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Abstract

This paper studies coalition formation among self-interested agents

that cannot make sidepayments. We show that �-core stability reduces

to analyzing whether some utility pro�le is maximal for all agents. We

also show that strategy pro�les that lead to the �-core are a subset

of Strong Nash equilibria. This fact carries our �-core-based stability

results directly over to two other strategic solution concepts: Nash

equilibrium and Coalition-Proof Nash equilibrium.
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The main focus of the paper is to analyze the dynamic process

of coalition formation by explicitly modeling the costs of communica-

tion and deliberation. We describe an algorithm for sequential action

choice where each agent greedily stepwise maximizes its payo� given

its beliefs. Conditions are derived under which this process leads to

convergence of the agents' beliefs and to a stable coalition structure.

We derive these results for the case where the length of the process is

exogenously restricted as well as for the case where agents can choose

it.

Finally, we show that the outcome of any communica-

tion/deliberation process that leads to a stable coalition structure is

Pareto-optimal for the original game which does not incorporate com-

munication or deliberation. Conversely, any Pareto-optimal outcome

can be supported by a communication/deliberation process that leads

to a stable coalition structure.

1 Introduction

In many multiagent settings, self-interested agents|e.g. representing real
world companies or individuals|can operate more e�ectively by forming
coalitions and coordinating their activities within each coalition. Therefore,
e�cient methods for coalition formation are of key importance in multia-

gent systems. Coalition formation involves three activities: coalition struc-
ture generation (partitioning the agents into disjoint coalitions1), solving
each coalition's (optimization) problem within the coalition, and dividing
the value of each coalition among member agents (in case of net cost, this
value may be negative).

Coalition formation among self-interested agents has been widely studied

in game theory [40, 11, 2, 1, 4, 9]. The main solution concepts are geared

toward payo� division among agents in ways that guarantee forms of stabil-
ity of the coalition structure. Most of these solution concepts focus on the

�nal solution, and usually do not address the dynamic process that leads to
the solution. DAI work on coalition formation has introduced protocols for

dynamic coalition formation, but the role of strategies and the process itself

1This is the usual de�nition of coalition structures in game theory. For a non-partitional

de�nition see [38].
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have not been included in the solution concept. Although the outcomes sat-

isfy di�erent forms of stability, there is often no guarantee that the process

itself is stable, i.e. that individual agents would be best o� by adhering to

the imposed strategies [37, 39]. Also, it is usually assumed that the agents

can compute the coalition values exactly [43, 37, 39], but sometimes deter-

mining the value of a coalition involves solving an intractable combinatorial

optimization problem, e.g. solving how a coalition of dispatch centers should

route their pooled vehicles to handle their pooled delivery tasks. Some DAI

work has addressed the complexity of coalition value computation by explic-

itly incorporating computational actions in the solution concept [32, 33]. This
allows one to game-theoretically trade o� computation cost against solution

quality. However, that work does not include protocols for dynamic coalition
structure generation (all coalition structures were exhaustively enumerated),
nor does it address belief revision.

In this paper we will analyze coalition formation processes from a norma-
tive perspective. Each agent's decision to participate in a coalition depends

on strategic considerations since the parties are self-interested and evalu-
ate possible agreements based on the advantages they can get from their
membership to a given coalition. Since our approach is normative, it is nec-
essary to identify the motivations of each agent. Utilities constitute a natural
representation for the di�erences among agents: utilities are numerical rep-
resentations of their di�erent preferences.

In some multiagent systems agents can make sidepayments. On the other
hand, in many settings it is desirable to be able to handle the interactions
without sidepayments. First, the agents might not have (enough) money, or
a secure mechanism for transferring money might not exist. Second, most in-
teraction protocols (mechanisms) that use sidepayments are only guaranteed

to work if every agent's utility is linear in money, which is not often the case.2

This paper focuses on games where agents cannot make sidepayments.3

Previous research has mostly focused on superadditive games [11, 43].4

Superadditivity means that any pair of coalitions is best o� by merging into

2This is the case, for example, with the classic Clarke tax mechanism [6, 8, 10, 19]. See

also the discussion on modulo mechanisms in [20].
32-agent negotiations in MAS have already often been analyzed in the setting where

agents cannot make sidepayments [27].
4However, algorithms for coalition structure generation in non-superadditive settings

have also been presented [34, 32, 37, 38, 39, 13].
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one. Classically it is argued that almost all games are superadditive because,

at worst, the agents in a composite coalition can use solutions that they

had when they were in separate coalitions.5 This paper will also focus on

superadditive games. However it should be pointed out that not all games

need to be superadditive. Superadditivity may be violated, for example, if

the setting has anti-cartel penalties or coordination overhead such as com-

munication costs or computation costs which may increase as the number

of agents in a coalition increases [32, 33]. Since the agents studied in this

paper are self-interested, the appropriate solution concept is one that em-

phasizes the stability of the coalition structure. This means trying to reach
agreements where no subgroup of agents is motivated to deviate from the

solution. The core is one of such solution concept [19]. The core is usually
used for games with transferable utility ([40, 11]) but it can be extended to
games with nontransferable utility, for example using Aumann's notion of
the �-core ([2]) which will be used in this paper as well.

A novel aspect of our approach is the role that belief formation plays

in the coalition formation process. This process can be characterized as a
sequence of deliberation (computation) and communication actions that the
agents take in the dynamic process of coalition formation. Agents' incom-
plete information leads to standard solution concepts, such as Bayes-Nash
equilibrium ([19]) or sequential equilibrium ([16]). Here we will be concerned
with a solution concept that combines both coalition stability and incomplete

information. The basic idea is that a belief of an agent in a given stage of
the coalition formation process is a conditional probability distribution on
the outcomes, given the previous steps of the process. A coalition structure
obtains stability when the beliefs of the agents converge. We show that this
coalition structure supports a Pareto optimal outcome. The price paid is

tractability: the computation of the optimal coalition formation process can
be exponential in the number of agents and in the length of the negotiation

process.6

5A special case of coalition formation where agents cannot make sidepayments is the

exchange economy, where parties exchange (multidimensional) endowments. Exchange

economies exhibit superadditivity: the best outcome can be reached by the grand coalition

consisting of all the agents [21].
6Since the problem addressed here is coalition formation with independent, self-

interested agents with incomplete information, exponential complexity seems an almost

unavoidable consequence. See [26] for a proof of the exponential complexity inherent even
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As is common practice [11, 39, 43, 13, 32, 34], we start out by studying

coalition formation in characteristic function games (CFGs). In such games,

the value of each coalition is independent of nonmembers' actions.7 In general

the value of a coalition could depend on nonmembers' actions due to positive

and negative externalities (interactions of the agents' solutions). Negative

externalities between a coalition and nonmembers are often caused by shared

resources. Once nonmembers are using the resource to a certain extent,

not enough of that resource is available to agents in the coalition to carry

out the planned solution at the minimum cost. Negative externalities can

also be caused by con
icting goals. In satisfying their goals, nonmembers
may actually move the world further from the coalition's goal state(s) [27].

Positive externalities are often caused by partially overlapping goals. In
satisfying their goals, nonmembers may actually move the world closer to
the coalition's goal state(s). From there the coalition can reach its goals less
expensively than it could have without the actions of nonmembers. General
settings with possible externalities can be modeled as normal form games

(NFGs). CFGs are a strict subset of NFGs. However, many real-world
multiagent problems happen to be CFGs [32]. Also, as we show, the claims
that we will make using the convenient notation of CFGs directly carry over
to NFGs.

