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computing in mechanism design

1 Introduction
Computational issues in mechanism design are impor-
tant, but have received insufficient research interest until
recently. Limited computing hinders mechanism design
in several ways, and presents deep strategic interactions
between computing and incentives. On the bright side,
novel algorithms and increasing computing power have
enabled better mechanisms. Perhaps most interestingly,
limited computing of the agents can be used as a tool to
implement mechanisms that would not be implement-
able among computationally unlimited agents. This
article briefly reviews some of the key ideas, with the
goal of alerting the reader to the importance of these
issues and hopefully spurring future research.

I will discuss computing by the centre, such as an
auction server or vote aggregator, in Section 2. Then, in
Section 3, I will address the agents’ computing, be they
human or software.

2 Computing by the centre
Computing by the centre plays significant roles in mech-
anism design. In the following three subsections I will
review three prominent directions.

2.1 Executing expressive mechanisms
As algorithms have advanced drastically and computing
power has increased, it has become feasible to field
mechanisms that were previously impractical. The most
famous example is a combinatorial auction (CA). In a CA,
there are multiple distinguishable items for sale, and the
bidders can submit bids on self-selected packages of the
items. (Sometimes each bidder is also allowed to submit
exclusivity constraints of different forms among his
bids.) This increase in the expressiveness of the bids
drastically reduces the strategic complexity that bidders
face. For one, it removes the exposure problems that
bidders face when they have preferences over packages
but in traditional auctions are allowed to submit bids on
individual items only.

CAs shift the computational burden from the bidders
to the centre. There is an associated gain because the
centre has all the information in hand to optimize while
in traditional auctions the bidders only have estimated
projected (probabilistic) information about how others
will bid. Thus CAs yield more efficient allocations.

On the downside, the centre’s task of determining the
winners in a CA (deciding which bids to accept so as to
maximize the sum of the accepted bids’ prices subject to
not selling any item to more than one bid) is a complex
combinatorial optimization problem, even without
exclusivity constraints among bids. Three main
approaches have been studied for solving it.

1. Optimal winner determination using some form of tree
search. For a review, see Sandholm (2006). The advan-
tage is that the bidding language is not restricted and
the optimal solution is found. The downside is that no
optimal winner determination algorithm can run in
polynomial time in the size of the problem instance in
the worst case, because the problem is NP-complete
(Rothkopf, Pekěc and Harstad, 1998). (NP-complete
problems are problems for which the fastest known
algorithms take exponential time in the size of the
problem instance in the worst case. P is the class of
easy problems solvable in polynomial time. The state-
ment of winner determination not being solvable in
polynomial time in the worst case relies on the usual
assumption PaNP. This is an open question in
complexity theory, but is widely believed to be true. If
false, that would have sweeping implications through-
out computer science.)
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2. Approximate winner determination. The advantage is
that many approximation algorithms run in polyno-
mial time in the size of the instance even in the worst
case. For reviews of such algorithms, see Sandholm
(2002a) and Lehmann, Müller and Sandholm (2006).
(Other suboptimal algorithms do not have such time
guarantees, such as local search, stochastic local
search, simulated annealing, genetic algorithms, and
tabu search.) The downside is that the solution is
sometimes far from optimal: no such algorithm can
always find a solution that is within a factor

min #bids1�e;#items
1
2�e

n o
(1)

of optimal (Sandholm, 2002a). (This assumes
ZPPaNP. It is widely believed that these two
complexity classes are indeed unequal.) For example,
with just nine items for sale, no such algorithm can
extract even 33 per cent of the available revenue from
the bids in the worst case. With 81 items, that drops to
11 per cent.

3. Restricting the bidding language so much that optimal
(within the restricted language) winner determination
can be conducted in worst-case polynomial time. For
a review, see Müller (2006). For example, if each
package bid is only allowed to include at most two
items, then winners can be determined in worst-case
polynomial time (Rothkopf, Pekěc and Harstad,
1998). The downside is that bidders have to shoe-
horn their preferences into a restricted bidding
language; this gives rise to similar problems as in
non-combinatorial mechanisms for multi-item auc-
tions: exposure problems, need to speculate how oth-
ers will bid, inefficient allocation, and so on.

