,C,E,F . Items are not shown in
the figure, but Table 1 shows that one can easily construct bids, using 4 items per bid, that
lead to the bid graph of Fig. 5.

Figs. 6 and 7, respectively, show the search trees for articulation-based and price-based
bid ordering schemes. The articulation-based scheme searches 18 edges, while the price-
based scheme searches 20 edges.

This completes the proof.6 ✷
Even if a bid is not an articulation bid, and would not lead to a decomposition if the

bid is assigned losing, it might lead to a decomposition if it is assigned winning because
that removes the bid’s neighbors from G as well. This is yet another reason to assign a bid
that we branch on to be winning before assigning it to be losing (value ordering). Also, in
bid ordering (variable ordering), we can give first preference to articulation bids, second
preference to these bids that articulate on the winning branch only, and third preference to

6 An obvious minor optimization to the search algorithm is to not try the “out” branch at all if there is only
one bid left. This would affect the edge counts, which would be 8, 6, 12, and 15 for the four search trees of this
proof (instead of 12, 8, 18, and 20). The theorem clearly still applies under this alternative way of counting.
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Fig. 7. Price-based search tree for the example of Fig. 5. Nodes where the upper bounding function cuts off the
search are marked by X’s.

bids that do not articulate on either branch (among them, the price-based bid ordering is
used).

During the search, the algorithm could also do shallow lookaheads—for the purpose of
bid ordering—to identify combinations of bids that would disconnect G. Such cutsets of
bids can also be identified in a preprocessor, and then the bids within a small cutset should
be branched on first in the search (however, identifying the smallest cutset is intractable).

3.2. Tractable subproblems at nodes

The following techniques, used at each search node, drive toward, identify and solve
tractable special cases.

3.2.1. Avoiding branching on short bids
Bids that include a small number of items lead to significantly deeper search than

bids with many items because the latter exclude more of the other bids due to overlap
in items. A previous search algorithm scaled to thousands of bids when bids had many
items, and only hundreds of bids when bids had few items each [23]. We call bids with 1
or 2 items short and other bids long.7 Winners can be optimally determined in O(n3

short)

worst case time using a weighted maximal matching algorithm (Edmond’s algorithm [4])
if the problem has short bids only [19]. To solve problems with both long and short bids
efficiently, we integrate Edmond’s algorithm with search.

Our algorithm achieves optimality without ever branching on short bids. In step 4, bid
choice is restricted to long bids. At every node, before step 1, Edmond’s algorithm is
executed using the short bids with ej = 0. It returns a set of winning bids, INE , and the
revenue they provide, fE . The only remaining change is to step 1:

1. If g + fE > f̃ ∗, then IN∗ ← IN ∪ INE , f̃ ∗ ← g+ fE .

7 We define short in this way because the problem is NP-complete already if 3 items per bid are allowed [19].
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3.2.2. Deleting items included in only one bid

In the previous optimization, short bids are statically defined. We can improve on this

by a more dynamic size determination. If an item x belongs to only one long bid b, then the
size of b can be effectively reduced by one. This optimization may move some of the long
bids into the short category, thereby further reducing search tree size. This optimization
can be done at each search node, by keeping track of bids concerning each item.

3.2.3. Interval bids
Rothkopf et al. [19] considered an important special case where the items are linearly

ordered, and each bid concerns a contiguous interval of items. Specifically, assume that
items are labeled {1,2, . . . ,m}, and each bid b is for some interval [i, j ] of items. Using
dynamic programming, Rothkopf et al. solved the problem in O(m2) time. We propose
a different algorithm that solves this special case in O(n + m) time. This asymptotic
complexity is worst-case optimal because any algorithm must read all of the items and
bids as input.