The game theoretic context for this work is the Nash program which was
originally presented in [23], and which has recently been widely adopted as

the analysis method of choice in computational multiagent systems consist-
ing of self-interested agents [31, 36, 35, 14]. The idea is that interactions
should be studied by analyzing stable combinations of strategies|one for
each agent. The sequential process of coalition formation is similar to the
sequential process of bargaining where agents try to reach an agreement

by exchanging proposals [28]. However, incomplete information introduces
complications that are related to the credibility of statements and cheap talk:

noncommital statements can induce a multiplicity of equilibria, called \bab-
bling" equilibria [7]. Negotiation has been proposed as a solution to this

problem. According to this idea, negotiation using credible (not necessarily

in the most e�cient decentralized allocation processes.
7These coalition values may represent the quality of the optimal solution for each

coalition's optimization problem, or they may represent the best bounded-rational value

that a coalition can get given limited or costly computational resources for solving the

problem [32, 33].
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truthful) statements would lead to coherent agreements where the agents'

beliefs are mutually consistent [22].

Finally, belief revision in this paper is based on a representation of be-

liefs by means of probability distributions. Bayes theorem o�ers a tool for

updating them. This is a common point shared by our approach and both

the game theoretical treatments of incomplete information ([3], [15]) and

Bayesian methods in arti�cial intelligence ([24]).

The rest of the paper is organized as follows. Section 2 introduces the

classic game theoretic framework for coalition formation among agents that

cannot make sidepayments. Section 3 analyzes outcomes statically with the
�-core solution concept. Section 4 shows generally that results derived un-

der the �-core solution concept carry over directly to strategic solution con-
cepts such as the Nash equilibrium, the Strong Nash equilibrium, and the
Coalition-Proof Nash equilibrium. Section 5 introduces the dynamic coali-
tion formation process which incorporates deliberation and communication.
It shows that stability of the coalition formation process is equivalent to

convergence of the agents' beliefs (for both exogenously and endogenously
terminated negotiation), and that the outcome is Pareto-optimal.

2 Games and solutions

This section reviews the concept of a coalition game and an approach for
de�ning the value of a coalition (characteristic function) in games where
nonmembers' actions a�ect the value of the coalition, and agents cannot
transfer sidepayments. We begin by de�ning a game.

De�nition 1 A game G = ((Si)
n
i=1;

�U) is de�ned by the set of agents I =

f1; : : : ; ng, the set Si of possible strategies for each agent i 2 I, and the

resulting utility pro�le �U :
Qn

i=1 Si ! <
n, where for each strategy pro�le

(s1; : : : ; sn) 2
Qn

i=1 Si,

�U(s1; : : : ; sn) = (u1(s1; : : : ; sn); : : : ; un(s1; : : : ; sn))

where ui :
Qn

i=1 Si ! < is the utility of agent i.

A solution concept de�nes the reasonable ways that a game can be played

by self-interested agents:
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De�nition 2 Given a game G = ((Si)
n
i=1;

�U), a solution concept (in pure

strategies)8 is a correspondence 
 : G !
Qn

i=1 Si [ ;, and each

s = (s1; : : : ; sn) 2 
(G) is called a solution of G.

The range of a correspondence includes the empty set in order to encom-

pass games that do not have a solution of the type prescribed by the solution

concept.

An example of solution concept is given by Nash equilibria: for each game

G they are elements of 
N (G), where 
N is the Nash correspondence:

De�nition 3 s = (s1; : : : ; si; : : : ; sn) is in 
N (G) if for each i and for each

s
0

i 6= si, ui(s1; : : : ; s
0

i; : : : ; sn) � ui(s1; : : : ; si; : : : ; sn). Each such strategy

pro�le is a Nash equilibrium.

In other words, in a Nash equilibrium no agent is motivated to deviate

from its strategy given that the others do not deviate.
De�nition 1 characterizes games in terms of the strategies of agents and

the corresponding payo�s. These games are said to be in normal form. The
normal form is a general representation that can be used to model the fact
that nonmembers' actions a�ect the value of the coalition [32, 9]. However,

coalition formation has been mostly studied in a strict subset of normal form
games|characteristic function games|where the value of a coalition does
not depend on nonmembers' actions, and it can therefore be represented by
a coalition speci�c characteristic function which provides a payo� for each
coalition T (i.e. set of agents) [40, 11, 43, 39]. Characteristic functions are
a desirable representation, so one would like to de�ne such mathematical

entities for normal form games. In such general games, a characteristic func-

tion can only be de�ned by making speci�c assumptions about nonmembers'
strategies. In this paper we follow Aumann's classic approach of making
the �-assumption, i.e. assuming that nonmembers pick strategies that are

worst for the coalition. Each coalition can locally guarantee itself a payo�

that is no less than the one prescribed by an analysis under this pessimistic
assumption.9 Later in the paper we show that the results that we obtain

8A pure strategy is a strategy that does not involve randomization by the agent. De�ni-

tion 2 can be easily extended to mixed strategies that involves randomization, by replacing

each Si by �Si, the set of probability distributions on Si.
9The �-assumptionmay be impossibly pessimistic. A given nonmember can be assumed

to pick di�erent strategies when di�erent coalitions are evaluated. This is in contrast with

the fact that in any realization, the nonmember can only pick one strategy.
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under the �-assumption carry over to strategic solution concepts (Nash equi-

librium and its re�nements) that can be used directly in normal form games

without any assumptions about nonmembers' strategies.

In games where agents can make sidepayments to each other [37, 39, 32,

11], the characteristic function gives the sum of the payo�s of the agents

in a coalition. Instead, our analysis focuses on games where agents cannot

make sidepayments. In such games, the characteristic function gives a set

of utility vectors that are achievable [2]. This is in order to provide the

coalition with a set of alternative utility divisions among member agents.

The set contains only Pareto-optimal utility vectors: no agent can be made
better o� without making some other agent worse o�. The next de�nition

formalizes this vector-valued characteristic function under the �-assumption.

De�nition 4 Given a game G = ((Si)
n
i=1;

�U), with �U such that its compo-

nents are non-transferable, we say that the characteristic function is

v� : 2
I
! 2<

I

such that for each coalition T � I

v�(T ) � <
I

and v�(T ) is the set of optimal achievable utilities for T .

The �-assumption comes into play in the de�nition of these optimal achiev-
able utilities:

De�nition 5 Given a game G = ((Si)
n
i=1;

�U), and a T � I, the set of op-
timal achievable utilities for coalition T = fj1; : : : ; jjT jg is the set of utility

pro�les
�UT = (: : : ; �uj1; : : : ; �uj2; : : : ; �ujjT j ; : : :)

such that

9s 2
nY

i=1

Si; U(s) = �UT

and

6 9sT 2
Y

j2T

Sj : 8s
I�T
2
Y

j 62T

Sj

U(sT ; sI�T ) =
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�U
0

T = (: : : ; �u
0

j1
; : : : ; �u

0

j2
; : : : ; �u

0

j
jT j
; : : :)

with, for all ji 2 T , �u
0

ji
� �uji and for at least one j� 2 T; �u

0

j� > �uj�.

The next result of ours follows trivially:

Proposition 1 For every game G in normal form, v� exists.

Proof. Suppose that for a game G = ((Si)
n
i=1;

�U), v� cannot be de�ned. So,

for at least one coalition T , v�(T ) cannot be determined. But that means

that a set of �UT s cannot be de�ned such that

6 9sT 2
Y

j2T

Sj : 8s
I�T
2
Y

j 62T

Sj;

U(sT ; sI�T ) =

�U
0

T = (: : : ; �u
0

j1
; : : : ; �u

0

j2
; : : : ; �u

0

j
jT j
; : : :)

and such that, for all ji 2 T , �u
0

ji
� �uji and for at least one j� 2 T; �u

0

j� > �uj�.
Given this condition, we proceed by evaluating �U for each s 2

Qn
i=1 Si. If,

by hypothesis, v�(T ) is not determinate, then �U is not de�ned for every s.