Truthful bidding can be made a dominant strategy by
applying the Vickrey– Clarke– Groves (VCG) mechanism
to a CA. Such incentive compatibility removes strategic
complexity of the bidders. The mechanism works as fol-
lows. The optimal allocation is used, but the bidders do
not pay their winning bids. Instead each bidder pays the
amount of value he takes away from the others by taking
some of the items. This value is measured as the differ-
ence between the others’ winning bids’ prices and what
the others’ winning bids’ prices would have been had the
agent not submitted any bids. This mechanism can be
executed by determining the winners once overall, and
once for each agent removed in turn. (This may be
accomplishable with less computing. For example, in
certain network auctions it can be done in the same
asymptotic complexity as one winner determination –
Hershberger and Suri, 2001.)

Very few canonical CAs have found their way to prac-
tice. However, auctions with richer bid expressiveness
forms (that are more natural in the given application and
more concise) and that support expressiveness also by the

bid taker have made a major breakthrough into practice
(Sandholm, 2007; Bichler et al., 2006). This is sometimes
called expressive commerce to distinguish it from vanilla
CAs. The widest area of application is currently industrial
sourcing. Tens of billions of dollars worth of materials,
transportation, and services are being sourced annually
using such mechanisms, yielding billions of dollars in
efficiency improvements. The bidders’ expressiveness
forms include different forms of flexible package bids,
conditional discounts, discount schedules, side con-
straints (such as capacity constraints), and often hun-
dreds of cost drivers (for example, fixed costs, variable
costs, trans-shipment costs, and costs associated with
changes). The item specifications can also be left partially
open, and the bidders can specify some of the item
attributes (delivery date, insurance terms, and so on.) in
alternate ways. The bid taker also specifies preferences
and constraints. Winner determination then not only
decides who wins what, but also automatically configures
the items. In some of these events it also configures the
supply chain several levels deep as a side effect. On the
high end, such an auction can have tens of thousands of
items (multiple units of each), millions of bids, and
hundreds of thousands of side constraints. Expressive
mechanisms have also been designed for settings beyond
auctions, such as combinatorial exchanges, charity dona-
tions, and settings with externalities.

Basically all of the fielded expressive auctions use the
simple pay-your-winning-bids pricing rule. There are
numerous important reasons why few, if any, use the VCG
mechanism. It can lead to low revenue. It is vulnerable to
collusion. Bidders would not tell the truth because they
do not want to reveal their cost structures which the
auctioneer could exploit the next time the auction is
conducted, and so on (Sandholm, 2000; Rothkopf, 2007).

Basically all of the fielded expressive auctions use tree
search for winner determination. In practice, modern
tree search algorithms for the problem scale to the large
and winners can be determined optimally. If winner
determination were not done optimally in a CA, the
VCG mechanism can lose its truth-dominance property
(Sandholm, 2002b). In fact, any truthful suboptimal
VCG-based mechanism for CAs is unreasonable in the
sense that it sometimes does not allocate an item to a
bidder even if he is the only bidder whose bids assign
non-zero value to that item (Nisan and Ronen, 2000).

2.2 Algorithmic mechanism design
Motivated by the worry that some instances of NP-hard
problems may not be solvable within reasonable time, a
common research direction in theory of computing is
approximation algorithms. They trade off solution qual-
ity for a guarantee that even in the worst case, the algo-
rithm runs in polynomial time in the size of the input.

Analogously, Nisan and Ronen (2001) proposed algo-
rithmic mechanism design: designing approximately opti-
mal mechanisms that take the centre a polynomial
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number of computing steps even in the worst case.
However, this is more difficult than designing approxi-
mately optimal algorithms because the mechanism has to
motivate the agents to tell the truth.