We now describe our algorithm. Given a bid b on the interval [f, l], let us call item
f the first item of b, and item l the last item of b. We sort the bids in increasing order
of their last item; if two bids have the same last item, the one with the smaller first item
comes earlier in the sorted order. For instance, bid [10,15] comes before bid [5,20], and
bid [1,20] comes before bid [5,20]. Since the set of items has bounded size [1,m], we can
bucket sort the bids in O(n+m) time. Our dynamic program computes optimal solutions
for the prefix intervals of the form [1, i], for i = 1,2, . . . , n. Let opt(i) denote the optimal
solution for the problem considering only those bids that contain items in the range [1, i];
that is, bids whose last item is no later than i . Initially, opt(0)= 0. Let Ci denote the set of
bids whose last item is i; this set is empty if no bid has i as its last item. Then, we have the
following recurrence:

opt(i)=max
b∈Ci

{
pb + opt(fb − 1), opt(i − 1)

}
,

where pb is the price of bid b, and fb is the smallest indexed item in b. The optimal
allocation is given by opt(m). While this dynamic program only computes the value of
the optimal allocation, we can easily extend the algorithm to also maintain the actual bid
allocation.

Theorem 3. If all n bids are interval bids in a linearly ordered set of items [1,m], then an
optimal allocation can be computed in worst-case time O(n+m).

Proof. The maximization in the dynamic programming recurrence above has two terms.
The first term corresponds to accepting bid b, in which case we need an optimal solution
for the subproblem [1, fb − 1]. The second term corresponds to not accepting b, in which
case we use the optimal allocation for items in [1, i − 1]. By solving these problems in
increasing order of i , we can compute each opt(i) in time proportional to the size of Ci .
Since

∑
Ci = n, the total time complexity is O(n+m). ✷
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If we allow interval wraparound bids (e.g., Sj = {m− 1,m,1,2,3}), the winners can be

determined optimally by solving several instances of the interval bids without wraparound,
as described below.

Theorem 4. If interval bids with wraparound are allowed, then winners can be determined
in worst-case time O(min{s,m}(n+m)), where s is the smallest number of bids that cross
any interval of the form [i, i + 1], where i = 1,2, . . . ,m, and m + 1 is identified with
item 1.8

Proof. We can obtain an O(m(n+m)) time algorithm by cutting the circle of items at each
of the m possible positions in turn, removing the bids that span over the cutting position,
and then solving the resulting interval bid problem. The best of these m solutions is the
optimal for the wraparound problem. Alternatively, we can obtain an O(s(n + m)) time
solution by focussing on just one cut, and iterating over all the bids that span that cut.
Suppose the cut chosen is [i, i + 1]. Of all the bids spanning this cut, at most one belongs
in the optimal solution. We take each of these bids in turn, remove all the elements covered
by this bid, and solve the interval bids problem on the remaining items. If s is the cut with
the smallest number of bids spanning it, then the bound is O(s(n+m)). Note that s can be
�(m) in the worst case, but is likely to be much smaller in practice. Thus, depending on
the relative sizes of s or m, we can choose between the two cutting strategies described.

We can determine s in O(n+m) time as follows. Let BEGINi be the number of bids
that begin at item i , and let ENDi be the number of bids that end at item i . These counts
can be calculated in O(m) time by scanning the set of bids once, and updating the BEGIN
and END counters. Next, we start at the cut [1,2], and determine in O(m) time how many
bids span this cut. We then update this count for each new cut in O(1) time as follows.
When moving from cut [i − 1, i] to [i, i + 1], we subtract ENDi from the count and add
BEGINi to the count. Thus, the value of s can be found in O(n+m) time, giving us the
claimed bound. ✷
3.2.4. Identifying linear ordering

Our interest is not to limit the auctions to interval bids only, but rather to recognize
whether the remaining problem at any search node falls under this special case and to
solve it by our specialized fast algorithm. This requires an algorithm to check whether
there exists some linear ordering of items for which the given set of bids are all interval
bids. It turns out this problem can be phrased as the interval graph recognition problem,
for which a linear-time solution exists.

Given a graph G= (V ,E), we say that G is an interval graph if the vertices V can be
put in 1-to-1 correspondence with intervals of the real line such that two intervals overlap
if and only if there is an edge between the vertices corresponding to those intervals. The
interval graph recognition problem is to decide whether G is an interval graph, and to also
construct the intervals. The algorithm in [11] solves this problem in O(|V | + |E|) time.
Given the intervals for the bids, one can easily produce a linear ordering of the items.