Contradiction. 2

To summarize, the normal form notation emphasizes the strategic aspects
of the interactions among agents. Each agent's actions are strictly individual
even as a member of a coalition. Therefore, a characteristic function has to

indicate, for each coalition, how much each of its members gets for joining.
Moreover, the characteristic function has to indicate the best combinations
of individual payo�s that the coalition can get. Proposition 1 just states that

it is possible to de�ne this kind of characteristic function for every strategic
game. Once this issue is settled, we can move on to see what kinds of solutions

are relevant for this type of coalitional games.

3 The �-core and superadditivity

The �-assumption gives rise to the �-core solution concept which de�nes

a stability criterion for the coalition structure. The idea is that strategy
pro�les that do not have an optimal achievable utility are not candidates for

the solution. A vector of joint strategies, is said to be blocked by a coalition
if its members can be better o� by moving to another vector:
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De�nition 6 A coalition T blocks a strategy pro�le s = (s1; : : : ; sn) if for

every ji 2 T there exists an s
0

2
Qn

i=1 Si such that

� 8ji, uji(s
0

) � uji(s) and for at least one ji, uji(s
0

) > uji(s); and

� (: : : ; uj1(s
0

); : : : ; uj2(s
0

); : : : ; uj
jT j
(s

0

); : : :) 2 v�(T ).

The blocking relation de�nes a particular set of stable joint strategies,

the �-core. The �-core is the set of joint strategies where no coalition can be

formed if its members are better o� changing their individual strategies, given

that nonmembers pick strategies that are worst for the coalition. In other

words, it is the set of joint strategies for which a stable collective agreement
can be reached. Formally, the �-core correspondence is de�ned as follows [2]:

De�nition 7 A strategy pro�le s = (s1; : : : ; sn) is in the �-core 
C� if there

is no coalition T that blocks s.

As with the Nash correspondence, the �-core correspondence can be

empty for some games. The following example demonstrates this.

Example 1 G = ((Sa; Sb); �U ), where the set of players is fa; bg

Sa = Sb = fc; ncg

and

�U = f(hc; nci; h0; 10i); (hc; ci; h5; 5i); (hnc; ci; h10; 0i); (hnc; nci; h2; 2i)g

where (hsa; sbi; hua(sa); ub(sb)i) is the general form of the elements of �U . This

is an instance of the prisoner's dilemma [18]. The corresponding values of

the characteristic function are:

� v�(fag) = fh10; 0ig

� v�(fbg) = fh0; 10ig

� v�(fa; bg) = fh5; 5ig

It is easy to see that

� fag blocks fhc; ci; hc; nci; hnc; ncig
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� fbg blocks fhc; ci; hnc; ci; hnc; ncig

� fa; bg blocks fhnc; ci; hc; nci; hnc; ncig

Therefore, there is no hsa; sbi that is not blocked by at least one coalition. In

other words, 
C�(G) is empty.

Now, under what conditions does a stable coalition structure exist? In

other words, what are the conditions for non-emptyness of the �-core? In

the rest of this section we will show that surprisingly simple conditions are

necessary and su�cient for stability. The concept of superadditivity will be

used to develop an intuition of this phenomenon. Superadditivity implies
that any two coalitions are best o� merging:

De�nition 8 A game G is superadditive if given any two coalitions T1; T2,

T1 \ T2 = ;, v�(T1) \ v�(T2) � v�(T1 [ T2).
10

The following result of ours establishes an interesting property that re-
lates characteristic functions and superadditivity: if the intersection of the

optimally achievable utilities for all the players is not empty, then the game

is superadditive. This condition on characteristic functions will be later used
to discuss stability.

Proposition 2 For a game G, if
T
i2I v�(fig) 6= ; then G is superadditive.

Proof. We will prove this result by induction on the cardinality of coalitions:

� Given T1; T2, T1 \ T2 = ;, jT1j = 1, jT2j = 1, it is clear that there

exist agents i; j 2 I such that T1 = fig and T2 = fjg. If �U� =
(u�1; : : : ; u

�
n) 2

T
i2I v�(fig), then in particular �U�

2 v�(T1) \ v�(T2).

Suppose �U�
62 v�(T1 [ T2). Then, there exists s 2

Qn
i=1 Si such that

�U(s) = (: : : ; ui(s); : : : ; uj(s); : : :) and ui(s) � u�i and uj(s) � u�j with

strict inequality for one of them, say i. But then, �U�
62 v�(fig), con-

tradiction. So, v�(T1) \ v�(T2) � v�(T1 [ T2).

10This de�nition (by Shubik [40]) for games without sidepayments di�ers technically

from the de�nition of superadditivity for games with sidepayments [40, 11, 32, 43, 37, 39].

However, they are conceptually the same.
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� Assume that �U�
2 v�(T1) \ v�(T2) � v�(T1 [ T2), for any pair of

coalitions T1; T2, T1 \ T2 = ;, jT1 [ T2j � k < n. Consider i 2 I,

i 62 T1; i 62 T2, and T
0

1 = T1 [ fig. Then T
0

1 \ T2 = ; and of course
�U�
2 v�(T

0

1) (by the inductive assumption because jT
0

1j � k), so �U�
2

v�(T
0

1)\v�(T2). Suppose that �U�
62 v�(T

0

1[T2). Again, this means that

exists s 2
Qn

i=1 Si such that �U(s) = (: : : ; uj1(s); : : : ; ujk(s); : : :), where

T
0

1 [ T2 = fj1; : : : ; jkg, and uji(s) � u�ji for all ji 2 T
0

1 [ T2, with strict

inequality for one of them, say ji0 . Suppose without loss of generality

that ji0 2 T
0

1, but then,
�U�
62 v�(T

0

1). Contradiction.

So, v�(T1)\v�(T2) � v�(T1[T2) for any pair of coalitions T1; T2, T1\T2 = ;,

jT1 [ T2j � n. That is, G is superadditive. 2

To see that superadditivity is a necessary but not a su�cient condition
for
T
i2I v�(fig) 6= ;, recall the prisoner's dilemma of Example 1. It is a

superadditive game, but v�(fag) and v�(fbg) have no element in common.

Our next result relates the condition of the previous proposition to sta-
bility of the coalition structure (non-emptyness of the �-core):

Lemma 1 For a game G, 
C�(G) 6= ; i�
T
T22I�; v�(T ) 6= ;.

Proof.

� !) If 
C�(G) 6= ;, then there exists an s� that is not blocked by any

coalition. But then, by the de�nition of blocked joint strategy, it is

clear that for each coalition T , �U(s�) 2 v�(T ), and therefore s� 2T
T22I�ff;g v�(T )

�  ) If
T
T22I�f;g v�(T ) 6= ;, then there exists at least one �U�

2 v�(T )
for every possible coalition T and therefore an s 2

Qn
i=1 Si such that

�U(s) = �U�. So, s is not blocked by any coalition and thus s 2 
C�(G). 2

This lemma is useful for proving the following theorem of ours. The
theorem shows that to characterize the stability of the coalition structure

in terms of the �-core, only the utilities and the corresponding actions of
individual agents are required. One does not need to compare utilities and

actions of coalitions.

Theorem 1 For a game G, 
C�(G) 6= ; i�
T
i2I v�(fig) 6= ;.

12



Proof.

� !) If 
C�(G) 6= ;, there exists a s 2
Qn

i=1 Si such that no coalition

blocks it. So for each coalition T , �U (s) 2 v�(T ). In particular for all

the coalitions with a single member, T = fig. So, �U (s) 2
T
i2I v�(fig).

�  ) By Lemma 1, it is enough to prove that
T
T22I�f;g v�(T ) 6= ;. The

proof will be by induction on the size of coalitions:

{ given that by hypothesis 9 �U�
2
T
i2I v�(fig), then for each i 2 I,

�U�
2 v�(fig)

{ assume that for each coalition T with jT j = k < n, �U�
2 v�(T ).

