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how preferences should be represented, and how this affects the complexity of finding
an optimal (or at least a good) outcome. We study settings with externalities, where each
agent controls one or more variables, and how these variables are set affects not only
the agent herself, but also potentially the other agents. For example, one agent may
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Expressive markets decide to reduce her pollution, which will come at a cost to herself, but will result
Externalities in a benefit for all other agents. We formalize how to represent such domains and
Representation show that in a number of key special cases, it is NP-complete to determine whether

there exists a nontrivial feasible solution (and therefore the maximum social welfare is
completely inapproximable). However, for one important special case, we give an algorithm
that converges to the solution with the maximal concession by each agent (in a linear
number of rounds for utility functions that additively decompose into piecewise constant
functions). Maximizing social welfare, however, remains NP-hard even in this setting.
We also demonstrate a special case that can be solved in polynomial time using linear
programming.
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1. Introduction

In many domains, a decision needs to be made based on the preferences of multiple agents. Often, the space of possible
outcomes is combinatorial in nature, so that it becomes necessary to consider how preferences should be represented, as
well as to design algorithms for finding an optimal (or at least a good) outcome. (For a recent overview of such work,
see [7].)

Combinatorial auctions (for an overview, see [12]) are a common example. In such an auction, there are multiple items to
be allocated among the agents, so an outcome is defined by a specification of which bundle of items each agent gets (plus,
perhaps, payments to be made by or to the agents). Variants such as combinatorial reverse auctions (where the auctioneer
seeks to procure a set of items) and combinatorial exchanges (where the agents trade items among themselves) have also
received attention [30,38,29,3,36].

A pervasive assumption in this work (with a very recent exception [25]) has been that there are no allocative externalities:
that is, no agent cares what happens to an item unless that agent herself receives the item. This is insufficient to model
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situations where a bidder who does not win an item still cares which other bidder wins it—for example, this may be the
case if the item is a nuclear weapon [22]. Recently, some work in sponsored-search auctions, where multiple advertisement
slots on a page are for sale, has started to consider the role of externalities [31,1,15,17,24,16,18,33,11]. Here, the idea is that
the attention that the user pays to one ad can depend on which other ads are shown simultaneously.

More generally, and more closely related to this paper, there are many important domains where actions taken by one
agent affect many other agents. For example, if one agent takes on a task, such as building a bridge, many other agents may
benefit from this (and the extent of their benefit in general depends on how the bridge is built, for example, on how heavy
a load it can support). Similarly, if a company reduces its pollution, many individuals may benefit, even if they have nothing
to do with the goods that the company produces. An action’s effect on an otherwise uninvolved agent’s utility is commonly
known as an externality (for a discussion, see [26]). When making decisions based on the preferences of multiple agents,
externalities must be taken into account, so that (potentially complex) arrangements can be made that are truly to every
agent’s benefit.

One domain in which externalities play a fundamental role, and that fits in the framework described in this paper, is
the design of expressive mechanisms for donating to (say) charitable causes [9,14]. The basic idea here is as follows. If one
agent donates to a charity, then another agent who also cares about this charity benefits. For that reason, it may happen
that, even if each individual agent does not care enough about the charity to give money to it by herself, it is nevertheless
possible that all of the agents prefer a joint arrangement in which each agent gives a certain amount to the charity. This is
because, thanks to the arrangement, each individual agent’s donation is effectively multiplied by the number of agents. This
opens up the possibility of mechanisms that take everyone’s preferences over the charities as input, and then determine an
arrangement for how much each agent should pay. Externalities play a fundamental role here: an agent giving to a charity
imposes an externality on the other agents who care about this charity, and this is why the agents can benefit from a joint
arrangement.

In this paper, we study whether optimal (or at least good) outcomes can be efficiently computed, under a quite general
representation of settings with externalities. To our knowledge, this is the first such study of a general representation of
settings with externalities. A common objective is to maximize social welfare, which is the sum of the agents’ utilities. How-
ever, in most settings, there are constraints that must be satisfied. Typically, there are voluntary participation constraints,
meaning that no agent is made worse off by participating in the mechanism. Additionally, if only the agents themselves
know their preferences, and the agents are self-interested (the setting of mechanism design), then there may be incentive
compatibility constraints, meaning that no agent should be able to make herself better off by misreporting her prefer-
ences.!

After introducing our basic representation scheme for settings with externalities, we study the computational complexity
of the following problem: given the agents’ preferences, find a good (if possible, an optimal) outcome that satisfies the
voluntary participation constraints. This problem is analogous to the winner determination problem in combinatorial auctions
and exchanges, which consists of finding an optimal allocation of the items, given the bids. The winner determination
problem in combinatorial auctions and exchanges has received a tremendous amount of previous attention (for example [34,
13,35,38,5,8,39,10,20,19,4]). In this paper, we will mostly focus on restricted settings that cannot model, e.g., fully general
combinatorial auctions and exchanges, so that we do not inherit all of the complexities from those settings (which would
trivialize our results). Also, in this first research on the topic, we do not consider any incentive compatibility constraints—
that is, we take the agents’ reported preferences at face value. This is reasonable when the agents’ preferences are common
knowledge; when there are other reasons to believe that the agents report their preferences truthfully (for example, for
ethical reasons, or because the party reporting the preferences is concerned with the global welfare rather than the agent’s
individual utility)?; or when we are simply interested in finding outcomes that are good relative to the reported preferences
(for example, because we are an optimization company that gets rewarded based on how good the outcomes that we
produce are relative to the reported preferences). Nevertheless, we believe that incentive compatibility is an important topic
for future research, and we will discuss it at the end of the paper in Section 9. As we noted, we do impose voluntary
participation constraints.

The rest of this paper is organized as follows. In Section 2, we define our representation and the basic problems that we
study under this representation. We show that the problem of finding a nontrivial feasible solution is hard in a number of
special cases, including when each agent controls only one variable (Section 3); when there are only negative externalities
and each agent controls at most two variables (Section 4); and when there are only negative externalities and there are only
two agents, but there is no constraint on how many variables they control (Section 7). In Section 5, we give an algorithm for
the case where there are only negative externalities and each agent controls only one variable. Under minimal assumptions,
this algorithm finds or converges to the feasible outcome with the “maximal concessions” by each agent; moreover, given
some additional assumptions (under which the hardness results proven in other sections still hold), the algorithm requires
only a linear number of rounds. Nevertheless, in Section 6, we show that finding the social welfare maximizing outcome
remains hard even in this setting. Finally, in Section 8, we show that the social welfare maximizing outcome can be found
in polynomial time using linear programming if all the utility functions are piecewise linear and concave.