Lehmann, O’Callaghan and Shoham (2002) studied
this for CAs with single-minded bidders (each bidder
being only interested in one specific package of items).
They present a fast greedy algorithm that guarantees a
solution within a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#items
p

of optimal. They show
that the algorithm is not incentive compatible with VCG
pricing, but is with their custom pricing scheme. They
also identify sufficient conditions for any (approxi-
mate) mechanism to be incentive compatible (see also
Kfir-Dahav, Monderer and Tennenholtz, 2000). There has
been substantial follow-on work on subclasses of single-
minded CAs.

Lavi and Swamy (2005) developed a technique for a
range of packing problems with which any k-approxi-
mation algorithm (that is, algorithm that guarantees that
the solution is within a factor k of optimal) that also
bounds the integrality gap of the linear programming
(LP) relaxation of the problem by k can be used to con-
struct a k-approximation mechanism. The LP solution,
scaled down by k, can be represented as a convex com-
bination of integer solutions, and viewing this convex
combination as specifying a probability distribution over
integer solutions begets a VCG-based randomized mech-
anism that is truthful in expectation. For CAs with gen-
eral valuations, this yields an Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#items
p

Þ-approximate
mechanism.

In a different direction, several mechanisms have been
proposed where the agents can help the centre find better
outcomes. This is done either by giving the agents the
information to do the centre’s computing (Banks,
Ledyard and Porter, 1989; Land, Powell and Steinberg,
2006; Parkes and Shneidman, 2004), or by allowing the
agents to change what they told the mechanism based on
the mechanism’s output and potentially also based on
what other agents told the mechanism (Nisan and
Ronen, 2000). In VCG-based mechanisms, an agent ben-
efits from lying only if the lie causes the mechanism to
find an outcome that is better overall.

2.3 Automated mechanism design
Conitzer and Sandholm (2002) proposed the idea of
automated mechanism design: having a computer, rather
than a human, design the mechanism. Because human
effort is eliminated, this enables custom design of mech-
anisms for every setting. The setting can be described by
the agents’ (discretized) type spaces, the designer’s prior
over types, the desired notion of incentive compatibility
(for example, dominant strategies vs. Bayes-Nash imple-
mentation), the desired notion of participation con-
straints (for example, ex interim, ex post, or none),
whether payments are allowed, and whether the mech-
anism is allowed to use randomization.) This can yield
better mechanisms for previously studied settings

because the mechanism is designed for the specific set-
ting rather than a class of settings. It can also be used for
settings not previously studied in mechanism design.

For almost all natural (linear) objectives, all variants of
the design problem are NP-complete if the mechanism
is not allowed to use randomization, but randomized
mechanisms can be constructed for all these settings in
polynomial time using linear programming. Custom
algorithms have been developed for some problems in
each of these two categories. (Even the latter category
warrants research. While the linear programme is poly-
nomial in the size of the input, the input itself can be
exponential in the number of agents.) Structured repre-
sentations of the problem can also make the design
process drastically faster.

Beyond the general setting, automated mechanism
design has been applied to specific settings, such as cre-
ating revenue-maximizing CAs (without the need to
discretize types) (Likhodedov and Sandholm, 2005) (a
recognized problem that eludes analytical characteriza-
tion; even the two-item case is open), reputation systems
(Jurca and Faltings, 2006), safe exchange mechanisms
(Sandholm and Ferrandon, 2000), and supply chain set-
tings (Vorobeychik, Kiekintveld and Wellman, 2006).
Automated mechanism design software has recently also
been adopted by several mechanism design theoreticians
to speed up their research.

It turns out that even multistage mechanisms can
be designed automatically (Sandholm, Conitzer and
Boutilier, 2007). Furthermore, automated mechanism
design has been applied to the design of online mecha-
nisms (Hajiaghayi, Kleinberg and Sandholm, 2007), that
is, mechanisms that execute while the world changes –
for example, agents enter and exit the system.