For any i 2 I; i 62 T (by proposition 1):

�U�
2 v�(T ) \ v�(fig) � v�(T [ fig)

So, �U�
2 v�(T

0

), for any T
0

such that jT
0

j = k + 1. Therefore,
�U�
2 T

00

for any T
00

2 2I � f;g. 2

Since, for each agent i, v�(fig) represents that agent's optimal achievable
utilities, this result states that the non-emptyness of the �-core is equivalent
to the existence of at least one utility vector that is maximal for every agent.
This vector, say �U , is Pareto-optimal: there is no other �U

0

such that for all
i, �U

0

i �
�Ui, with strict inequality for at least one i.

It follows from Theorem 1 that in games without sidepayments, the coali-
tion structure can be stable only if every possible pair of coalitions is best
o� merging ([�-core 6= ;]) superadditivity). This di�ers from games with
sidepayments: there the core can be nonempty even if the game is not su-
peradditive [32]. On the other hand|as in games with sidepayments|the

coalition structure may be unstable even if every pair of coalitions is best o�
merging (superadditivity 6) [�-core6= ;]).

These results show that the �-core is nonempty only in superadditive
games. In all other games there exists at least one coalition that blocks

the solution. While this result is interesting per se, it could perhaps be

interpreted as a criticism of the �-core solution concept itself. However, with
self-interested agents with non-transferable utilities, all market-like games
are superadditive [21]. Market economies are natural examples of this type

of games and electronic economies constitute a natural �eld of application

for the results of this paper.
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4 Relationships between axiomatic and

strategic solution concepts

In this section we present some new relationships between axiomatic and

strategic solution concepts. The importance of these relationships lies in the

fact that they allow us to import the other results of this paper (which will

be derived for the axiomatic �-core solution concept) directly to strategic

solution concepts like Nash equilibrium and its re�nements.

The notion of the �-core is axiomatic in that it only characterizes the
outcome without a direct reference to strategic behavior. The Nash corre-

spondence is, instead, a strategic solution concept: it is based only on the
self-interested strategy choices of agents. Speci�cally, it analyzes what an
agent's best strategy is, given the strategies of others. A strategy pro�le is
in Nash equilibrium if every agent's strategy is a best response to the strate-
gies of the others. Nash equilibrium does not account for the possibility

that groups of agents (coalitions) can change their strategies in a coordi-
nated manner. Aumann has introduced a strategic solution concept called
the Strong Nash equilibrium to address this issue [1, 4]. A strategy pro�le is
in Strong Nash equilibrium if no subgroup of agents is motivated to change
their strategies given that others do not change:

De�nition 9 A strategy pro�le s 2
Qn

i=1 Si, in a game G, is a Strong Nash
equilibrium if for any T � I and for all �sT 2

Q
j2T Sj there exists an i0 2 T

such that ui0(s) � ui0(�s
T ; sI�T ).

This concept gives rise to the Strong Nash correspondence, 
SN , i.e. the
set of Strong Nash equilibria. We show a close relationship between the

Strong Nash solution concept and the �-core solution concept:

Theorem 2 For any game G, 
C�(G) � 
SN (G).

Proof. Suppose that s 2 
C�(G) but s 62 
SN (G). Then, there exist an T � I

and an �sT 2
Q

j2T Sj such that for all j 2 C, uj(s) < uj(�s
T ; sI�T ). That

means that �U(s) is not in v�(T ), so there is a s
0

such that �U (s
0

) 2 v�(T ) and

uj(s
0

) � uj(s). Contradiction. 2

Often the Strong Nash equilibrium is too strong a solution concept, since
in many games no such equilibrium exists. Recently, the Coalition-Proof

14



Nash equilibrium [4] has been suggested as a partial remedy to this problem.

This solution concept requires that there is no subgroup that can make a

mutually bene�cial deviation (keeping the strategies of nonmembers �xed)

in a way that the deviation itself is stable according to the same criterion.

A conceptual problem with this solution concept is that the deviation may

be stable within the deviating group, but the solution concept ignores the

possibility that some of the agents that deviated may prefer to deviate again

with agents that did not originally deviate. Furthermore, even these kinds

of solutions do not exist in all games. On the other hand, in games where a

solution is stable according to the �-core, the solution is also stable according
to the Coalition-Proof Nash equilibrium solution concept. This is because


C�(G) � 
CPN (G) (which follows from our result 
C�(G) � 
SN (G) and the
known fact that 
SN (G) � 
CPN (G)).

We can also relate the Nash equilibrium itself to the �-core (this could al-
ternatively be deduced from Theorem 2 and the fact that 
SN (G) � 
N (G)):

Theorem 3 For any game G, 
C�(G) � 
N (G).

Proof. Given s 2 
C�(G), we will show that s is a Nash equilibrium in

pure strategies for G. Suppose not. By Theorem 1 it is enough to con-

sider what happens with single individuals. Then, for a i0 2 I, given

the vector (s1; : : : ; si0�1; si0+1; : : : ; sn), the best response for i0 is s
0

i0
with

ui0(s1; : : : ; s
0

i0
; : : : ; sn) > ui0(s). But that means that fig blocks s, and there-

fore s 62 
C�(G).Contradiction. This proves that 
C�(G) � 
N(G) . Example

1 shows that the converse is not true: 
N (G) = fhnc; ncig and 
C�(G) = ;.
Therefore 
C�(G) � 
N (G).2

An implication of the results in this section is that the other results of

this paper (which are derived for the �-core) carry over directly to analyses

that use strategic solution concepts (Nash equilibrium, Coalition-Proof Nash
equilibrium or Strong Nash equilibrium). Speci�cally, any solution that is

stable according to the �-core is also stable according to these three solution
concepts.

Another implication is that to verify that a strategy pro�le is in the �-
core, one needs to only consider strategy pro�les that are Pareto-optimal11

11The non-emptyness of the �-core is equivalent to the existence of a utility vector �U

which is common to all sets v�(fig) for all agents i. By de�nition 4, this means that there
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and in Nash equilibrium. Alternatively, one can restrict this search to Pareto-

optimal Strong Nash equilibria or Pareto-optimal Coalition-Proof Nash equi-

libria.

5 Bounded rationality in coalition formation

In the previous section it was assumed that deliberation is costless. To

relax this assumption we introduce deliberation and communication actions

explicitly into the model:

De�nition 10 For each agent i in a game G, let Di be a set of delibera-
tion/communication activities that i can perform in order to choose a strategy

si to be executed. Each di 2 Di is associated with a Ci(di), i.e. the cost (for

i) of performing the activity di.
12

In order to avoid unnecessary complications, we assume that Ci(�) can be
expressed in the same units as ui(�). We will not assume any special structure
on Di, except the following:

13

De�nition 11 For each agent i, we consider its process of communica-
tion/deliberation fa0i ; a

1
i ; : : : a

ti
i g, where ati 2 Di, for t = 0; 1; : : : ; (ti � 1),

and a
ti
i 2 Si. If N = maxi2Iti, we say that the coalition structure has been

formed in N steps. For any i and t such that ti � t < N , ati = atii .

The idea behind this de�nition is that the agents deliberate and exchange
messages until each one decides on a strategy to follow. We also assume that

this process is �nite and each agent stays commited to its choice once it has
reached a decision.

We use a general characterization of the communication/deliberation pro-

cess without going into the details of how an action leads to another one (e.g.

does not exist a �U
0

such that �U
0

i � �Ui for all i, with strict inequality for at least one

i. That is, �U is Pareto-optimal. Therefore one can restrict the search to Pareto-optimal

outcomes.
12Implicit in this de�nition is the existence of another level of deliberation, assumed

costless, needed for choosing deliberation/communication actions. Although strong, this

assumption cannot be dropped without leading to a potential in�nite regress [17, 32, 29,

5, 30, 42].
13Activities in Di and strategies in Si will be called the actions of agent i in the process.
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how deliberation actions lead to the choice of physical actions). We say that

the payo� of agent i in an N -period process is determined as follows:

De�nition 12 If the communication/deliberation process of agent i is âi =

fa0i ; : : : ; a
ti
i g (a

ti
i = si), the payo� is

�i(âi; : : : ; ân) = ui(s1; : : : ; si; : : : ; sn)� (Ci(a
0
i ) + : : :+ Ci(a

ti
i ))�

�Ci(N � ti)

where �Ci > 0 is the waiting cost, which is assumed constant per time unit.