8 The fastest prior algorithm for interval wraparound bids takes O(m3) time [19].
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Fig. 8. Bid graph and a valid linear ordering.

Fig. 9. An example of a subgraph bid: {1,2,3,4,9}.

Fig. 8 shows an example with 4 bids: A = (2,4,6), B = (1,2,4,5,7), C = (1,3,7,8),
D = (1,3,5,7).

The case where wraparound bids are allowed can be identified in O(n2) time using an
algorithm for recognizing whether the graph G is circular [5].

3.2.5. Subgraph bids on tree-structured items
We now propose a fast algorithm for another case that subsumes and substantially

generalizes the interval bid model of [19]. The items are structured in a tree T , and a valid
bid corresponds to a connected subgraph of T (see Fig. 9). This is a strict generalization
of the linear ordering model, which corresponds to the special case where T is a path. Our
tree model is quite distinct from the “nested structure” model in [19], where the tree nodes
correspond to bids.

An example application where this special structure prevails is the following web
shopping scenario. The goods are structured in a tree, where a web page contains the
description of a good and links to neighbor goods. For example, the page of a tent could
have links to a heater, camping stove, and bug spray. The stove could have links to fuel
refills and pots, etc. On any page, the user can (1.) buy the item and be allowed to continue
to any number of the neighbor goods, or (2.) not buy the item and backtrack, or (3.) submit
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the bid by specifying a price for the subgraph that the user has chosen so far, or (4.) exit

without submitting the bid.

Theorem 5. The winner determination problem with subgraph bids on tree-structured
items can be solved in O(nm) worst-case time.

Proof. Let r be the root of the item tree T (any node in the graph can be picked as the
root of the tree; this choice does not affect the solution value). We assign each node of T
a level, which is its distance from the root. Thus, the root r has level 0; the children of r

have level 1, and so on. The level of a bid b, denoted level(b), is the smallest level of any
item in b. We sort the bids in increasing order of level, breaking ties arbitrarily. We use a
dynamic program to compute the optimal solutions at nodes of T in decreasing order of
level.

Given a node i of T , let Ci denote the set of bids that include i and whose level is the
same as the level of i . Our algorithm computes the function opt(i), for each node i , where
opt(i) is the optimal solution for the problem considering only those bids that contain items
in the subtree below i . Our goal is to compute opt(r).

Consider a bid b, and suppose that the item giving b its level is x . Removing all items
of b disconnects the tree rooted at x , namely Tx , into several subtrees. Let Ub be the set of
roots of this forest of subtrees. (For example, suppose we put a bid for items {3,4} in the
tree of Fig. 9. Removing the items of this bid breaks the tree rooted at 3 into three subtrees,
with roots at 5, 6, and 9). Now, we get the following dynamic programming recurrence:

opt(i)=max

{
max
b∈Ci

{
pb +

∑
j∈Ub

opt(j)

}
,

∑
j∈children(i)

opt(j)

}

where pb is the price of bid b. By proceeding bottom up, we compute opt(i) for all nodes
of the tree. Again, the proof of correctness follows from the observation that either the
winning allocation does not include item i , in which case the second term of the max gives
opt(i); otherwise, the first term iterates over all bids that contain item i (and also have level
i), and chooses the optimal solution for the subtree that remains after taking that bid.

By proceeding bottom up, we can compute opt(i) for all nodes of the tree in O(nm)

time (each term takes O(n) time, and there are m terms to compute). ✷
Because we can solve the winner determination problem with subgraph bids on tree-

structured items in polynomial time, we can use it in auctions where the special structure
is forced. For example in the case of the web store described above, the special structure
was imposed via the links among the web pages.

However, we do not know whether this special structure can be identified in polynomial
time, that is, we do not know how complex it is to determine whether a given general
winner determination problem can be converted into a winner determination problem with
subgraph bids on tree-structured items. We pose this as an open research problem.

To use this special case to reduce search in our general winner determination algorithm,
the identification problem would have to be solved. Then, at every node (or just at the root),
the algorithm would check whether the problem is within this special class. If so, it would
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Fig. 10. Illustration for Theorem 6.

be solved using our dynamic program, and no further search would occur in that subtree.
If not, the search would proceed further into the subtree.