3 Computing by the agents
I will now move to discussing computing by the agents.

3.1 Mechanisms that are hard to manipulate
This section demonstrates that one can use the fact that
agents are computationally limited to achieve things that
are not achievable via any mechanism among perfectly
rational agents.

A seminal negative result, the Gibbard– Satterthwaite
theorem, states that if there are three or more candidates,
then in any non-dictatorial voting scheme there are can-
didate rankings of the other voters, and preferences of the
agent, under which the agent is better off voting manip-
ulatively than truthfully. One avenue around this impos-
sibility is to construct desirable general non-dictatorial
voting protocols under which finding a beneficial manip-
ulation is prohibitively hard computationally.

There are two natural alternative goals of manipula-
tion. In constructive manipulation, the manipulator tries
to find an order of candidates that he can reveal so that
his favourite candidate wins. In destructive manipulation,
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the manipulator tries to find an order of candidates that
he can reveal so that his hated candidate does not win.
These are special cases of the utility-theoretic notion of
improving one’s utility, so the hardness results, discussed
below, carry over to the usual utility-theoretic setting.

Unfortunately, finding a constructive manipulation is
easy (in P) for the plurality, Borda, and maximin voting
rules (Bartholdi, Tovey and Trick, 1989), which are
commonly used. On the bright side, constructive
manipulation of the single transferable vote (STV) pro-
tocol is NP-hard (Bartholdi and Orlin, 1991) (as is
manipulation of the second order Copeland protocol
(Bartholdi, Tovey and Trick, 1989), but that hardness is
driven solely by the tie-breaking rule). Even better, there
is a systematic methodology for slightly tweaking voting
protocols that are easy to manipulate, so that they
become hard to manipulate (Conitzer and Sandholm,
2003). Specifically, before the original protocol is exe-
cuted, one pairwise elimination round is executed among
the candidates, and only the winning candidates survive
to the original protocol. This makes the protocols
NP-hard, #P-hard (#P-hard problems are at least
as hard as counting the number of solutions to a problem
in P), or even PSPACE-hard (PSPACE-hard
problems are at least as hard as any problem that can
be solved using a polynomial amount of memory) to
manipulate constructively, depending on whether the
schedule of the pre-round is determined before the votes
are collected, randomly after the votes are collected, or
the scheduling and the vote collecting are carefully inter-
leaved, respectively.

All of the hardness results of the previous paragraph
rely on both the number of voters and the number of
candidates growing. The number of candidates can be
large in some domains, for example when voting over
task or resource allocations. However, in other elections –
such as presidential elections – the number of candidates
is small. If the number of candidates is a constant, both
constructive and destructive manipulation are easy (in
P), regardless of the number of voters (Conitzer,
Sandholm and Lang, 2007). This holds even if the vot-
ers are weighted, or if a coalition of voters tries to

manipulate. On the bright side, when a coalition of
weighted voters tries to manipulate, complexity can arise
even for a constant number of candidates, see Tables 1
and 2. Another lesson from that table is that randomizing
over instantiations of the mechanism (such as schedules
of a cup) can be used to make manipulation hard.

As usual in computer science, all the results mentioned
above are worst-case hardness. Unfortunately, under
weak assumptions on the preference distribution and
voting rule, most instances of any voting rule are easy to
manipulate (Conitzer and Sandholm, 2006).

All of the hardness results discussed above hold even if
the manipulators know the non-manipulators’ votes
exactly. Under weak assumptions, if weighted coalitional
manipulation with complete information about the oth-
ers’ votes is hard in some voting protocol, then individ-
ual unweighted manipulation is hard when there is
uncertainty about the others’ votes (Conitzer, Sandholm
and Lang, 2007).

