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Logic
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Why logic?

Search: can compactly write down, solve 
problems like Sudoku
Reasoning: figure out consequences of the 
knowledge we’ve given our agent
… and, logical inference is a special case 
of probabilistic inference
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Propositional logic

Constants: T or F
Variables: x, y (values T or F)
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others: 
⊕, ⇒, ⇔, …

George Boole
1815–1864
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Propositional logic

Build up expressions like ¬x ⇒ y

Precedence: ¬, ∧, ∨, ⇒

Terminology: variable or constant with or 
w/o negation = literal
Whole thing = formula or sentence
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Expressive variable names

Rather than variable names like x, y, may 
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string 
with no internal structure

there is no “John”
happy(John) ⇒ ¬happy(Jack) means 
the same as x ⇒ ¬y
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But what does it mean?

A formula defines a mapping
(assignment to variables) ↦ {T, F}

Assignment to variables = model
For example, formula ¬x yields mapping:

x ¬x

T F

F T
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More truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F
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Truth table for implication

(a ⇒ b) is logically equivalent 
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will 
have popcorn”: if no movie, 
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T
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Complex formulas

To evaluate a bigger formula
(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Build a parse tree
Fill in variables at 
leaves using model
Work upwards using 
truth tables for 
connectives
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Another example

(x ∨ y) ⇒ z x = F, y = T, z = F
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Questions about models and 
sentences

How many models make a sentence true?
Sentence is satisfiable if true in some 
model (famous NP-complete problem)
If not satisfiable, it is a contradiction 
(false in every model)
A sentence is valid if it is true in every 
model (called a tautology)
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How is the variable X set in {some, all} 
satisfying models?
This is the most frequent question an agent 
would ask: given my assumptions, can I 
conclude X?  Can I rule X out?
SAT answers all the above questions

Questions about models and 
sentences
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Bigger 
Examples
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3-coloring
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http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Sudoku
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Constraint satisfaction problems

Like SAT, but:
variable domains are arbitrary (vs. TF)
complex constraints (vs. a ∨ b ∨ ¬c)

Sudoku: “at most one 3 in row 5”
Can translate SAT ⇔ CSP

often CSP more compact
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Minesweeper
“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid 
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP 
to find a unique set of labelings. Important step to 
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small 

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of 
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT :  Constra int Propagat ion a lways works perfec t ly .

+

+

+
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+

+

+
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-

-
--

--

-

-
--

-

-

image courtesy Andrew Moore
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Propositional planning

init: have(cake)
goal: have(cake), eaten(cake)
eat(cake):

 pre: have(cake)

 eff: -have(cake), eaten(cake)
bake(cake):

 pre: -have(cake)

 eff: have(cake)
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Scheduling (e.g., of factory production)
Facility location
Circuit layout
Multi-robot planning

Other important logic problems
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1 1 1
1 1 1 1 1 1 1 1 1

Minesweeper: what if no safe move?
Say each mine initially present w/ prob p
Common situation: independent “Nature” 
choices, deterministic rules thereafter
Logic represents deterministic rules ⇒ use 
logical reasoning as subroutine

Handling uncertainty
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Working with 
formulas
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Truth tables get big fast

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
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Truth tables get big fast

x y z a (x ∨ y ∨ a) ⇒ z
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T
T T T F
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F
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Definitions

Two sentences are equivalent, A ≡ B, if 
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, symmetric
Simplifying = transforming a formula into 
a simpler, equivalent formula
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Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas
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More rules

210 Chapter 7. Logical Agents
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chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
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models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as
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in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
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α, β are arbitrary formulas
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Still more rules…

… can be derived from truth tables
For example:

(a ∨ ¬a) ≡ True

(True ∨ a) ≡ True  (T elim)

(False ∧ a) ≡ False  (F elim)
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Example

(a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬(b ∨ c) ∨ ¬a)
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Normal 
Forms
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Normal forms

A normal form is a standard way of 
writing a formula
E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals
(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y) ∧ (z)

Each disjunct called a clause
Any formula can be transformed into CNF 
w/o changing meaning
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CNF cont’d

Often used for storage of knowledge database
called knowledge base or KB

Can add new clauses as we find them out
Each clause in KB is separately true (if KB is)

happy(John) ∧ 
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))
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Another normal form: DNF

DNF = disjunctive normal form = 
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t 
just add new conjuncts w/o changing 
meaning of KB
(rains ∨ pours) ∧ (¬pours ⇒ fishing)

33



Transforming to CNF or DNF

Naive algorithm:
replace all connectives with ∧∨¬

move negations inward using De 
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for 
DNF (∨ over ∧ for CNF)
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Example

Put in CNF:
(a ∨ ¬c) ∧ ¬(a ∧ b ∧ d ∧ ¬e)
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Discussion

Problem with naive algorithm: it’s 
exponential!  (Space, time, size of result.)
Each use of distributivity can almost 
double the size of a subformula
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A smarter transformation

Can we avoid exponential blowup in 
CNF?
Yes, if we’re willing to introduce new 
variables
G. Tseitin.  On the complexity of 
derivation in propositional calculus.  
Studies in Constrained Mathematics and 
Mathematical Logic, 1968.

37



Tseitin example

Put the following formula in CNF:
(a ∧ b) ∨ ((c ∨ d) ∧ e)

Parse tree:
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Tseitin transformation

Introduce temporary variables
x = (a ∧ b)

y = (c ∨ d)

z = (y ∧ e)

39



Tseitin transformation

To ensure x = (a ∧ b), want

x ⇒ (a ∧ b)

(a ∧ b) ⇒ x
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Tseitin transformation

x ⇒ (a ∧ b)

(¬x ∨ (a ∧ b))

(¬x ∨ a) ∧ (¬x ∨ b)
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Tseitin transformation

(a ∧ b) ⇒ x

(¬(a ∧ b) ∨ x)

(¬a ∨ ¬b ∨ x)
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Tseitin transformation

To ensure y = (c ∨ d), want

y ⇒ (c ∨ d)

(c ∨ d) ⇒ y
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Tseitin transformation

y ⇒ (c ∨ d)

(¬y ∨ c ∨ d)

(c ∨ d) ⇒ y
((¬c ∧ ¬d) ∨ y) 

(¬c ∨ y) ∧ (¬d ∨ y)
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Tseitin transformation

Finally, z = (y ∧ e)

z ⇒ (y ∧ e)  ≡  (¬z ∨ y) ∧ (¬z ∨ e)

(y ∧ e) ⇒ z  ≡  (¬y ∨ ¬e ∨ z)
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Tseitin end result

(a ∧ b) ∨ ((c ∨ d) ∧ e)  ≡

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x) ∧

(¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y) ∧
(¬z ∨ y) ∧ (¬z ∨ e) ∧ (¬y ∨ ¬e ∨ z) ∧

(x ∨ z)

46



Compositional 
Semantics
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Semantics

Recall: meaning of a formula is a function
models ↦ {T, F}

Why this choice?  So that meanings are 
compositional
Write [α] for meaning of formula α
[α ∧ β](M) = [α](M) ∧ [β](M)

Similarly for ∨, ¬, etc.
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Proofs
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Entailment

Sentence A entails sentence B, A ⊨ B, if B 
is true in every model where A is

same as saying that (A ⇒ B) is valid
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Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also 
believe consequence
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Proof tree example
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Proof by contradiction

Assume opposite of what we want to 
prove, show it leads to a contradiction 
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)
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Proof by contradiction
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Proof by contradiction
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