3.2.6. Subtree bids in DAGs
Our special case of subtree bids on tree-structured item is sharp in the sense that a slight

generalization makes the problem intractable:

Theorem 6. If the set of items is structured as a directed acyclic graph (DAG) D, and each
bid is a directed subtree of D, then winner determination is NP-complete.

Proof. We can formulate the general combinatorial auction problem of Section 2 as an
instance of the DAG-structured problem. Corresponding to each item of M , we create a
“item” node, and for each bid Bi we create a “bid” node. We draw directed edges from bid
node Bi to all the item nodes concerning Bi . Fig. 10 shows the construction.

Clearly, the resulting graph is acyclic—all edges are directed from bid nodes to item
nodes. Each bid is obviously tree-structured (height one). Thus, an optimal allocation
for this DAG instance solves the general combinatorial auction problem, which is NP-
complete. This proves that the DAG-structured case is NP-hard. It is also in NP because
the solution (revenue) can be verified in polynomial time. Combining these two facts we
have that the problem is NP-complete. ✷
3.3. Faster data structures

In this section we present fast data structures that support the operations that are used
in our winner determination algorithm.

3.3.1. Bid graph representation (GRA)
We use an adjacency list representation of the bid graph G for efficient insert and delete

operations on bids. We do not actually keep track of exclusion counts ej . Instead, a bid j

having been deleted corresponds to ej > 0, and a bid j not having been deleted corresponds
to ej = 0. We use an array to store the nodes of G. The array entry for node j points to a
doubly-linked list of bids that share items with j . Thus, an edge (j, k) creates two entries:
one for j in the list of k, and the other for k in the list of j . We use cross-pointers with
these entries to be able to access one from the other in O(1) time. To delete node j whose
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current neighbor list is {b1, b2, . . . , bk}, we mark the node j “deleted” in the node array.

Then, we use the linked list of j to access the position of j in each of the bi’s list, and
delete that entry, at O(1) cost each. When reinserting a node j with edges Ej into G,
node j ’s “deleted” label is first removed in the node array. Then, for each (j, k) ∈Ej , j is
inserted at the front of k’s neighbor list, k is inserted at the front of j ’s neighbor list, and
the cross-pointer is set between them, all at O(1) cost.

As BOB branches by xj = 1, j and its neighbors in G are deleted. We also store in the
search node a list of the edges that were in effect removed: the edges E′ that include j ,
and the edges E′′ that include j ’s neighbors but not j . When backtracking to that node, we
reinsert j ’s neighbors into G using the edges E′′. Then BOB branches by xj = 0. When
backtracking from that branch, j is reinserted into G using edges E′.

3.3.2. Maintaining the heuristic function (MAI)
Any heuristic function could be used in step 2 of BOB. The heuristic function h←∑
i∈M ′ c(i), where c(i)← maxj |i∈Sj ,ej=0 pj/|Sj | is the same as in an earlier winner

determination algorithm [23]. In that implementation it took O(mn) time (at every search
node) to compute. A faster but rougher approximation of the same heuristic was used in [6].
Here we propose data structures that allow us to compute h fast and exactly. They not only
work for the functional form pj /|Sj |, but they also work for any other functional form that
depends on the bid only, that is, c(i)←maxj |i∈Sj ,ej=0 φ(Bj ).9

We store the items in a dynamic list which supports insert and delete in O(logm) time
each. Each item i points to a heap H(i) that maintains the bids that include i . The size
of H(i) is n in the worst case. The heap supports find-max, extract-max, insert, and
delete in O(logn) time each (delete requires a pointer to the item being deleted, which
we maintain).

The heuristic function requires us to compute, for each item i , the maximum value
φ(Bj ) among the bids Bj that have not been deleted and concern item i . We keep a tally of
the current heuristic function and update it each time a bid gets deleted or reinserted into G.
Consider the deletion of bid j that has k items; each item points to its position in the item
list. We delete j ’s entry from the heap of each of these k items. For each of these k items,
we update the heuristic function, by calculating the difference in its c value before and after
the update. When j is reinserted, we reinsert j into the heaps of all the items that concern
j . The cost, per search node, of updating the heuristic function is

∑
j |Sj | ·O(logn), where

the summation is over all the bids that got deleted or reinserted.
As a further optimization, our algorithm uses a leftist heap for H(i) [28]. A leftist heap

has the same worst-case performance as an ordinary heap, but improves the amortized
complexity of insert and delete to O(1), while extract-max and find-max remain O(logn).
Because the insert and delete operations in BOB are quite frequent, this improves the
overall performance.