As this de�nition states, we assume that costs of activities are indepen-
dent: if the process is âi = (a1i ; : : : ; a

N
i ), its cost Ci(âi) is equal to the sum of

the costs of the activities, Ci(a
0
i ) + : : :+ Ci(a

ti
i ) + �Ci(N � ti).

A new game can be de�ned which explicitly considers the deliberation
and communication actions as part of each agent's strategy. This follows the

approach of Sandholm and Lesser ([32, 33]) in the sense that such actions
are explicitly incorporated into the solution concept. It di�ers from other
DAI approaches to coalition formation where the solution concept (stability
criterion) is only applied to the �nal outcomes [43, 37, 39].

De�nition 13 Given G, fDig
n
i=1 and t > 0, a new game is de�ned, Gt =

((Dt
i � Si)

n
i=1; P ), where P :

Qn
i=1(D

t
i � Si) ! <

n such that for each â 2Qn
i=1(D

t
i � Si), P (â) = (�1(â1); : : : ; �n(ân)).

The length of the game, t, depends on the available communica-
tion/deliberation activities and on the sequential choice of activities. For

now we assume that the time limit is given (in Subsection 5.2 we will relax
this assumption). To justify this, we suppose that each agent, i, has a degree

of impatience, given by a maximum time, ti, to make a �nal decision.

In order to maximize payo�s, our self-interested agents engage in negoti-
ations. The �nal outcomes represent the result of agreements among agents.

Coalitions are formed during the negotiations. A particular process gener-
ates a stable coalitional structure if the �nal outcome in the original game

(with strategy pro�le space
Qn

i=1 Si) cannot be blocked by a coalition formed
in another process. Formally,

De�nition 14 A process â = fa0; : : : ; atg 2
Qn

i=1(D
t�1
i �Si) leads to a stable

coalition structure if at 2
Qn

i=1 Si cannot be blocked by any coalition formed

in another process â
0

= fa0
0

; : : : ; at
0

g.
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The relationship between stable coalition structures and the �-core is

given by the following lemma.

Lemma 2 If the process â = fa0; : : : ; atg 2
Qn

i=1(D
t�1
i �Si) is in the �-core

of game Gt then â leads to a stable coalition structure.

Proof. Suppose that there exists a coalition T for which there exists an

s 2
Qn

i=1 Si such that uj(s) � uj(a
t) for j 2 T and uj�(s) > uj�(a

t) for

j� 2 T . Then â
0

= fa0
0

; : : : ; �sg is a process in which T is formed and obtains

�s, where �sj = sj and Pj(â
0

) � Pj(â), for j 2 T . Contradiction because â is

in the �-core of Gt. 2

We can easily restate the notions given in Section 2 in order to �nd
conditions for the stability of the coalition structure. First, we de�ne the
characteristic function for Gt, vGt, via replacing the optimal achievable util-
ities by the optimal achievable payo�s which incorporate deliberation and

communication:

De�nition 15 Given Gt = ((Dt
i � Si)

n
i=1; P ), and T � I, the set of optimal

achievable payo�s for T = fj1; : : : ; jjT jg is the set of �P s such that

� there exists â 2
Qn

i=1(D
t
i � Si) and P (â) = �P , and

� 69â 2
Qn

i=1(D
t
i � Si) such that P (â) = �P

0

with �P
0

ji
� Pji for all ji 2 T ,

and �P
0

j� > Pj� for at least one j� 2 T .

This means that �P is an optimal achievable payo� for coalition T if there
is no other payo� vector such that the payo� is no worse for any member

and it is better for at least one|for all (in particular for the worst) processes

that nonmembers can pick. The following proposition shows the analog of
Theorem 1 for the game that includes deliberation/communication:

Proposition 3 â 2
Qn

i=1(D
t�1
i � Si) is such that P (â) 2 vGt(fig) for each i

i� â is in 
C�(G
t).

Proof. Immediate from Theorem 1. 2

This means that a communication/deliberation-action process in the �-

core corresponds to a Pareto-optimal payo� vector. In the rest of this paper
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we will focus on �-core processes since they are not only Pareto-optimal in

Gt but also lead (according to Lemma 2) to an outcome s 2
Qn

i=1 Si that

cannot be blocked by a coalition formed in any other process.

For many games (the prisoner's dilemma being an example) a Pareto-

optimal payo� can be reached only through the coordinated activity of

agents, i.e. the Pareto-optimal outcome is reached only if each agent acts

in agreement with the other agents. Let us return to Example 1 to show

how communication/deliberation activities allow to reach a coordination on

a Pareto-optimal outcome:

Example 2 Consider again the game G of Example 1, and assume that the

communication/deliberation actions at every step are

Da = Db = fd; d
0

; d
00

g

and the associate costs are

Ca(d) = Cb(d) = 0:1

Ca(d
0

) = Cb(d
0

) = 0:1

Ca(d
00

) = Cb(d
00

) = 0:5

Say that the actions are abstractly described as follows:

� d: engage in negotiations

� d
0

: reach an agreement

� d
00

: sign a contract to enforce the agreement

Moreover, we assume that engaging in negotiations, d, has as a consequence

the realization that if no enforceable agreement is reached, the outcome will

be hnc; nci.

The sequence (hd; di; hd
0

; d
0

i; hd
00

; d
00

i; hc; ci) is in the �-core because the

payo� for every player, 5� (0:1+0:1+ 0:5), is higher than any other payo�,

considering that d is an unavoidable step in the process. If an agent would

choose the process fd; ncg it would know that the other agent would do the

same, and the payo� would be only 2 � 0:1.
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5.1 Incorporating belief revision

The previous example is very simple, but it shows the sequential nature of

an agent's choice of action. This subsection introduces a more sophisticated

decision making model for an agent that takes part in coalition formation.

This model is used to show results on the joint outcomes and the joint process.

To choose the action that maximizes expected payo� at each step, an

agent may need to evaluate the expected payo�s of di�erent actions. We

will show when this procedure leads to the formation of a stable coalition

structure. To give a mathematical characterization, we introduce the notion
of \expected payo�" which is based on each agent's subjective probabilities:

De�nition 16 Given a sequence of actions performed by an agent i, âti =
(a0i ; : : : ; a

t
i) 2 Dt+1

i , we say that agent i can de�ne a subjective probability

distribution on
Qn

i=1 Si such that �t
i(sja

t+1
i ) is the conditional probability of

an outcome s, given that the next action is at+1i . A probability distribution

on the total costs associated with the process to reach s 2
Qn

i=1 Si can be also

de�ned: �ti(Ci(s)ja
t+1
i ) is the conditional probability of a cost Ci(s), given that

the next action is at+1i . Then the expected payo�, given that the next action

is at+1i , is

��ti(a
t+1
i ) =

X

s2
Qn

i=1
Si

ui(s)�
t
i(sja

t+1
i )�

X

Ci(s); s2
Qn

i=1
Si

Ci(s)�
t
i(Ci(s)ja

t+1
i )

An agent can try to maximize its expected payo� in each step, i.e. to
choose an ati 2 (Di [ Si) that maximizes ��ti(�). This is a greedy procedure,
and agents that use it may not always converge on a joint solution.