3.2 Non-truth-promoting mechanisms
A challenging issue is that even if it is prohibitively hard
to find a beneficial manipulation, the agents might not
tell the truth. For example, an agent might take a chance
that he will do better with a lie. The following result

Table 2 Complexity of destructive weighted coalitional

manipulation

Number of candidates: 2 Z3

STV P NP-complete

Plurality with runoff P NP-complete

Randomized cup P ?

Borda P P

Veto P P

Copeland P P

Maximin P P

Cup P P

Plurality P P

Source: Conitzer, Sandholm and Lang (2007)

Table 1 Complexity of constructive weighted coalitional manipulation

Number of candidates: 2 3 4, 5, 6 Z7

Borda P NP-complete NP-complete NP-complete

Veto P NP-complete NP-complete NP-complete

STV P NP-complete NP-complete NP-complete

Plurality with runoff P NP-complete NP-complete NP-complete

Copeland P P NP-complete NP-complete

Maximin P P NP-complete NP-complete

Randomized cup P P P NP-complete

Cup P P P P

Plurality P P P P
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shows that, nevertheless, mechanism design can be
improved by making the agents face complexity. (This
is one reason why computational issues can render the
revelation principle inapplicable. One of the things the
principle says is that for any non-truth-promoting mech-
anism it is possible to construct an incentive-compatible
mechanism that is at least as good. The theorem below
challenges this.)

Theorem 1 (Conitzer and Sandholm, 2004) Suppose the
center is trying to maximize social welfare, and neither
payments nor randomization is allowed. Then, even with
just two agents (one of whom does not even report a type, so
dominant strategy implementation and Bayes-Nash imple-
mentation coincide), there exists a family of preference
aggregation settings such that:

� the execution of any optimal incentive-compatible mech-
anism is NP-complete for the center, and
� there exists a non-incentive-compatible mechanism

which (1) requires the centre to carry out only polyno-
mial computation, and (2) makes finding any beneficial
insincere revelation NP-complete for the type-reporting
agent. Additionally, if the type-reporting agent manages
to find a beneficial insincere revelation, or no beneficial
insincere revelation exists, the social welfare of the out-
come is identical to the social welfare that would be
produced by any optimal incentive-compatible mecha-
nism. Finally, if the type-reporting agent does not
manage to find a beneficial insincere revelation where
one exists, the social welfare of the outcome is strictly
greater than the social welfare that would be
produced by any optimal incentive-compatible
mechanism.

An analogous theorem holds if, instead of counting
computational steps, we count calls to a commonly
accessible oracle which, when supplied with an agent,
that agent’s type, and an outcome, returns a utility value
for that agent.

3.3 Preference (valuation) determination via computing
or information acquisition
In many (auction) settings, even determining one’s
valuation for an item (or a bundle of items) is complex.
For example when bidding for trucking lanes (tasks),
this involves solving two NP-complete local planning
problems: the vehicle routing problem with the new
lanes of the bundle and the problem without them
(Sandholm, 1993). The difference in the costs of those
two local plans is the cost (valuation) of taking on the
new lanes.

In these types of settings, the revelation principle
applies only in a trivial way: the agents report their data
and optimization models to the centre, and the centre
does the computation for them. It stands to reason that
in many applications the centre would not want to take

on that burden, in which case such extreme direct mech-
anisms are not an option. Therefore, I will now focus on
mechanisms where the agents report valuations to the
centre, as in traditional auctions.

Bidders usually have limited computing and time, so
they cannot exactly evaluate all (or even any) bundles – at
least not without cost. This leads to a host of interesting
issues where computing and incentives are intimately
intertwined.

For example, in a one-object auction, should a bidder
evaluate the object if there is a cost to doing so? It turns
out that the Vickrey auction loses its dominant-strategy
property: whether or not the bidder should pay the eval-
uation cost depends on the other bidders’ valuations
(Sandholm, 2000).

If a bidder has the opportunity to approximate his
valuation to different degrees, how much computing time
should the bidder spend on refining its valuation? If there
are multiple items for sale, how much computing time
should the bidder allocate on different bundles? A bidder
may even allocate some computing time to evaluate other
bidders’ valuations so as to be able to bid more strate-
gically; this is called strategic computing.