9 The complexity results hold if φ(Bj ) can be evaluated in O(1) time for any given Bj . This is usually the
case during search since one can precompute φ(Bj ) for every Bj .
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3.4. Preprocessing
Four preprocessing techniques were recently proposed for the winner determination
problem [23]. Each one of them can be directly used in conjunction with our algorithm.

4. Generalizations of combinatorial auctions

This section discusses generalizations of combinatorial auctions. Our auction server
prototype (http://www.cs.cmu.edu/~amem/eMediator) supports all of these generalizations
separately and combined, and has been in continuous operation on the web since December
1998 [24].

4.1. Multiple units of each item

In some auctions, there are multiple indistinguishable units of each item for sale. One
can compress the bids and speed up winner determination by not treating every unit as a
separate item, since the bidders do not care which units of each item they get, only how
many. We define a bid in this setting as Bj = 〈(λ1

j , λ
2
j , . . . , λ

m
j ),pj 〉, where λk

j � 0 is the
requested number of units of item k, and pj is the price. The winner determination problem
is:

max
n∑

j=1

pjxj

s.t.
n∑

j=1

λi
j xj � ui, i = 1,2, . . . ,m,

xj ∈ {0,1}
where ui is the number of units of item i for sale.10

Previous winner determination algorithms cannot be used in the multi-unit setting
because they branch on items [6,23]. Even if each unit is treated as a separate item, the
earlier algorithms cannot be used if the demands, λk

j , are real-valued instead of integer.
BOB can be used. A tally of the number of units allocated on the search path is kept for

each item: Λi =∑
j |xj=1 λ

i
j .

The decomposition techniques DEC and ART apply on the bid graph G where two
vertices, j and k, now share an edge if ∃ item i s.t. λi

j > 0 and λi
k > 0. However, once

a bid is assigned winning and removed from G, the neighbor bids in G cannot always
be removed unlike in the basic combinatorial auction. Instead, only those neighbors, j ,
are removed that demand more units of some item than remain (∃ item k such that

10 In our basic combinatorial auction, and in every one of the generalizations, if free disposal is not possible, an
equality constraint should simply be used in the problem formulation in place of the inequality. However, without
free disposal the problem is fundamentally different and harder [26].
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λk > uk − Λk ). The removed bids are reinserted into G when backtracking. The data
j j

structure improvements GRA and MAI apply with this change.
One admissible heuristic for this setting is

h=
∑
i∈M

[
(ui −Λi) max

j∈VG|λi
j>0

pj∑
i∈Sj λ

i
j

]

where VG is the set of bids that remain in G. More refined heuristics can be constructed
by giving different items different weights. Once g + h � f̃ ∗, the search path is pruned.
The lower bounding technique LOW also applies, as do upper and lower bounding across
subproblems (ACROSS).

Bid ordering can be used, for example, by presorting the bids in descending order of
pj/(

∑m
i=1 λ

i
j )

α .

4.2. Combinatorial exchanges

In a combinatorial exchange, both buyers and sellers can submit combinatorial bids [24].
Bids are as in the multi-unit case, except that the λi

j values can be negative, as can the prices
pj , representing selling instead of buying. Note that a single bid can be buying some items
while selling other items.

The winner determination problem is to maximize surplus:11

max
n∑

j=1

pjxj

s.t.
n∑

j=1

λi
j xj � 0, i = 1,2, . . . ,m,

xj ∈ {0,1}.
Unlike earlier algorithms that branch on items [6,23], BOB can be used in this setting.

In the basic combinatorial auction and in our other generalizations, the optimal solution
occurs in a leaf. In contrast, in our combinatorial exchange, the optimal solution can occur
even at an interior node of the search tree. In the search, a tally of the net number of
units demanded (units supplied are negative numbers) on the path is kept for each item:
Λi =∑

j |xj=1 λ
i
j .