A key element here is the belief formation process that generates the
conditional probabilities �t

i(sja
t+1
i ) and �ti(Ci(s)ja

t+1
i ). We assume in the

following that
Qn

i=1 Si,
Qn

i=1Di and the length of the process, N , are common

knowledge. Agents are assumed to update their beliefs using Bayes Rule [9].
The general decision process is as follows:

Algorithm 1 At stage k = 0 agent i generates a probability distribution �0i
over (

Qn
i=1Di)

N�1
�
Qn

i=1 Si, such that for each â 2 (
Qn

i=1Di)
N�1
�
Qn

i=1 Si,

�0i (â) > 0.14,15

14To choose a0
i
, agent i performs steps 2; : : : ; 6 with k + 1 = 0

15Bayesian updating requires positive probability of every process: if Bayes Rule is

applied, a process with zero probability cannot get a positive probability thereafter.
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For k = 1 : : : N � 1:

1. The last common action observed is ak = (ak1; : : : ; a
k
n). Then, for every

�a = (�a0; : : : ; �aN), the new distribution �k+1i is such that

�k+1i (�a) = 0 if �ak 6= ak

and �k+1i (�a) =
�ki (�a)P

a2
Qn

i=1
Di)

N�1�
Qn

i=1
Si:�

k+1
i 6=0 �

k
i (a)

if �ak = ak

2. For each a
j
i 2 Di, j = 1; : : : ; jDij,

�k+1
i (sjaji ) =

X

�a
k+1
i

=a
j

i
;�aN=s

�k+1i (�a)

3. For each a
j
i 2 Di, j = 1; : : : ; jDij,

�k+1i (sjaji ) = �k+1i (�a)

such that �ak+1i = a
j
i , �a

N = s and Ci(s) = Ci((�a
0
i ; : : : ; �a

N
i ))

4. For each a
j
i 2 Di, the expected payo� ��k+1i (aji ) is

��k+1i (aji ) =
X

s2
Qn

i=1
Si

ui(s)�
k+1
i (sjaji)�

X

Ci(s); s2
Qn

i=1
Si

Ci(s)�
k+1
i (Ci(s)ja

j
i)

5. Agent i selects the action a
j
i that maximizes the expected payo� �k+1i (aji )

6. The action to perform is the aji found in the previous step.

In words: each agent considers, at k = 0, the set of all possible processes

and chooses an action. After observing the actions of the other agents, it

discards all processes that at the �rst stage di�er from the observed set of
actions. Then it chooses an action according to its new beliefs. The process

is repeated until in stage N � 1 it has to choose a domain action in the
space Si. At each stage, the set of possible processes and therefore the set of

possible outcomes is narrowed, until a single outcome is pinpointed.
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Algorithm 1 has, in each stage, a worst case complexity of 4B +

jDij(j
Qn

i=1 SijB + B2), where B = j(
Qn

i=1Di)
N�1
�
Qn

i=1 Sij is the number

of possible processes. If Di = Dj for all i and j, the worst case complex-

ity becomes polynomial in jDij
nN . This clearly shows that Algorithms 1 is

exponential in the number of agents and the length of negotiations.16

When this procedure is performed in conjunction with coordination

among agents (in the sense that they happen to follow a process that is

in the �-core), they will converge to the belief that a particular outcome s is

the most probable one (later we show that s is Pareto-optimal).

Proposition 4 If â = (a0; : : : ; at; : : : ; aN) is in the �-core (Proposition 4

showed that this means that for each t, at = (at1; : : : ; a
t
n) is the vector of

optimal decisions) then 9m such that for t > m there exists an s 2
Qn

i=1 Si
which gives the maxs2

Qn

i=1
Si
�t�1

i (sjati) for each i.

Proof. If â is in the �-core, P (â) is in vGN (fig) (by Theorem 1). Suppose

that for each m there exists t > m such that there does not exist s 2
Qn

i=1 Si
which gives the maxs2

Qn

i=1
Si
�t�1

j (sjati). In particular, given m = N � 1,

for t = N there does not exist s giving maxs2
Qn

i=1
Si
�N�1

i (sjaNi ). So, it

means that at least one agent will deviate, making another strategy pro�le

more probable. Then, since aNi 2 Si it is clear that for at least one agent

i�, �i�(â
0

) > �i�(â), where a
0

= (a1
0

; : : : ; aN
0

), aNj = aN
0

j = sj for j 6= i� and

aN
0

i� 6= aNi� = si�. Contradiction because P (â) 2 vGN (fi�g). 2

The converse is not true. A process that leads to a stable coalition struc-
ture might not be in the �-core. It is intuitive that a stable structure can
be formed in a cost-ine�cient process. This process could be blocked by an-
other one leading to the same coalition structure, thus preserving stability.

Therefore, Proposition 4 only gives a necessary condition for a process to be

an element of the �-core. However, this is all we need since the following
result shows that a coalition structure is stable if it leads to convergence of

beliefs about the strategy pro�le to be chosen.

16This seems to be a discouraging result. However, it is perhaps less so in light of the

fact that in economic processes where agents have independent preferences, exponential

complexity in the number of agents or in the length of processes is pervasive [26].
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Theorem 4 For GN , a process â = (a0; : : : ; aN) leads to a stable coali-

tion structure i� 9m such that 8t > m 9s 2
Qn

i=1 Si that gives the

maxs2
Qn

i=1
Si
�t�1

i (sjati) for each i.

Proof.

� !) Trivial: if a coalition T formed in a stage t � m can block âN

it means that there exists âN
0

2
Qn

i=1 Si, such that uj(a
N 0

) � uj(a
N)

for j 2 T and for one j� 2 T , uj�(a
N 0

) � uj�(a
N) and aN

0

maximizes

��N�1
j (�). Contradiction because the optimal decision in N is aN .

�  ) Suppose that for all m there exists t > m such that there is no

s 2
Qn

i=1 Si that gives the maxs2
Qn

i=1
Si
�t�1

i (sjati) for each i. If so, for

m = N � 1, there exists i� and s� 6= aN verifying that ��N�1
i� (s�) >

��N�1
i� (aN), but then, fi�g is a coalition that blocks aN . Contradiction.

2

Alternatively, this result can be stated in a more detailed way because
utilities and costs are independent:

Theorem 5 In GN , a process â = (a0; : : : ; aN) leads to a stable coali-

tion structure i� 9m such that 8t > m and for each i, there exists a pair

(aN ; ati) 2 (
Qn

i=1 Si)�Di such that ui(�)�
t�1
i (�j�) and Ci(�)�

t�1
i (Ci(�)j�) achieve

a maximum and a minimum (respectively) in (aN ; ati).
17

Proof.

� !) Assume that for all m there exists i 2 I such that for all ati 2

Di[Si there exists t > m for which ui(�)�
t�1
i (�j�) and Ci(�)�

t�1
i (Ci(�)j�)

do not achieve a maximum and a minimum in (aN ; ati). Taking

m = N � 1 it follows that there exists s 2
Qn

i=1 Si such that

ui(s)�
N�1
i (sjsi) > ui(a

N)�N�1
i (aN jaNi ) and Ci(s)�

N�1
i (Ci(s)ja

N
i ) <

Ci(a
N)�N�1

i (Ci(a
N)jaNi ). Therefore i can block aN . Contradiction.