To answer these questions, Larson and Sandholm
(2001) developed a deliberation control method called a
performance profile tree for projecting how an anytime
algorithm (that is, an algorithm that has an answer
available at any time, but where the quality of the answer
improves the more computing time is allocated to the
algorithm) will change the valuation if additional com-
puting is allocated toward refining (or improving) it.
This deliberation control method applies to any anytime
algorithm. Unlike earlier deliberation control methods
for anytime algorithms, the performance profile tree is a
fully normative model of bounded rationality: it takes into
account all the information that an agent can use to make
its deliberation control decisions. This is necessary in
the game-theoretic context; otherwise a strategic agent
could take into account some information that the model
does not.

Using this deliberation control method, the auction
can be modelled as a game where the agents’ strategy
spaces include computing actions. At every point, each
agent can decide on which bundle to allocate its next step
of computing as a function of the agent’s computing
results so far (and in open-cry auction format also the
others’ bids observed so far). At every point, the agent
can also decide to submit bids. One can then solve this
for equilibrium: each agent’s (deliberation and bidding)
strategy is a best-response to the others’ strategies. This is
called deliberation equilibrium.

This notion, and the performance profile tree, apply
not only to computational actions but also to informa-
tion gathering actions for determining valuations. (In
contrast, most of the literature on information acquisi-
tion in auctions does not take into account that valua-
tions can be determined to different degrees and that an
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agent may want to invest effort to determine others’
valuations as well – even in private-value settings.)

Table 3 shows in which settings strategic computing
can and cannot occur in deliberation equilibrium. This
depends on the auction mechanism. Interestingly, it also
depends on whether the agent has limited computing
(for example, owning a desktop computer that the agent
can use until the auction’s deadline) or costly computing
(for example, being able to buy any amount of super-
computer time where each cycle comes at a cost).

The notion of deliberation equilibrium can also be
used as the basis for designing new mechanisms which
hopefully work well among agents whose computing is
costly or limited. Unfortunately, there is an impossibility
(Larson and Sandholm, 2005): there exists no mechanism
that is sensitive (the outcome is affected by each agent’s
strategy), preference formation independent (does not do
the computations for the agents; the agents report
valuations), non-misleading (no agent acts in a way that
causes others to believe his true type has zero probabil-
ity), and deliberation-proof (no strategic computing
occurs in equilibrium, that is, agents compute only on
their own problems). Current work involves designing
mechanisms that take part in preference formation in
limited ways: for example, agents report their perform-
ance profile trees to the centre, which then coordinates
the deliberations incrementally as agents report deliber-
ation results. Current research also includes designing
mechanisms where strategic computing occurs but its
wastefulness is limited.

3.3.1 Preference elicitation by the centre
To reduce the agents’ preference determination effort,
Conen and Sandholm (2001) proposed a framework
where the centre (also known as elicitor) explicitly elicits
preference information from the agents incrementally on
an as-needed basis by posing queries to the agents. The
centre thereby builds a model of the agents’ preferences,
and decides what to ask, and from which agent, based on
this model. Usually the process can be terminated with

the provably correct outcome while requiring only a
small portion of the agents’ preferences to be determined.
Multistage mechanisms can yield up to exponential
savings in preference determination and communication
effort the agents need to go through compared to single-
stage mechanisms (Conitzer and Sandholm, 2004).

The explicit preference elicitation framework was orig-
inally proposed for CAs (but the approach has since been
used for other settings as well, such as voting). For gen-
eral valuations, an exponential number of bits in the
number of items for sale has to be communicated in the
worst case no matter what queries are used (Nisan and
Segal, 2006). However, experimentally only a small frac-
tion of the preference information needs to be elicited
before the provably optimal solution is found. Further-
more, for valuations that have certain types of structure,
even the worst-case number of queries needed is small.
Research has also been done on the relative power of
different query types.