1 Very recent research has studied the relationship between expressiveness and social welfare [2].
2 For example, in a large organization, when a representative of a department within the organization is asked what the department’s needs are, it is
possible that this representative acts in the organization’s best interest, rather than the department’s.
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2. Definitions
We formalize the problem setting as follows.

Definition 1. In a setting with externalities:

e there are n agents 1,2,...,n;
e each agent i controls m; variables x!,x?,....x;" € R*%; and
e each agent i has a utility function u; : RM — R (where M = Z'}:l m;). Here, uj(x], ..., X", ..., x}, ..., xy") represents

agent i's utility for any given setting of all the variables.

In general, one can also impose constraints on which values for (xil, ...,x'i"") agent i can choose, but we will refrain
from doing so here. (We can effectively exclude certain values by making the utilities for them very negative.) We say that
the default outcome is the one where all the xf are set to 0,> and we require without loss of generality that all agents’
utilities are 0 at the default outcome. Thus, the voluntary participation constraint states that every agent’s utility should be
nonnegative.

Definition 2. An outcome (X}, .. ,x']m, e x,11, ..., Xy is feasible (aka. satisfies voluntary participation) if for every i, we have
uixd, LK kb ) > 0.

Without any restrictions placed on it, this setup is very general. For instance, we can model a (multi-item, multi-unit)
combinatorial exchange with it. We recall that in a combinatorial exchange, each agent has an initial endowment of a
number of units of each item, as well as preferences over endowments (possibly including items not currently in the agent’s
possession). The goal is to find some reallocation of the items (possibly together with a specification of payments to be
made and received) so that no agent is left worse off, and some objective is maximized under this constraint. We can
model this in our framework as follows: for each agent, for each item in that agent’s possession, for each other agent, let
there be a variable representing how many units of that item the former agent transfers to the latter agent. If payments are
allowed, then we additionally need variables representing the payment from each agent to each other agent. We note that
this framework allows for allocative externalities, that is, for the expression of preferences over which of the other agents
receives a particular item.

Of course, if the agents can have nonlinear preferences over bundles of items (there are complementarities or substi-
tutabilities among the items), then, barring some special concise representation, specifying the utility functions requires an
exponential number of values* We need to make some assumption about the structure of the utility functions if we do
not want to specify an exponential number of values. For most of this paper, we make the following assumption, which
states that the effect of one variable on an agent’s utility is independent of the effect of another variable on that agent’s
utility. We note that this assumption disallows the model of a combinatorial exchange that we just gave, unless there are no
complementarities or substitutabilities among the items. This is not a problem insofar as our primary interest here is not so
much in combinatorial exchanges as it is in more natural, simpler externality problems, such as aggregating preferences over
pollution levels. We note that this restriction makes the hardness results that we present later much more interesting (with-
out the restriction, the results would have been unsurprising given known hardness results for combinatorial exchanges).
However, for some of our positive results, we will not actually need this assumption—for example, for convergence results
for an algorithm that we will present.

Definition 3. u; additively decomposes (across variables) if uj(x}, ..., x{", ... xL ... x0™) =Y p_; Z'}Lk] ui.”(xi).

That is, the agent has a separate component utility function for each variable, and the agent’s overall utility is the sum
of these components. When utility functions additively decompose, we will sometimes be interested in the special cases
where the ui.” are step functions (denoted 8y>4, which evaluates to 0 if x <a and to 1 otherwise), or piecewise constant
functions (linear combinations of step functions).’

In addition, we will focus strictly on settings where the higher an agent sets her own variables, the worse it is for herself.
We will call such settings concessions settings. So, if the agents were to act independently, then each agent would selfishly
set all her variables to 0 (the default outcome).

3 This is without loss of generality because the variables x{ can be used to represent the changes in the real-world variables relative to the default
outcome. If these changes can be both positive and negative for some real-world variable, we can model this with two variables x{" ,x{z, the difference
between which represents the change in the real-world variable.

4 Thus, the fact that determining the existence of a nontrivial feasible solution for a combinatorial exchange is NP-complete [38] does not imply that
determining the existence of a nontrivial feasible solution in our framework is NP-complete, because there is an exponential blowup in representation size.

5 For these special cases, it may be conceptually desirable to make the domains of the variables x{ discrete, but we will refrain from doing so in this
paper for the sake of consistency.
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Definition 4. A concessions setting is a setting with externalities where for any (x}, e x'{“ s Xy xy™) € RM, for any i,

J 1 my 5J 1 m 1 my J 1 m
i, we have Ui(Xps oo s X ey X Xy oo, X ) SUTR Y, oo X X Xy e, Xy )

1< j<mj and forany)?{>x
Thus, in a concessions setting, an agent’s utility is monotonically weakly decreasing in that agent’s own variables.
In parts of this paper, we will be interested in the following additional assumption, which states that the higher an agent
sets her variables, the better it is for the others. (For instance, the more a company reduces its pollution, the better it is for
all others involved.)

Definition 5. A concessions setting has only negative externalities if for any (x%, ...,le,...,x}l,...,xnm”) e RM for any i,
1< j<m, forany & > x!, and for any k # i, up(xl, ... X, &) kb S ued X xR .

Thus, when there are only negative externalities, an agent’s utility is monotonically weakly increasing in the other agents’
variables.
We define trivial settings of variables as settings that are indistinguishable from setting them to 0.

Definition 6. The value r is trivial for variable x{ if it does not matter to anyone’s utility function whether x{ is set to r or
. i—1 _j+1 i1 i+1
to 0. That is, for any x},....x[", ... x/ ,xijJr s.o X ....xq", and for any k, we have ug(x}, ..., X", ... X! ,r,x{+ s
i—1 j+1 . . o . .
Xy = e, K kT 0, kLX), A setting of all the variables is trivial if each variable is set
to a trivial value.

We are now ready to define the following two computational problems that we will study.

Definition 7 (FEASIBLE-CONCESSIONS). We are given a concessions setting. We are asked whether there exists a nontrivial
feasible solution.

Definition 8 (SW-MAXIMIZING-CONCESSIONS). We are given a concessions setting. We are asked to find a feasible solution
that maximizes social welfare (among feasible solutions).

The following simple proposition shows that if the first problem is hard, then the second problem is hard to approximate
to any ratio.

Proposition 1. Suppose that FEASIBLE-CONCESSIONS is NP-hard even under some constraints on the instance (but no constraint that
prohibits adding another “dummy” agent that derives positive utility from any nontrivial setting of the variables of the other agents).
Then, it is NP-hard to approximate SW-MAXIMIZING-CONCESSIONS to any positive ratio, even under the same constraints.