17A trivial example where this conditions can be ful�lled is that of a game G with a

unique Nash-equilibrium that is also Pareto-optimal: each individual action chosen will

be one that leads to that maximal outcome and will therefore minimize costs. There are

other examples as well.
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�  ) suppose that there exists a coalition T � I that can be formed

in another process â
0

. Therefore for at least one i 2 T , there exists

s 2
Qn

i=1 Si (si = aN
0

i )such that ui(s)�
N�1
i (sjsi) > ui(a

N)�N�1
i (aN jaNi )

and Ci(s)�
N�1
i (Ci(s)jsi) < Ci(a

N )�N�1
i (Ci(a

N)jsi). Contradiction be-

cause for (aN ; aNi ) ui(�)�
t�1
i (�j�) and Ci(�)�

t�1
i (Ci(�)j�) achieve a maxi-

mum and a minimum. 2

Put together, Theorem 5 gives the conditions under which Algorithm 1

leads to a stable coalition structure. Sometimes the process that leads to
this coalition structure is stable according to the �-core and sometimes not.
In either case, stability is equivalent to the coincidence of beliefs about the

process. That is, if the negotiation does not lead the agents to share the
same expectations about the �nal outcome, the result will not be supported
by a stable coalition structure.

To see how this works, let us revisit Example 2, this time incorporating
belief revision:

Example 3 Consider the game G of Example 2, and assume that each agent

can choose among eight possible sequences of actions (each sequence has at

most four stages):

� I � (d; d
0

; d
00

; c)

� II � (d; d
0

; d
00

; nc)

� III � (d; d
00

; c)

� IV � (d; d
00

; nc)

� V � (d
0

; d
00

; c)

� V I � (d
0

; d
00

; nc)

� V II � (d
00

; c)

� V III � (d
00

; nc)
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We assume that agents a and b have symmetric prior probability distri-

butions. Speci�cally, for i = a; b, the distribution �0i is as follows:18

� sequences where the �rst action is d: �0i (I) = 0:512; �0i (III) = 0:128;

�0i (II) = 0:128; �0i (IV ) = 0:032.

� sequences where the �rst action is d
0

: �0i (V ) = 0:08; �0i (V II) = 0:02.

� sequences where the �rst action is d
00

: �0i (V II) = 0:08; �0i (V III) =

0:02.

It is immediate that

� �1
i (hc; ci; d) = �0i (I) + �0i (III) = 0:64

� �1
i (hnc; nci; d) = �0i (II) + �0i (IV ) = 0:16

� �1
i (hc; ci; d

0

) = �0i (V ) = 0:08

� �1
i (hnc; nci; d

0

) = �0i (V I) = 0:02

� �1
i (hc; ci; d

00

) = �0i (V II) = 0:08

� �1
i (hnc; nci; d

00

) = �0i (V III) = 0:02

Let the costs for i = a; b be

� Ci(hc; ci) = 0:7 with probability 0:512(if i chooses sequence I)

� Ci(hc; ci) = 0:6 with probability 0:128(if i chooses sequence III)

18We assume that all other possible cases have probability 0. This is contrary to Algo-

rithm 1, but it simpli�es the exposition.
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� Ci(hc; ci) = 0:6 with probability 0:08(if i chooses sequence V )

� Ci(hc; ci) = 0:5 with probability 0:08(if i chooses sequence V II)

Note that Ci(hc; ci) varies depending on the communication/deliberation

process that leads to the domain actions hc; ci. We can also include a \breach-

ing cost" into the model, say 0:6. This means that if the agents agree on a

particular pro�le of domain strategies, but some agent deviates, then that

agent has to pay the breaching cost. With the breaching cost included we

have:

� Ci(hnc; nci) = 1:3 with probability 0:128(if i chooses sequence II)

� Ci(hnc; nci) = 1:2 with probability 0:032(if i chooses sequence IV )

� Ci(hnc; nci) = 1:2 with probability 0:02(if i chooses sequence V I)

� Ci(hnc; nci) = 1:1 with probability 0:02(if i chooses sequence V III)

Therefore, the agent will have the following beliefs about costs:

� �1i (Ci(hc; ci)jd) = 0:64 (choosing sequences I or III)

� �1i (Ci(hnc; nci)jd) = 0:16 (choosing sequences II or IV )

� �1i (Ci(hc; ci)jd
0

) = 0:08 (choosing sequence V )

� �1i (Ci(hnc; nci)jd
0

) = 0:02 (choosing sequence V I)

� �1i (Ci(hc; ci)jd
00

) = 0:08 (choosing sequence V II)
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� �1i (Ci(hnc; nci)jd
00

) = 0:02 (choosing sequence V III)

Finally, the possible expected payo�s in the �rst iteration are, for i = a; b:

��1i (d) = ui(hc; ci)�
1
i (hc; ci; d) + ui(hnc; nci)�

1
i (hnc; nci; d)

� Ci(hc; ci)�
1
i (Ci(hc; ci)jd)� Ci(hnc; nci)�

1
i (Ci(hnc; nci)jd)

= 5� 0:64 + 2� 0:16 � (0:7 + 0:6) � 0:64 � (1:3 + 1:2) � 0:16 = 2:288

��1i (d
0

) = ui(hc; ci)�
1
i (hc; ci; d

0

) + ui(hnc; nci)�
1
i (hnc; nci; d

0

)

� Ci(hc; ci)�
1
i (Ci(hc; ci)jd

0

)� Ci(hnc; nci)�
1
i (Ci(hnc; nci)jd

0

)

= 5� 0:08 + 2� 0:02 � 0:6� 0:08 � 1:2� 0:02 = 0:368

��1i (d
00

) = ui(hc; ci)�
1
i (hc; ci; d

00

) + ui(hnc; nci)�
1
i (hnc; nci; d

00

)

� Ci(hc; ci)�
1
i (Ci(hc; ci)jd

00

)� Ci(hnc; nci)�
1
i (Ci(hnc; nci)jd

00

)

= 5 � 0:08 + 2 � 0:02� 0:5 � 0:08 � 1:1� 0:02 = 0:378

So, according to Algorithm 1, both agents choose action d. Therefore

only sequences I to IV are still possible. Probabilities are re-evaluated us-

ing the fact that the total probability of sequences beginning with d was

�0i (I) + �0i (II) + �0i (III) + �0i (IV ) = 0:8, thus assigning probability 0 to

processes V; V I; V II and V III:

� �1i (I) =
�0
i
(I)

0:8
= 0:512

0:8
= 0:64

� �1i (III) =
�0
i
(III)

0:8
= 0:128

0:8
= 0:16

� �1i (II) =
�0i (II)

0:8
= 0:128

0:8
= 0:16

� �1i (IV ) =
�0
i
(IV )

0:8
= 0:032

0:8
= 0:04.

Therefore, the beliefs about the �nal (domain) strategies are

� �2
i (hc; ci; d

0

) = �1i (I) = 0:64
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� �2
i (hnc; nci; d

0

) = �1i (II) = 0:16

� �2
i (hc; ci; d

00

) = �1i (III) = 0:16

� �2
i (hnc; nci; d

00

) = �1i (IV ) = 0:04

and the beliefs about the corresponding costs are

� �2i (Ci(hc; ci)jd
0

) = �1i (I) = 0:64

� �2i (Ci(hnc; nci)jd
0

) = �1i (II) = 0:16

� �2i (Ci(hc; ci)jd
00

) = �1i (III) = 0:16

� �2i (Ci(hnc; nci)jd
00

) = �1i (IV ) = 0:04

The expected payo�s are:

��2i (d
0

) = ui(hc; ci)�
2
i (hc; ci; d

0

) + ui(hnc; nci)�
2
i (hnc; nci; d

0

)

� Ci(hc; ci)�
2
i (Ci(hc; ci)jd

0

)� Ci(hnc; nci)�
2
i (Ci(hnc; nci)jd

0

)

= 5� 0:64 + 2� 0:16 � 0:7� 0:64 � 1:3� 0:16 = 2:864

��2i (d
00

) = ui(hc; ci)�
2
i (hc; ci; d

00

) + ui(hnc; nci)�
i
a(hnc; nci; d

00

)

� Ci(hc; ci)�
2
i (Ci(hc; ci)jd

00

)� Ci(hnc; nci)�
2
i (Ci(hnc; nci)jd

00

)

= 5 � 0:16 + 2 � 0:04� 0:7 � 0:16 � 1:3� 0:04 = 0:716

Now, both agents will choose d
0

. Therefore only sequences I and II remain

feasible. Since the only possibility is to choose d
00

, we can directly proceed to

the fourth iteration of Algorithm 1. The probabilities are (since �1i (I) +

�1i (II) = 0:8)

� �3i (I) = �2i (I) =
�1
i
(I)

0:8
= 0:64

0:8
= 0:8
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� �3i (II) = �2i (II) =
�1
i
(II)

0:8
= 0:16

0:8
= 0:2.