If enough information is elicited to also determine the
VCG payments, and these are the payments charged to
the bidders, answering the elicitor’s queries truthfully is
an ex post equilibrium (a strengthening of Nash equilib-
rium that does not rely on priors). (This assumes there is
no explicit cost or limit to valuation determination;
mechanisms have also been designed for settings where
there is an explicit cost. (Larson, 2006)) This holds even
if the agents are allowed to answer queries that the elic-
itor did not ask (for example, queries that are easy for the
agent to answer and which the agent thinks will signifi-
cantly advance the elicitation process). We thus have a
pull– push mechanism where both the centre and the
agents guide the preference revelation (and thus also the
preference determination/refinement by the agents). For
a review, see Sandholm and Boutilier (2006). Ascending
(combinatorial) auctions are an earlier special case, and
have limited power compared to the general framework
(Blumrosen and Nisan, 2005).

Preference elicitation can sometimes be computation-
ally complex for the centre. It can be complex to intel-
ligently decide what to ask next, and from whom. It can

Table 3 Can strategic computing occur in deliberation equilibrium? The most interesting results are in bold. As a benchmark from

classical auction theory, the table also shows whether or not perfectly rational agents, that can determine their valuations instantly without

cost, would benefit from considering each others’ valuations when deciding how to bid

Auction mechanism Speculation by perfectly

rational agents?

Strategic computing?

Limited computing Costly computing

Single item First price yes yes yes

Dutch yes yes yes

English no no yes

Vickrey no no yes

Multiple items First price yes yes yes

VCG no yes yes
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also be complex to determine whether enough informa-
tion has been elicited to determine the optimal outcome.
Even if the elicitor knows that enough has been elicited, it
can be complex to determine the outcome – for example,
allocation of items to bidders in some CAs.

3.4 Distributed (centre-free) mechanisms
Computer scientists often have a preference for distrib-
uted applications that do not have any centralized coor-
dination point (centre). Depending on the application, the
reasons for this preference may include avoiding a single
vulnerable point of failure, distributing the computing
effort (for computational efficiency or because the data is
inherently distributed), and enhancing privacy. The pref-
erence carries over from traditional computer science
applications to different forms of negotiation systems –
for example, see Sandholm (1993) for an early distributed
automated negotiation system for software agents.

Feigenbaum et al. (2005) have studied lowest-cost
inter-domain routing on the Internet, modifying a dis-
tributed protocol so that the agents (routing domains)
are motivated to report their true costs and the solution
is found with minimal message passing. For a review of
some other research topics in this space, see Feigenbaum
and Shenker (2002).

One can go further by taking into account the fact that
agents might not choose to follow the prescribed
protocol. They may cheat not only on information-rev-
elation actions, but also on message-passing and com-
putational actions. Despite computation actions not
being observable by others, an agent can be motivated
to compute as prescribed by tasking at least one other
agent with the same computation, and comparing the
results (Sandholm et al., 1999). Careful problem parti-
tioning can also be used to achieve the same outcome
without redundancy by only requiring agents to perform
computing and message passing tasks that are in their
own interest (Parkes and Shneidman, 2004). Shneidman
and Parkes (2004) propose a general proof technique and
instantiate it to provide a non-manipulable protocol for
inter-domain routing. Monderer and Tennenholtz (1999)
develop protocols for one-item auctions executed among
agents on a communication network. The protocols
motivate the agents to correctly reveal preferences and
communicate. For the setting where agents with private
utility functions have to agree on variable assignments
subject to side constraints (for example, meeting sched-
uling), Petcu, Faltings and Parkes (2006) developed a
VCG-based distributed optimization protocol that finds
the social welfare maximizing allocation and each agent is
motivated to follow the protocol in terms of all three
types of action. The only centralized party needed is a
bank that can extract payments from the agents.