Proof. We reduce an arbitrary FEASIBLE-CONCESSIONS instance to an SW-MAXIMIZING-CONCESSIONS instance that is iden-
tical, except that a single additional agent has been added that derives positive utility from any nontrivial setting of the
variable(s) of the other agents, and to whose variables all agents are completely indifferent (they cannot derive any utility
from the new agent’s variable(s)). If the original instance has no nontrivial feasible solution, then neither does the new
instance, and the maximum social welfare that can be obtained is 0. On the other hand, if the original instance has a non-
trivial feasible solution, then the new instance has a feasible solution with positive social welfare: the exact same solution
is still feasible, and the new agent will get positive utility (and the others, nonnegative utility). It follows that any algorithm
that approximates SW-MAXIMIZING-CONCESSIONS to some positive ratio will return a social welfare of 0 if there is no
solution to the FEASIBLE-CONCESSIONS problem instance, and positive social welfare if there is a solution—and thus the
algorithm could be used to solve an NP-hard problem. O

It would appear that these problems (or, in the case of SW-MAXIMIZING-CONCESSIONS, its decision variant) should
naturally at least fall in the class NP, because an outcome should be able to serve as a certificate. Nevertheless, we cannot
say this without making some assumption about how the utility functions are represented. We now give a weak sufficient
condition.

Definition 9. A family of concessions instances has the outcomes-are-certificates (OAC) property if:

e we can without loss of generality restrict our attention to a set of outcomes such that these outcomes can be repre-
sented in polynomial space,

e given an outcome, we can compute each agent’s utility in polynomial time, and

e given an outcome, we can compute in polynomial time whether this outcome corresponds to a trivial setting of the
variables.
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For example, when the agents’ utility functions additively decompose, and their utility functions for individual variables
are piecewise constant functions (where the points of discontinuity and the corresponding values are explicitly given, say, as
rational numbers), the OAC property holds: we can without loss of generality restrict our attention to outcomes where each
variable is set to a value at which a discontinuity occurs for some agent (or to 0)—because any other value will be equivalent
to some such value—and because these values are given explicitly in the input, these outcomes can be represented in
polynomial space. Moreover, given an outcome, a simple lookup suffices to compute each agent’s utility for each variable.
Finally, to determine whether an outcome is trivial, it suffices to check whether there exists an agent that receives nonzero
utility from at least one of the variables’ values. We note that we can approximate any continuous function with a piecewise
constant function, with the caveat that we may need an infinite number of pieces to approximate the tail end of the function
(in practice, we can simply ignore values of the variables that are too large to occur in practical solutions).

Proposition 2. For any family of concessions instances that satisfies the OAC property, FEASIBLE-CONCESSIONS and the decision variant
of SW-MAXIMIZING-CONCESSIONS (does there exist a feasible solution with social welfare > K?) are in NP.

Proof. In each case, the outcomes to which we can restrict our attention will serve as the certificates; by assumption,
these certificates have polynomial length. Also, by assumption, we can determine in polynomial time whether it is a trivial
outcome. To determine whether an outcome is feasible, we compute each agent’s utility (which, by assumption, we can
do in polynomial time), and check whether it is at least 0. This shows that FEASIBLE-CONCESSIONS is in NP. Moreover,
because we can compute the agents’ utilities efficiently, we can also compute the social welfare efficiently. This shows that
the decision variant of SW-MAXIMIZING-CONCESSIONS is in NP. O

3. Hardness with positive and negative externalities

We first show that if we do not make the assumption that there are only negative externalities, then determining
whether a nontrivial feasible solution exists is NP-complete even when each agent controls only one variable. In this paper,
when membership in NP is straightforward, we just give the hardness proof. Also, when each agent controls only one
variable, no superscript j on the variables or the component utility functions is necessary.

Theorem 1. FEASIBLE-CONCESSIONS is NP-complete (assuming OAC for NP membership), even when all utility functions decompose
additively (and all the components uif are step functions), and each agent controls only one variable.

Proof. We reduce an arbitrary satisfiability instance (given by variables V and clauses C) to the following FEASIBLE-
CONCESSIONS instance. Let the set of agents be as follows. For each variable v € V, let there be an agent a,, controlling
a single variable xgq,. Also, for every clause ¢ € C, let there be an agent a, controlling a single variable x4 . Finally, let
there be a single additional agent ag controlling xg,. Let all the utility functions decompose additively, as follows. (We re-
call that the notation 8y>, evaluates to 0 if x < a, and to 1 otherwise.) For any v e V, uﬁ; (Xa,) = —8x,,>1. For any v eV,
ug‘j (Xq9) = 8,(“021. For any c € C, ugﬁ (Xq.) = (n(c) — 2|V|)éx,, >1 where n(c) is the number of variables that occur in ¢ in
negated form. For any c € C, ugf (Xay) = 2|V = l)axa0>1. For any c € C and v € V where +v occurs in c, ugg (Xa,) = 8x,, >1-
For any c € C and v € V where —v occurs in c, ugg (Xa,) = —dxy, >1- ugg(xao) = —|C|8Xa021. For any c € C, ugg(xac) = Oxgo >1-
All the other functions are 0 everywhere. We proceed to show that the instances are equivalent.

First suppose there exists a solution to the satisfiability instance. Then, let x,, =1 if v is set to true in the solution, and
Xq, =0 if v is set to false in the solution. Let x,. =1 for all ¢ € C, and let xq, = 1. Then, the utility of every a, is at least
—1+1=0. Also, the utility of ag is —|C| + |C| = 0. And, the utility of every a is n(c) — 2|V |+ 2|V| =1+ pt(c) —nt(c) =
n(c) — 1+ pt(c) — nt(c), where pt(c) is the number of variables that occur positively in ¢ and are set to true, and nt(c)
is the number of variables that occur negatively in ¢ and are set to true. Of course, pt(c) > 0 and —nt(c) > —n(c); and if
at least one of the variables that occur positively in c is set to true, or at least one of the variables that occur negatively
in c is set to false, then pt(c) — nt(c) > —n(c) + 1, so that the utility of a. is at least n(c) — 1 — n(c) + 1 = 0. But this
is always the case, because the assignment satisfies the clause. So there exists a solution to the FEASIBLE-CONCESSIONS
instance.

Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. If it were the case that xy, < 1, then for
all the a, we would have x;, <1 (or a, would have a negative utility), and for all the a. we would have x,. <1 (because
otherwise the highest utility possible for ac is n(c) —2|V| < 0). So the solution would be trivial. It follows that x4, > 1. Thus,
in order for ag to have nonnegative utility, it follows that for all ¢ € C, x4, > 1. Now, let v be set to true if x;, > 1, and to
false if xq, < 1. So, the utility of every a¢ is n(c) — 2|V| + 2|V| — 1+ pt(c) —nt(c) =n(c) — 1+ pt(c) — nt(c). In order for
this to be nonnegative, we must have (for any c) that either nt(c) < n(c) (at least one variable that occurs negatively in ¢
is set to false) or pt(c) > 0 (at least one variable that occurs positively in c is set to true). Therefore, we have a satisfying
assignment. O
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4. Hardness with only negative externalities

Next, we show that even if we do make the assumption of only negative externalities, then determining whether a
nontrivial feasible solution exists is still NP-complete, even when each agent controls at most two variables.

Theorem 2. FEASIBLE-CONCESSIONS is NP-complete (assuming OAC for NP membership), even when there are only negative exter-
nalities, all utility functions decompose additively (and all the components are step functions), and each agent controls at most two
variables.

Proof. We reduce an arbitrary satisfiability instance to the following FEASIBLE-CONCESSIONS instance. Let the set of agents
be as follows. For each variable v € V, let there be an agent a,, controlling variables xa*V and x; . Also, for every clause c € C,
let there be an agent a, controlling a single variable xg,. Let all the utility functions decompose additively, as follows: For
any veV,ugt (xF) = —ICl8 >4, and ugl (Xg,) = —ICl8,; >1. Forany ve V and c e C, Ug (Xq.) = 8y, >1. For any c € C,

ay, +(

uag(xac) = —8x,.>1. For any c € C and v € V where +v occurs in ¢, g )= 6X+ >1 and for any c € C and v € V where

—V occurs in c, ua[' T(xg) = SXEV%' All the other functions are 0 everywhere. We proceed to show that the instances are
equivalent.

First suppose there exists a solution to the satisfiability instance. Then, let xa*V =1 if v is set to true in the solution, and

* = 0 otherwise; and, let x; =1 if v is set to false in the solution, and x; =0 otherwise. Let x,. =1 for all ¢ € C. Then,
the utility of every a, is —|C| + |C| = 0. Also, the utility of every a. is at least —1+4 1 (because all clauses are satisfied in
the solution, there is at least one +v € ¢ with x;‘v =1, or at least one —v € ¢ with x;; = 1). So there exists a solution to the
FEASIBLE-CONCESSIONS instance.

Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. At least one of the xjv or at least one of
the x,, must be set nontrivially (> 1), because otherwise no xq, can be set nontrivially. But this implies that for any clause
c €C, xq. > 1 (for otherwise the a, with a nontrivial setting of her variables would have negative utility). So that none of
the a. have nonnegative utility, it must be the case that for any c € C, either there is at least one +v € c with xj{v =1, or
at least one —v e ¢ with x; > 1. Also, for no variable v € V can it be the case that both xjv >1 and Xz, =21, as this would
leave a, with negative utility. But then, letting v be set to true if xjv > 1, and to false otherwise, must satisfy every clause.
So there exists a solution to the satisfiability instance. O

5. An algorithm for the case of only negative externalities and one variable per agent

We have shown that with both positive and negative externalities, finding a nontrivial feasible solution is hard even
when each agent controls only one variable; and with only negative externalities, finding a nontrivial feasible solution is
hard even when each agent controls at most two variables. In this section we show that these results are, in a sense, tight,
by giving an algorithm for the case where there are only negative externalities and each agent controls only one variable.®
Under some minimal assumptions, this algorithm will return (or converge to) the maximal feasible solution, that is, the
solution in which the variables are set to values that are as large as possible. Moreover, in the case of piecewise constant
functions, it will return this solution in a linear number of iterations and hence in polynomial time. (Since our hardness
results so far were for piecewise constant functions, this implies that those results are tight.) Although the setting for this
algorithm may appear very restricted, it still allows for the solution of many interesting problems. For example, consider
governments negotiating over how much to reduce their countries’ carbon dioxide emissions, for the purpose of reducing
global warming. As another example, consider agents negotiating over how much to reduce their use of a common resource
such as a communication network (where heavy use slows down the network).

We will not require the assumption of decomposing utility functions in this section (except where stated). The following
claim shows the sense in which the maximal solution is well defined in the setting under discussion: there cannot be
multiple maximal solutions, and under a continuity assumption, a maximal solution exists.

Lemma 1. In a concessions setting with only negative externalities and in which each agent controls only one variable, let x1, X2, ..., Xn
and Xi,X,,...,x, be two feasible solutions. Then max{xq, x|}, max{xz, x5}, ..., max{xy,x,} is also a feasible solution. More-
over, if all the utility functions are continuous, then, letting X; be the set of values for x; that occur in some feasible solution,
sup(X1), sup(X2), ..., sup(Xp) is also a feasible solution.

Proof. For the first claim, we need to show that every agent i receives nonnegative utility in the proposed solution. Sup-
pose without loss of generality that x; > x;. Then, we have u;(max{x1,x]}, max{xa, x5}, ..., max{x;, x}},..., max{x,, x;}) =
uj(max{x1,x’1}, max{xy, x’2}, oo Xiy ..., max{xy, X, }) > Ui(X1,X2, ..., X, ..., Xp), Where the inequality stems from the fact that
there are only negative externalities. But the last expression is nonnegative because the first solution is feasible.

6 After the conference version of this paper, Ghosh and Mahdian, who were at that point not aware of this work, independently discovered effectively
the same algorithm in their more specific framework for mechanisms for donations to charities [14].



8 V. Conitzer, T. Sandholm / Journal of Computer and System Sciences 78 (2012) 2-14

For the second claim, we will find a sequence of feasible solutions that converges to the proposed solution. By continuity,
any agent’s utility at the limit point must be the limit of that agent’s utility in the sequence of feasible solutions; and

because these solutions are all feasible, this limit must be nonnegative. For each agent i, let {(xi’j,x;'j,...,xﬂj)}jeN be a
sequence of feasible solutions with lim;_, o x;" = sup(X;j). By repeated application of the first claim, we have that (for any j)

max;{x}’}, max;{x;’}, ..., max;{x;’} is a feasible solution, giving us a new sequence of feasible solutions. Moreover, because
this new sequence dominates every one of the original sequences, and for each agent i there is at least one original sequence
where the i-th element converges to sup(X;j), the sequence converges to the solution sup(Xy), sup(X3),...,sup(Xp). O

We are now ready to present the algorithm. First, we give an informal description. The algorithm proceeds in stages; in
each stage, for each agent, it eliminates all the values for that agent’s variable that would result in a negative utility for that
agent regardless of how the other agents set their variables (given that they use values that have not yet been eliminated).