Therefore the beliefs become:

� �4
i (hc; ci; c) = �3i (I) = 0:8

� �4
i (hnc; nci; nc) = �3i (II) = 0:2

� �4i (Ci(hc; ci)jc) = �3i (I) = 0:8

� �4i (Ci(hnc; nci)jnc) = �3i (II) = 0:2.

Now the expected payo�s are:

��4i (c) = ui(hc; ci)�
4
i (hc; ci; c)� Ci(hc; ci)�

4
i (Ci(hc; ci)jc)

= 5� 0:8 � 0:7 � 0:8 = 3:44

��4i (nc) = ui(hnc; nci)�
4
i (hnc; nci; nc) �Ci(hnc; nci)�

4
i (Ci(hnc; nci)jnc)

= 2� 0:2 � 1:3 � 0:2 = 0:14

So c is the chosen domain strategy for each agent. Therefore, the process

I � I (each agent choosing sequence I) is stable according to Theorem 4:

�1
i (hc; cijd);�

2
i (hc; cijd

0

) and �3
i (hc; cijd

00

) were maximal among the condi-

tional probabilities of strategies in G given actions taken from D.

To summarize, even in the presence of uncertainty, if beliefs at the be-

ginning of the deliberation/communication processes are \reasonable", the
agents will converge to a process in the �-core. As Example 3 shows, Algo-
rithm 1 leads to a shared belief among the agents. This shared point of view

supports a stable process|the same one as the one leading to cooperation

in Example 1.
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5.2 Deliberation/communication processes of di�erent

lengths

The results of the previous section are highly dependent on the length of

the process: two processes â and â
0

are comparable only if their lengths are

the same. If not, Theorems 4 and 5 cannot be applied. If we maintain

that the degree of impatience of each agent, ti, is given beforehand, it is

clear that the game has a de�nite length maxi2Iti. Even if not, a condition

on the convergence of beliefs can be given. The following result shows that

every convergent process (in the sense that agents agree in their beliefs about
the �nal outcome), leads to a stable coalition structure in an endogenously

de�ned timing. In other words, there always exists a process that provides
the outcome on which agents agree, and the length of the process is �nite
even if it is not given exogenously. This result is independent of the belief

updating mechanism used by the agents.

Theorem 6 If 9m such that 8i and 8t > m, ui(�)�
t�1
i (�j�) and

Ci(�)�
t�1
i (Ci(�)j�) have a maximum and a minimum (respectively) in a pair

(s�; ati), then there exists a �nite N such that aN = s�.

Proof. Given that for each i, for each t > m, ui(�)�
t�1
i (�j�) and

Ci(�)�
t�1
i (Ci(�)j�) have a maximum and a minimum (respectively) in a pair

(s�; ati), we know that for every i, there exists ti such that s�i = a
ti
i (otherwise

the process âi is in�nite and Ci(s
�) ! 1 and therefore �(âi) ! �1). For

t > ti, a
t
i is the action of waiting for the decision of the other agents. Then,

taking N = maxiti, we see that aN = s�. 2

What this result indicates is simply that if a negotiation has to end suc-
cessfully, some agents have to wait until the rest of the negotiators make

their decisions. Therefore, an externally given end-time is unnecessary in

successful negotiations (as well as in unsuccessful ones).

5.3 Relating outcomes of rational and bounded ratio-

nal agents

Communication/deliberation processes were introduced in order to describe
the dynamic formation of coalition structures in the original game G. Theo-

rem 7 shows that the outcome of a process that converges to a stable coalition
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structure is Pareto-optimal (part of the Pareto or e�ciency frontier in the

original game G). Conversely, any Pareto-optimal outcome can be supported

by a process that converges to a stable coalition structure.19 Formally, the

relationship between outcomes in a stable coalition structure formed in a

communication/deliberation process, and outcomes achieved by perfectly ra-

tional agents in the original game G is as follows:

Theorem 7 A process â = (a1; : : : ; aN ) leads to a stable coalition structure

i� there does not exists s 2
Qn

i=1 Si, such that ui(s) � ui(a
N) for all i and

ui�(s) > ui�(a
N) for at least one i�.

Proof.

� !) Suppose that there exists s 2
Qn

i=1 Si, ui(s) � ui(a
N) for all i

and at least for one i�, ui�(s) > ui�(a
N ). Then, another process â

0

=
(a

01; : : : ; a
0N ) can be generated, a

0N = s. Contradiction.

�  ) Suppose that there exists another process â
0

= (a
01; : : : ; a

0N ),
a
0N = s, such that for at least one i�, ui�(s) > ui�(a

N). Contradic-

tion. 2

This result can be interpreted positively or negatively. The negative as-
pect is that stability is not enough to select a single outcome. Seen positively,
Theorem 7 says that any stable process will lead to an e�cient result and,

conversely, that any e�cient outcome can be attained by means of a stable
communication/deliberation process.

6 Conclusions

We analyzed the problem of coalition formation in games without sidepay-
ments. First, the �-core solution concept was reviewed in the context of

games in which agents are perfectly rational. We showed that a solution is in
the �-core if the corresponding utility pro�le is Pareto-optimal, i.e. an indi-

vidual utility cannot be improved without diminishing the utility of another

19There is an analogy between this result and the folk theorems for repeated games [9].

Both show that the outcome of a process lies in a particular region of the payo�s space:

above the minimax point in the folk theorems and the Pareto-frontier here.
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agent. This property is closely related to superadditivity, a property indi-

cating that shared optimal achievable utilities for di�erent coalitions remain

optimal achievable utilities for the union of the coalitions. Superadditivity

implies that any two coalitions are best o� by merging.

Next we explored the relationships between axiomatic and strategic so-

lution concepts. We showed that any solution that is stable according to

the �-core corresponds to a Strong Nash equilibrium (and to a Coalition-

Proof Nash equilibrium and a Nash equilibrium). This allows us to study

games with the �-core solution concept while our positive stability results

carry over directly to these three strategic equilibrium-based solution con-
cepts. This also allows one to con�ne the search for stable �-core solutions to

the space of Pareto-e�cient Strong Nash equilibria (or Coalition-Proof Nash
equilibria or Nash equilibria).

For bounded rational agents we showed that the �-core solution concept
provides clues about the properties of the deliberation/communication pro-
cesses that lead to stable coalition structures. Speci�cally, we showed that a

process leads to a stable coalition structure if its outcome cannot be blocked
by a coalition formed in another process of the same length.

We characterized the communication/deliberation process as a greedy
stepwise maximization of expected payo� where deliberation and communi-
cation actions incur costs. We showed that when agents agree to a process
that is in the �-core, this greedy algorithm leads to convergence of the agents'

beliefs in a �nite number of steps. We also showed that the convergence of
beliefs implies that the �nal outcome is stable. This holds when the proto-
col length is exogenously restricted as well as when agents can endogenously
decide the length. More general mathematical conditions for such stability
were also derived, and their meaning seems inescapable: stability can only

be achieved when all the agents share their beliefs about the �nal outcome
of the negotiation.

Finally, we showed that the outcome of any communication/deliberation
process that leads to a stable coalition structure is Pareto-optimal for the

original game that does not incorporate communication or deliberation. Con-

versely, any Pareto-optimal outcome can be supported by a communica-

tion/deliberation process that leads to a stable coalition structure.
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