11 If the exchange charges based on transaction volume, as many current exchanges do, it may want to
maximize volume instead (subject to the same constraints as above), measured in any of several possible ways.
One way is to maximize the number of accepted bids:

∑
j∈{1,...,n} xj . Another way is to maximize the monetary

trade volume. In the common “pay-your-winning-bid” type mechanisms, the monetary trade volume is the amount
that the winning bids offered to pay:

∑
j∈{1,...,n}|pj>0 pj xj . Our algorithms apply to such objectives like they do

to surplus maximization. However, we advocate surplus maximization since that maximizes social welfare. (This
assumes that the participants bid and ask truthfully. If each bidder is charged the prices of her winning bids, then
the buyers have the incentive to underbid and the sellers have the incentive to overbid. Even in noncombinatorial
exchanges—with only one asset to be exchanged, one seller, and one buyer—no mechanism leads to efficient
trade among strategic agents. Sometimes the asset does not trade although the buyer values it more than the
seller [16].)
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The decomposition techniques DEC and ART apply on bid graph G where two vertices,

j and k, share an edge if ∃ item i such that λi

j �= 0 and λi
k �= 0. However, once a bid is

assigned winning and removed from G, the neighbor bids in G cannot always be removed
unlike in the basic combinatorial auction. Instead, only those neighbors, j , are removed
that cannot possibly be matched any more:

• ∃ item i s.t. λi
j > 0 and λi

j +Λi +∑
k∈VG|λi

k<0 λ
i
k > 0, or

• ∃ item i s.t. λi
j < 0 and λi

j +Λi +∑
k∈VG|λi

k>0 λ
i
k < 0,

where VG is the set of remaining bids in G. The removed bids are reinserted into G

when backtracking. The data structure improvements GRA and MAI apply with this
modification.

The upper bounding and lower bounding (LOW) techniques discussed earlier in the
paper can be used after constructing functions that compute an upper bound h and a
lower bound L. Then, also the upper bounding and lower bounding techniques across
subproblems (ACROSS) apply.

Bid ordering can also be used. For example, by branching on a bid j that maximizes pj

(the bids can be sorted in this order as a preprocessing step to avoid sorting during search),
the algorithm can strive to high-surplus allocations early, leading to enhanced pruning. As
another example, by branching on a bid j that minimizes

∑
i|Λi>0 Λi + λ

j
i , or a bid that

minimizes maxi|Λi>0 Λi + λ
j
i , the algorithm can reach feasible solutions faster (especially

in the case of free disposal), leading again to enhanced pruning from then on.
Additional pruning is achieved by branching on bids with pj < 0 first, and then on bids

with pj � 0.12 Once
∑

j |xj=1 pj > 0, that branch of the search is pruned.13 Also, after the
switch to bids with pj � 0 has occurred on a path, h, LOW, ACROSS, and bid ordering
from the multi-unit case can be used among the remaining bids to achieve further pruning.

4.3. Reserve prices

In some auctions, the seller has a reserve price ri for every item i , below which she
is not willing to sell.14 This could be easily incorporated into our algorithm by adding a
constraint: the revenue collected from the bids is no less than the sum of the reserve prices
of the items that are allocated to bidders. A stricter way of interpreting reserve prices as a
constraint is to require that the auctioneer’s payoff (revenue collected from the bidders plus
reserve prices of the items kept) would not increase by keeping an additional item or by
allocating an additional item to one of the bidders. This could also be easily incorporated
into our algorithm.

12 Alternatively one can branch on bids with pj > 0 first, and reverse the tests respectively.
13 Alternatively one can do this split of bids into two sets (λj

i
< 0 vs. λj

i
� 0) and pruning (when Λi > 0) on

any item i instead of price. A reasonable heuristic would be to choose an item (or the price) so that the smaller of
these two sets is as small as possible. Then, branching would first occur within bids in that subset. This heuristic
is geared toward reducing the size of the search tree.