Algorithm 1.
l.fori:=1ton {
2. X?:=R>? (alternatively, X? := [0, M] where M is some upper bound)}

3.t:=0

4. repeat until (Vi) X! = X1 {

5 t:=t+1

6. fori:=1ton {

7. X={xeX T W eX T xmeXy o xii e X xi € XL x € X ui(x,xa. ki,
ooy X%n) 2 01}

The set updates in Step 7 of the algorithm are simple to perform, because all the X,.f always take the form [0, r], [0, ), or
R=0 (because we are in a concessions setting), and in Step 7 it never hurts to choose values for x1,X2, ..., Xi—1, Xi+1,---,Xn
that are as large as possible (because we have only negative externalities). Roughly, the goal of the algorithm is for
sup(Xﬁ), sup(Xé),...,sup(Xﬁ) to converge to the maximal feasible solution (that is, the feasible solution such that all of
the variables are set to values at least as large as in any other feasible solution). We now show that the algorithm is sound,
in the sense that it does not eliminate values of the x; that occur in feasible solutions.

Lemma 2. Suppose we are running Algorithm 1 in a concessions setting with only negative externalities where each agent controls
only one variable. If for some t, r ¢ Xf, then there is no feasible solution with x; set to r.

Proof. We will prove this by induction on t. For t = 0 this is vacuously true. Now suppose we have proved it true for
t =k; we will prove it true for t =k + 1. By the induction assumption, all feasible solutions lie within X’f X -e X X,’§. But

if r# X:‘“Ll, this means exactly that there is no feasible solution in X’f x - x XK with x; =r. It follows there is no feasible
solution with x; =r at all. O

However, the algorithm is not complete, in the sense that (for some “unnatural” functions) it does not eliminate all the
values of the x; that do not occur in feasible solutions.

Proposition 3. Suppose we are running Algorithm 1 in a concessions setting with only negative externalities where each agent controls
only one variable. For some (discontinuous) utility functions (even ones that decompose additively), the algorithm will terminate with
nontrivial Xit even though the only feasible solution is the zero solution.

Proof. Consider the following symmetric example:

e ul(xq)=—x; for x; <1, uj(x1) = —2 otherwise;
o u2(x2) = (x2)? for x; < 1, u3(x2) = 1 otherwise;
o ul(x1) = (x1)? for x; <1, ul(x;) =1 otherwise;
o U3(x2) = —xz for xo <1, u3(xz) = —2 otherwise.

There is no feasible solution with x; > 1 or x; > 1, because the corresponding agent’s utility would definitely be negative.
In order for agent 1 to have nonnegative utility we must have (x3)? > x;. Unless they are both zero, this implies x; > x;.
Similarly, in order for agent 2 to have nonnegative utility we must have (x;)® > x», and unless they are both zero, this
implies x1 > x;. It follows that the only feasible solution is the zero solution. Unfortunately, in the algorithm, we first get
Xll = X% =0, 1); then also, we get X% = X% =0, 1) (for any x; < 1, we can set x, = /X1 <1 and agent 1 will get utility O,
and similarly for agent 2). So the algorithm terminates with nontrivial Xf . O
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However, if we make some reasonable assumptions on the utility functions (specifically, that they are either continuous
or piecewise constant), then the algorithm is complete, in the sense that it will (eventually) remove any values of the x;
that are too large to occur in any feasible solution. Thus, the algorithm converges to the maximal feasible solution. (This
does not mean that it necessarily terminates, and as a result we cannot give a runtime for the algorithm in the continuous
case.) We will present the case of continuous utility functions first.

Theorem 3. Suppose we are running Algorithm 1 in a concessions setting with only negative externalities where each agent controls
only one variable. Suppose that all the utility functions are continuous. Also, suppose that all the X? are initialized to [0, M]. Then, all the
Xf are closed sets. Moreover, if the algorithm terminates after the t-th iteration of the repeat loop, then sup(Xﬁ), sup(Xg), ..., sup(X%)
is the maximal feasible solution. If the algorithm does not terminate, then lim;_, oo sup(X%), lim;_s oo sup(Xé), oo limgs o0 sUp(XE)
is the maximal feasible solution.

Proof. First we show that all the Xl? are closed sets, by induction on t. For t =0, the claim is true, because [0, M] is a
closed set. Now suppose they are all closed for t = k; we will show them to be closed for t =k + 1. In the step in the
algorithm in which we set Xf‘“, in the choice of xq,...,Xj_1,Xi41,...,X,, we may as well always set each of these x; to
sup(X’]?) (which is inside XS? because X’]? is closed by the induction assumption), because this will maximize agent i’s utility.
It follows that X! = {x;: uj(sup(X¥), ..., sup(X* ), x;, sup(X¥, ). ..
must be closed by elementary results from analysis.

Now we proceed to show the second claim. Because each Xf is closed, it follows that sup(Xf) € X,F. This im-

.,sup(X’g)) > 0}. But because u; is continuous, this set

plies that, for every agent i, there exist x; € Xg_l,xz € Xg_l,...,xi_1 € ij,xiH € Xf;ll,...,xn € Xffl such that
u,-(x1,x2,...,sup(X,.f),...,xn) > 0. Because for every agent 1/, Xf, = X,.t,_l (the algorithm terminated), this is equivalent to
saying that there exist x; € X{, X2 € X5, ..., Xi—1 € X{_, Xiy1 € X{ 1, ..., X € X}, such that u;(x1, X2, ..., sup(X}), ..., Xp) > 0.

Of course, for each of these xj;, we have xi < sup(X,.f,). Because there are only negative externalities, it follows that
ui(sup(X}), sup(X5), ..., sup(X}), ..., sup(X5)) > uj(x1, X2, ..., sup(X}),...,xy) > 0. Thus, sup(X}), sup(X),...,sup(X}) is
feasible. It is also maximal by Lemma 2.