Cryptography is a powerful tool for achieving privacy
when trying to execute a mechanism in a distributed way
without a centre, using private communication channels
among the agents. Consider first the setting with passive

adversaries, that is, agents that faithfully execute the
specified distributed communication protocol, but who
try to infer (at least something about) some agents’ pri-
vate information.

� If agents are computationally limited – for example,
they are assumed to be unable to factor large numbers
– then arbitrary functions can be computed while
guaranteeing that each agent maintains his privacy
(except, of course, to the extent that the answer of the
computation says something about the inputs) (Gold-
reich, Micali and Wigderson, 1987). Thus the desire
for privacy does not constrain what social choice
functions can be implemented.
� In contrast, only very limited social choice functions

can be computed privately among computationally
unlimited agents. For example, when there are just two
alternatives, every monotonic, non-dictatorial social
choice function that can be privately computed is
constant (Brandt and Sandholm, 2005). With special
structure in the preferences, this impossibility can
sometimes be avoided. For example, with the standard
model of quasi-linear utility, first-price auctions can
be implemented privately; second-price (Vickrey) auc-
tions with more than two bidders cannot (Brandt and
Sandholm, 2004).

A more general model is that of active adversaries who
can execute the distributed communication protocol
unfaithfully in a coordinated way. A more game-theoretic
model is that of rational adversaries that are not passive,
but not malicious either. For a brief overview of such
work, see COMPUTER SCIENCE AND GAME THEORY.
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concentration measures
The term concentration (also firm concentration, industry
concentration or market concentration) refers to aspects of
the distribution of firm size within a specific market or
industry that have traditionally been used to characterize
the degree of competitiveness in the market. Even though
the size of firms can be measured using many different
variables, such as employment or assets, the sales level is
the most commonly used size measure. Accordingly, if
very few firms serve a very large portion of the market, it
is said that the given market is highly ‘concentrated’,

whereas if no single firm has a large share of sales it is
said that the market is not ‘concentrated’. Since concen-
tration is an important reflection of the underlying
market structure, its measurement is an important char-
acterization of the interaction of firms within a specific
market or industry.

The most common concentration measures are the
‘n-firm concentration rate’ and the ‘Herfindahl index’.
Let Si be the market share of firm i; the ‘n-firm concen-
tration rate’ is the sum of the market shares of the n
biggest firms within the market:

CðnÞ ¼
Xn

i¼1

Si.

As indicated, the summation above is taken over the
set of n biggest firms in the market. So, for example, the
two-firm concentration rate of a given market is the sum
of the market shares of the two biggest firms in the mar-
ket where size is measured according to observed sales. In
order to fully characterize the concentration of any given
market, though, a number of these rates must be used,
since there is no agreed on value for n. This complicates
its use for comparing concentration over time and across
sectors, and for its use in statistical analysis.

The Herfindahl index, first devised by Albert Hirsch-
man to measure the concentration of trade across sectors
(so that the index is also known as ‘Herfindahl-Hirsch-
man index’; see Hirschman, 1964, for its history), is the
sum of the squared market shares of all firms in the
market:

H ¼
XN

i¼1

S2
i .

The summation in this case is taken over the set of all N
firms in the market. This index lies between zero and 1: if
there is only one firm in the market, so that the market
has the highest possible concentration, the index is 1. If,
on the other hand, there are many equally sized firms in
the market, the index will be close to zero. By squaring
the individual market shares, this index gives relatively
greater weight to the market shares of large firms. Con-
versely, the addition of one small firm to the market
dilutes somewhat the market share of larger firms, and
has a marginal negative effect on the index, which is
consistent with any notion of market concentration. Any
value of this index can correspond to multiple market
configurations, being in that sense less illustrative of the
actual concentration of a market than a set of n-firm
concentration rates. On the other hand, this index can be
easily correlated with other market characteristics and is
therefore very useful for statistical analysis.

Other less commonly used concentration measures
include entropy coefficients, the Gini coefficient and
measures of the variance of market shares across firms
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