14 If some of the items do not have reserve prices, we say ri = 0.
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However, this raises the concern that the auctioneer’s payoff might increase by keeping

or allocating a set of items. It turns out that requiring that it does not coincides with
maximizing social welfare (sum of the auctioneer’s payoff plus the bidder’s payoffs; each
bidder’s payoff is her valuation for the bundle of goods that she gets minus what she has
to pay), assuming that bidders enter their true valuations and the auctioneer enters his true
reserve prices. This is done not as a constraint, but by changing the maximization objective
to

max
n∑

j=1

(
pj −

∑
i∈Sj

ri

)
xj .

This is trivial to incorporate into our algorithm: the item’s reserve prices are simply
subtracted from the bid prices as a preprocessing step.

This method can also be used for exchanges where only one side (buyers or sellers) is
allowed to place combinatorial bids! The other side has to bid noncombinatorially. The
bids of the noncombinatorial side are considered reserve prices, allowing the fast winner
determination algorithm for one-to-many combinatorial auctions to be used in many-to-
many exchanges for optimal clearing.

Auctions where the seller is allowed to submit reserve prices on combinations of items
or is allowed to express substitutability in the reserve prices, cannot be handled by the one-
to-many algorithm. Instead, they are treated as exchanges where the seller’s reserve prices
are her bids. Our algorithm for combinatorial exchanges can then be used for optimally
clearing the market.

4.4. Substitutability

In the auctions discussed so far in the paper, bidders can express superadditive
preferences: the value of a combination is greater or equal to the sum of the values of
its parts. They cannot express subadditive preferences, aka. substitutability. For example,
by bidding $5 for {1,2}, $3 for {1}, and $4 for {2}, the bidder may get {1,2} for $7. Two
solutions have been proposed that allow any preferences to be expressed. They extend
directly to all the generalized combinatorial auctions presented in this paper: the multi-unit
case, the exchange, and the case of reserve prices. In the first, bidders can combine their
bids with XORs, potentially joined by ORs [23,24]. The second uses dummy items [6]. If
two bids share a dummy item, they cannot be in the same allocation.

BOB can be used with the first method by adding edges in G for every pair of bids that is
combined with XOR.15 These additional constraints actually reduce the size of the search
tree. However, only some of the optimization apply: HEU, LOW, DEC, ART, ACROSS,
GRA, and MAI. BOB supports the second method directly and all of the optimization
apply.

15 As specified earlier in this paper, in the algorithm for exchanges and multi-unit auctions, as a bid is branched
in, only some of its neighbors in the bid graph G are removed. However, as a bid is branched in, all neighbors
that are connected to it via an XOR-edge are removed from G. In this sense, the regular edges and XOR-edges
are treated slightly differently in exchanges and multi-unit auctions.
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5. Conclusions and future research
Combinatorial auctions can be used to reach efficient resource and task allocations in
multiagent systems where the items are complementary. Determining the winners is NP-
complete and inapproximable, but it was recently shown that optimal search algorithms
do very well on average. This paper presented a more sophisticated search algorithm
for optimal (and anytime) winner determination, including structural improvements that
reduce search tree size, faster data structures, and optimizations at search nodes based on
driving toward, identifying and solving tractable special cases. We also discovered a more
general tractable special case, and designed algorithms for solving it as well as for solving
known tractable special cases substantially faster. We generalized combinatorial auctions
to multiple units of each item, to reserve prices on singletons as well as combinations,
and to combinatorial exchanges—all allowing for substitutability. Finally, we developed
algorithms for determining the winners in these generalizations.

We posed the identification of subgraph bids with tree-structured items as an important
open problem. Future work also includes experimental evaluation of each of the techniques
presented. Since the first version of this paper appeared in AAAI-00, significant exper-
imental work has been done on combinatorial auction winner determination algorithms
that use the branch-on-bids formulation rather than the older branch-on-items formulation
(e.g., [1,7,13,25,26]). It is fair to say that the branch-on-bids formulation is now the fastest
and most prevalent formulation for winner determination. Of the algorithms that have been
evaluated experimentally, the CABOB algorithm incorporates the largest number of the
ideas presented in this paper, and it is currently, to our knowledge, by and large the fastest
optimal winner determination algorithm for combinatorial auctions [25].
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