Finally, we prove the third claim. For any agent i, for any t, we have u;(sup(X|™"), sup(X5™"),..., limy_ o0 sup(X!),
.sup(Xihy) > u,-(sup(Xg’l), sup(Xg’]),...,sup(X,.f),...,sup(Xffl)) (because the X! are decreasing in t, and we are in
a concessions setting). The last expression evaluates to a nonnegative quantity, using the same reasoning as in the proof
of the second claim with the fact that sup(Xf) € Xf. But then, by continuity, 0 < limtﬁm(ui(sup(xﬁ‘l),sup(Xg_l),...,

limg o0 SUp(XE), ..., sup(X5™1)) = ui (limy cosup(X§ ™), limy s sosup(X5 ). ... limy, sosup(XL), ..., limg_, osup(X51) =
ui(limg_, oo SUp(XY), lime_ oo sUp(X5), ..., lime, oo sup(X)), ..., lime oo sup(Xh)). It follows that  lim;_ sup(X}),
lims_s o0 sup(Xg), .o, lim_s o0 sup(X}) is feasible. It is also maximal by Lemma 2. O

We observe that piecewise constant functions are not continuous, and thus Theorem 3 does not apply to the case where
the utility functions decompose additively and the component utility functions are piecewise constant. Nevertheless, the
algorithm works on such utility functions, and we can even prove that the number of iterations is linear in the number of
pieces. There is one caveat: the way we have defined piecewise constant functions (as linear combinations of step functions
8x>q), the maximal feasible solution is not well defined (the set of feasible points is never closed on the right, that is, it
does not include its least upper bound). To remedy this, call a feasible solution quasi-maximal if there is no feasible solution
that is larger (that is, all the x; are set to values that are at least as large) and that gives some agent a larger utility. Hence,
a quasi-maximal feasible solution is maximal for all intents and purposes.

Theorem 4. Suppose we are running Algorithm 1 in a concessions setting with only negative externalities where each agent controls
only one variable. If all the utility functions decompose additively and all the components uf are piecewise constant with finitely many
steps (the range of the uf.‘ is finite), then the algorithm will terminate after at most T iterations of the repeat loop, where T is the total
number of steps in all the self-components u;: (that is, the sum of the sizes of the ranges of these functions). Moreover, if the algorithm
terminates after the t-th iteration of the repeat loop, then any solution (x1, X2, . .., xn) with for all i, x; € arg maXxy, ¢ xt Z#i ug. (%), 1s

a quasi-maximal feasible solution.

Proof. If for some i and t, Xf #+ Xf‘l, it must be the case that for some value r in the range of u; the preimage of this

value is in Xf‘l — Xf (it has just been eliminated from consideration). Informally, one of the steps of the function u§ has
been eliminated from consideration. Because this must occur for at least one agent in every iteration of the repeat loop
before termination, it follows that there can be at most T iterations before termination.

Now, if the algorithm terminates after the t-th iteration of the repeat loop, and a solution (x1, X2, ..., x) with for all i,
Xi € argmax,, . > i ug.(x,-) is chosen, it follows that each agent derives as much utility from the other agents’ variables

as is possible with the sets Xit (because of the assumption of only negative externalities, any setting of a variable that
maximizes the total utility for the other agents also maximizes the utility for each individual other agent). We know that
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for each agent i, there is at least some setting of the other agents’ variables within the X; that will give agent i enough

utility to compensate for the setting of its own variable (by the definition of Xf and using the fact that X; = X;‘l, as
the algorithm has terminated); and thus it follows that the utility maximizing setting is also enough to make i’s utility
nonnegative. So the solution is feasible. It is also quasi-maximal by Lemma 2. O

Algorithm 1 can be extended to cases where some agents control multiple variables, by interpreting x; in the algorithm as
the vector of agent i’s variables (and initializing the X? as Cartesian products of sets). However, the next proposition shows
that this extension of Algorithm 1 fails. (This is perhaps not surprising in light of our earlier hardness result, Theorem 2,
but it is still instructive to see exactly how it fails.)

Proposition 4. Suppose we are running the extension of Algorithm 1 just described in a concessions setting with only negative ex-
ternalities. When some agents control more than one variable, the algorithm may terminate with nontrivial Xf even though the only

feasible solutions are trivial solutions, even when all of the utility functions decompose additively and all of the components u:f’j are
step functions (or continuous functions).

Proof. Let each of three agents control two variables, with utility functions as follows. (We recall once again that the
notation 8y>q evaluates to 0 if x < a, and to 1 otherwise.)

o u}‘l(x%) =-38a>1
o u?(¥) = ~38051;
o u3 (k) = =383
o u3%(3) = =381
o ug‘l(x%) =351
o u3? () =380

o uf‘l(xé) =28,1513
. u?*l(x;)=2ax;21;
o Uy () =285
o ug‘z(xg) =201
o u? () =280

22,0\
o U3 (x2)_26xg>1.

Increasing any one of the variables to a value of at least 1 will decrease the corresponding agent’s utility by 3, and
will raise only one other agent’s utility, by 2. It follows that there is no nontrivial feasible solution, because any nontrivial
solution will have negative social welfare (total utility), and hence at least one agent must have negative utility.

In the algorithm, after the first iteration, it becomes clear that no agent can set both her variables to values of at least 1
(because each agent can derive at most 4 < 6 utility from the other agents’ variables). Nevertheless, for any agent, it still
appears possible at this stage to set either (but not both) of her variables to a value of at least 1. Unfortunately, in the
next iteration, this still appears possible (because each of the other agents could set the variable that is beneficial to this
agent to a value of at least 1, leading to a utility of 4 > 3 for this agent). It follows that the algorithm gets stuck with
nontrivial X!.

These component utility functions are easily made continuous, while changing neither the algorithm’s behavior on them
nor the set of feasible solutions—for instance, by making each function linear on the interval [0,1]. O

In the next section, we discuss maximizing social welfare, under the same conditions under which we showed Algorithm 1
to be successful in finding the maximal feasible solution (which does not necessarily maximize welfare).

6. Maximizing social welfare remains hard

In a concessions setting with only negative externalities where each agent controls only one variable, the algorithm we
provided in the previous section returns the maximal feasible solution, in a linear number of rounds for utility functions
that decompose additively into piecewise constant functions. However, this may not be the most desirable solution. For
instance, we may be interested in the feasible solution with the highest social welfare (that is, the highest sum of the
agents’ utilities). In this section we show that finding this solution remains hard, even in the setting in which Algorithm 1
finds the maximal solution fast.
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Theorem 5. The decision variant of SW-MAXIMIZING-CONCESSIONS (does there exist a feasible solution with social welfare > K?)
is NP-complete (assuming OAC for NP membership), even when there are only negative externalities, all utility functions decompose
additively (and all the components ui.‘ are step functions), and each agent controls only one variable.

Proof. We reduce an arbitrary EXACT-COVER-BY-3-SETS instance (given by a set S and subsets S1, Sa, ..., Sq (|Sij| =3) with
which to cover S, without any overlap) to the following SW-MAXIMIZING-CONCESSIONS instance. Let the set of agents be as
follows. For every §; there is an agent as,. Also, for every element s € S there is an agent a;. Every agent a controls a single

variable xg. Let all the utility functions decompose additively, as follows: For any S;, uZif (xas_) = _75an. >1. For any S; and

for any s, us (xas) = 78, >1. For any s, uas (Xa,) = —0x,,>1. For any s and for any S; with s € S, uzss" (Xasi) = #%Sl_)lv
where c(s) is the number of sets S; with s € S;. All the other functions are O everywhere. (We may assume without loss of
generality that c(s) > 2: if c(s) = 0 then the original problem instance is clearly infeasible, and if c(s) =1 then it is clear
that the one set S; that contains s must be used in the cover, and so we can reduce it to a simpler problem instance.) Let
the target social welfare be K =7q(|S| —1) + 73! 'S L we proceed to show that the two instances are equivalent.

First, suppose there exists a solution to the EXACT COVER-BY-3-SETS instance. Then, let Xag, = =0 if S; is in the cover, and
Xas, =1 otherwise. For all s, let xo, = 1. Then as, receives a utrllty of 7|S| if S; is in the cover and 7(|S| — 1) otherwise.

Furthermore, for all s € S, as receives a utility of (c(s) —1)==— C(s}_1 — 1 =0 (because for exactly c(s) — 1 of the c(s) subsets S;
with s in it, the corresponding agent has her variable set to 1: the only exception is the subset S; that contains s and is in
the cover). It follows that all the agents receive nonnegative utility, and the total utility (social welfare) is 7q(|S| — 1) + 7‘%.
So there exists a solution to the SW-MAXIMIZING-CONCESSIONS instance.

Now, suppose that there exists a solution to the SW-MAXIMIZING-CONCESSIONS instance. We first observe that if for
some s € S, Xq, < 1, the total utility (social welfare) can be at most 7q(|S| —1D+2|S|<7q(S|-1) + 7‘ (because each as;
can receive at most 7(|S| — 1), and each as can receive at most c(S) ==— C(s)—]’ and because c(s) > 2 this can be at most 2). So
it must be the case that x,, > 1 for all s € S. It follows that, in order for none of these as; to have nonnegative utility, for
every s € S, there are at least c(s) — 1 subsets S; with Xag; >1 and s € S;. In other words, for every s € S, there is at most

one subset S; with s € S; with Xa5, < 1. In other words again, the subsets S; with Xag, < 1 are disjoint (and so there are at

most 'g‘ of them). However, if there were only k < 'g‘ 1 subsets S; with Xas, < 1, then the total utility (social welfare)

can be at most 7q(|S| — 1) + 7k 4 |S| — 3k (each as; receives at least 7(|S| — 1) and they receive no more unless they
are among the k, in which case they receive an additional 7; and every as receives 0 unless s is in none of the k disjoint
subsets S;, in which case the agent will receive at most 1; but of course there can be at most |S| — 3k such agents). But
7q(1S|—=1)+7k+1S| =3k < 7q(|S|— 1)+ S| +4(‘3ﬂ —-1)=7q(|S|— 1)+7‘3ﬂ —4, which is less than the target. It follows there
are exactly |3ﬂ disjoint subsets S; with Xag, < 1—an exact cover. So there exists a solution to the EXACT-COVER-BY-3-SETS
instance. O

7. Hardness with only two agents

So far, we have not assumed any bound on the number of agents. A natural question to ask is whether such a bound
makes the problem easier to solve. In this section, we show that the problem of determining the existence of a nontrivial
feasible solution in a concessions setting with only negative externalities remains NP-complete even with only two agents
(when there is no restriction on how many variables each agent controls).

Theorem 6. FEASIBLE-CONCESSIONS is NP-complete (assuming OAC for NP membership), even when there are only two agents, there
are only negative externalities, and all utility functions decompose additively (and all the components u I are step functions).

Proof. We reduce an arbitrary KNAPSACK instance (given by r pairs (c;, v;), where all the ¢; and v; are positive; a cost
constraint C; and a value objective V) to the following FEASIBLE-CONCESSIONS instance with two agents. Agent 1 con-
trols only one variable, x}. Agent 2 controls r variables, x},x3,...,x5. Agent 1's utility function is uq(x],x},x3,...,x}) =
—Véasi+Xjn vj8,,- Agent 2's utility function is Up(X]. X3 5. ... %) = Coay — Yy €j8,J5,- We proceed to show
that the instances are equivalent.

Suppose there is a solution to the KNAPSACK instance, that is, a subset S such that Zjes ¢i <C and Zjes vi > V. Then,

let x] =1, and for any 1< j<r, let xé = §jes (that is, xé =1if jeS, and x£ =0 otherwise). Then uy(x},x},x3,...,x) =

-V + Zjes vj > 0. Also, uz(x},x;,xg,...,xg) =C— Zjes cj > 0. So there is a solution to the FEASIBLE-CONCESSIONS
instance.

Now suppose there is a solution to the FEASIBLE-CONCESSIONS instance, that is, a nontrivial setting of the variables
(x],x}, %3, ..., xh) such that uy (x],x},x3,...,x5) > 0 and ua(x],x3,x3, ..., X)) > 0. If it were the case that x] < 1, then either
all of agent 2’s variables are set to values smaller than 1 (in which case we have a trivial solution), or at least one of agent
2's variables is set to a nontrivial value (in which case agent 2 gets negative utility because the setting of x% is worthless

to him). It follows that xl 1. Thus, in order for agent 1 to get nonnegative utility, we must have Zj 1V i1 2 > V. Let
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S={j: xé > 1}. Then it follows that Zjes vj > V. Also, in order for agent 2 to get nonnegative utility, we must have
Y jesCi=2i_1¢j8 i, <C.So there is a solution to the KNAPSACK instance. 0O
vk

8. A special case that can be solved to optimality using linear programming

Finally, in this section, we demonstrate a special case in which we can find the feasible outcome that maximizes social
welfare (or other linear objectives) in polynomial time, using linear programming. For the sake of making things definite and
simple, we assume that all the components of the utility functions are represented as piecewise linear functions (consisting
of a finite number of segments). Crucially, we assume that these functions are concave. For this result we will need no
additional assumptions (no bounds on the number of agents or variables per agent, etc.).

Theorem 7. If all of the utility functions decompose additively, and all of the components uf’j are piecewise linear (consisting of a finite
number of segments) and concave, then SW-MAXIMIZING-CONCESSIONS can be solved in polynomial time using linear programming.

Proof. Let the variables of the linear program be the x,{ and the ui-“j, each of which is a single-dimensional real-valued
variable. (We write them in bold font to indicate that they are variables in the linear program; in particular, it is important to

distinguish the variable u:."j from the function uf'j(~): the latter is part of the input.) Of course, to obtain a sensible solution,

i.('j should be determined by the values of the x,]<, namely, ubd = uf’j(x{(‘) should hold. This is not a linear

the values of the u ;
constraint, but we can capture it with a collection of linear constraints, using a standard linear programming trick. Before we

do so, we note that the objective (social welfare) can be written as > & > r_; Z'}il uf‘j , which is linear in the variables.

Also, the feasibility (voluntary participation) constraints can be written as: for any i, we require Y j_; Z;":"] u?‘j > 0. Again,
these constraints are linear in the variables. )
All that remains to do is to make sure that the ui.” variables take the correct values with respect to the values of

the x{; variables. Due to the objective of maximizing social welfare, a solver will always set the ui.“j variables to values
that are as high as possible, so we only need to make sure that they are not set too high. That is, we only need to add

constraints to ensure that uif’j < uf’j(x{;). Here, we will use the fact that the functions uf’j(-) are piecewise linear and
concave. Consider a linear segment of the function ui-”(~); let I(-) be the linear function that coincides with this segment.

Because uf"](-) is concave, the nonlinear constraint u:f’j < uif’](x,j() implies the linear constraint u:f’j < l(x,i). Conversely, if
we add all such linear constraints (one for each of the finitely many segments), collectively they will imply the nonlinear
constraint uif’] < uf’j(x,](). Hence, we can replace each of the nonlinear constraints with an equivalent collection of linear
constraints. These constraints complete the linear program. O

9. Conclusions and future research

In combinatorial auctions and similar settings, a no-externalities assumption is commonly made. However, more recently,
externalities have been receiving more attention. For example, in sponsored-search auctions, the attention that one winning
advertiser gets from the user in general depends on which other advertisers have won a slot. In other settings, externali-
ties play an even greater role. Novel mechanisms for determining how much each agent should give to certain charitable
causes [9,14] rely on the fact that an agent may be willing to give more if this induces others to give more as well. Thus,
these mechanisms fundamentally rely on an externality—namely, that one agent derives utility from seeing another agent
give money to a charity. More generally, it is clear that failing to model externalities comes at a significant cost in welfare
in many settings. For instance, when an agent is deciding whether to build a public good such as a bridge, many other
agents may be affected by this decision, as they could make use of the bridge. As another example, a company setting its
pollution level may affect the health and safety of many. This paper, to our knowledge, is the first that considers a general
representation of settings with externalities and studies the problem of computing good or even optimal outcomes within
this framework.

We showed that when both positive and negative externalities occur, determining whether a nontrivial feasible solution
exists is NP-complete even when each agent controls only one variable and all the utility functions decompose additively
into step functions. We then showed that with only negative externalities, determining whether a nontrivial feasible solution
exists is NP-complete even when each agent controls at most two variables and all the utility functions decompose additively
into step functions. We then gave an algorithm for the case where there are only negative externalities and each agent
controls only one variable, intended to find the feasible solution with the variables set to values that are as large as possible.
We showed that, although the algorithm may fail with certain discontinuous utility functions, it either terminates at or
converges to the maximal solution with continuous utility functions; and for the case where the utility functions decompose
additively into piecewise constant functions, it always terminates correctly, in a linear number of rounds. We also showed
why the natural generalization of the algorithm to cases where some agents control more than one variable may fail even
when all the utility functions decompose additively into step functions or continuous functions. We then showed that



V. Conitzer, T. Sandholm / Journal of Computer and System Sciences 78 (2012) 2-14 13

Table 1

Complexity of finding solutions in concessions settings. All of the hardness results hold even if the utility functions decompose additively into step functions.
Restriction Complexity
One variable per agent NP-complete to determine existence of nontrivial feasible solution
Negative externalities; two variables per agent NP-complete to determine existence of nontrivial feasible solution
Negative externalities; one variable per agent Algorithm 1 finds maximal feasible solution (linear #steps for utilities

that decompose additively into piecewise constant functions); NP-hard
to find social-welfare maximizing solution

Negative externalities; two agents NP-complete to determine existence of nontrivial feasible solution

Utilities decompose additively; components piecewise linear, concave Linear programming finds social welfare maximizing solution

the decision variant of the problem of maximizing social welfare remains NP-complete even when there are only negative
externalities, each agent controls only one variable, and all the utility functions decompose additively into step functions. We
also showed that even when there are only two agents, only negative externalities, and all the utility functions decompose
additively into step functions, the problem of determining whether a nontrivial feasible solution exists remains NP-complete.
Finally, we also demonstrated that if the utility functions decompose additively into functions that are piecewise linear and
concave, then the optimization problem can be solved to optimality (in polynomial time) using linear programming.

Table 1 gives a summary of our results.

In our opinion, the most important direction for future research is to study mechanism design aspects, in particular
incentive compatibility constraints, in our setting—that is, how to incentivize agents to report their preferences truthfully.
It should be noted that other work on specific settings with externalities, such as the work on mechanisms for charitable
donations [9,14], also makes only very limited progress on questions of incentive compatibility; however, in the context of
auctions, the study of mechanism design for settings with externalities has perhaps been more successful [22,23].

If it is possible for the mechanism to specify payments that should be made by or to the agents (possibly to or by an
external party), and utilities are quasilinear, then incentive compatibility can be obtained using VCG payments [40,6,21], as
long as we always choose a social welfare maximizing outcome. However, if payments to or by an external party are not
allowed (that is, we enforce budget balance), there are results that prove that it is impossible to obtain incentive compatibility
while always choosing an optimal outcome; for example, the well-known Myerson-Satterthwaite impossibility result [27]
can be embedded in our domain to prove such an impossibility.” However, we may still be able to choose outcomes that
are quite good, especially under certain assumptions. Such research may fall under the research agenda of approximate
mechanism design without money [32].

Another important direction for future research is to investigate how preferences should be elicited in this domain. In this
paper, we assumed that the agents’ preferences are completely known to us, and we focused on the computational problem
of finding an optimal (or at least good) outcome based on these preferences. However, in sufficiently rich environments, it
can be impractical for an agent to reveal her preferences in their entirety up front. Alternatively, we can employ an elicitation
algorithm, which sequentially asks agents to reveal parts of their preferences. This has the potential to greatly reduce the
total amount of preference information communicated, because the algorithm need not ask the agents about parts of their
preferences that have already been established to be irrelevant. Several overviews of preference elicitation in combinatorial
auctions are available [37,28].
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