15-780: Graduate Al
Lecture 2. Pmofs & F OL

e L e e o i b et N Lhania /. PG

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman

o Recitations: Fri. 3PM here (GHC 4307)
o Vote: useful to have one tomorrow?

o would cover propositional & FO logic
o Draft schedule of due dates up on web

o Subject to change with notice

- - - .j 7' Y .'!

Course email list

PRI TSR b B Ly Tt ST P DA S Tty = 00 S S LI v b S5V b e b s AR r0 0 i PN M I A

o 15780students AT cs.cmu.edu

o Everyone’s official email should be in the
list—we’ve sent a test message, so if you
didn’t get it, let us know

A A A AT oo Tt 487ty S O TR e s N it e b 2 NONCR o 10 0 1 arir s DTNV R R IS

Review

What 1s AI?

AT A A T A T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o Lots of examples: poker, driving robots,
flying birds, RoboCup

o Things that are easy for humans/animals
to do, but no obvious algorithm

o Search / optimization /| summation
o Handling uncertainty

o Sequential decisions

Propositional logic

AT A A T A T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o Syntax
o variables, constants, operators
o literals, clauses, sentences
o Semantics (model - {T, F'})
o Truth tables, how to evaluate formulas
o Satisfiable, valid, contradiction

o Relationship to CSPs

Propositional logic

P . N - O R T . . o sng P b . . - m -) ”
YIPRSTERE A B Gt A L o Attt Lol g S S LS Gaanin s, WP, ~ B il

o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o Tseitin transformation to CNF

o Handling uncertainty (independent Nature
choices + logical consequences)

o Compositional semantics

o How to translate informally-specified
problems into logic (e.g., 3-coloring)

vl n s, v . ; 13 dore iy e SR ™9 P e
d J W 2 PRSP DL Y A ey o bad L3 40 3 PPN - - Pelvg -— ol e
sge Mv.nm = .

NP

Satisfiability

PO T BIan Ly Tt GBS Prrma s AN K Tty 5= IV S CAL It b P N stk e BT e P i e B

o SAT: determine whether a propositional
logic sentence has a satisfying model

o A decision problem: instance — yes or no
o Fundamental problem in CS
o many decision problems reduce to SAT

o informally, if we can solve SAT, we can
solve these other problems

o A SAT solver is a good Al building block

Example decision problem

—— — » ST SN Tty S I LIS IR yp s S st ek o ST, PP e PN

o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?

10

Reduction

_ .) B L e e s enn s)
B e S e e i i Lakanin . PO,

o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o Formally, let A, B be decision problems
(instances — Y or N)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))

11

Reduction picture

PIPETEIRE A B L Tt g BT Prrma o DAY A Tty SO0 S= S K ey

Yeoblewn N

AL AR

B i L i OSSN e P B

YeoS\ewn TS

DL (A

12

Reduction picture

OIS TR b o L, Tt GBS P g DA S8 Tty = 0 B Gt Ry o 5Vt mes e BR e MW

Yeoblewn N ?(o\\ew\ 15
g\w\d'io"\ £

AN (AN DAL AN

13

Reduction picture

meu&M P e

Yeoblewn N

)

AL AN

B il i OSSR S B it

YeoS\ewn TS

/)

DL (A

14

Reducmg k—colormg — SAT

(ar Vv ag Vv ap) A (br v bg Vv bp) A (CrV Cg V Cp) A
(dr v dgVvdp)AN(erVvegVep) AN(zrVZeV Zn) A
(mar Vv =br) A(—agV —bg) A (map Vv —bp) A

(marV =) AN(—agV —Zg) A(—ap V —2p) A

15

Teodlewn X YeoSlewn TS

Direction of
reduction -)

AL (AN AL Aot

o When A reduces to B:
o if we can solve B, we can solve A
o S0 B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one

16

Not-so-useful reduction

PEPISTEIRE b B L, Tt SRS PG DA A Tty S I ST COI T v e SN st b A BAR o rr o i Y

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly 1 path-edge touches goal

o either O or 2 touch each other node

17

More useful: SAT — CNF-SAT

it inrh

B e S e e i i Lakanin . PO, G 2

o Given any propositional formula, Tseitin
transformation produces (in poly time) an
equivalent CNF formula

o So, given a CNF-SAT solver, we can solve
SAT with general formulas

18

More useful: CNF-SAT — 3SAT

FRBCIOT TR b M LGN GBS P ST S Ty SO S ORI E Y e SNt e b e TR 10 0 1 g aia o Bletmanli el

o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o 3CNF': at most 3 literals per clause

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

19

CNF-SAT — 3SAT

PESCASTEIL b s Ly Tt AT PG AN S Tty 5 ON A S CAL IR v i e SN st s A e By G s

o Must get rid of long clauses
o E.g.,(av -bvcvdvev —f)
o Replace with

(av -bvx)AN(mxVcVY)A
(myvdvz)Aa(-zvev —f)

20

NP

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o A decision problem is in NP if it reduces to
SAT

o E.g., TSP, k-coloring, propositional
planning, integer programming (decision
versions)

o E.g., path planning, solving linear
equations

21

NP-complete

; v ‘ - iy S N 3 e W Y .
HBIOTNE b At Tt A e e P

it inrh

o Many decision problems reduce back and
forth to SAT: they are NP-complete

o Cook showed how to simulate any poly-
time nondeterministic computation w/
(very complicated, but still poly-size)
SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,
Proceedings of ACM STOC'71, pp. 151-158, 1971.

22

Open questlon P=NP

B e S e e i i Lakanin . PO, "

it inrh

o P = there is a poly-time algorithm to solve
o NP = reduces to SAT

o We know of no poly-time algorithm for
SAT, but we also can’t prove that SAT
requires more than about linear time!

23

Cost of reduction

ISR B 4, T g P A Aty S 9 A IR e W5Vt mes s MR o

o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o So, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...

- . - .j 7' > .'!

24

Cost of reduction

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo G s e Ml ol

o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)

25

Choosing a reduction

PN TR B 4, a7t GBS o DA S8 Tty S N L m BT I i s SN it e b B OTNCR 0 il DSV R B

o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days

26

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

Proofs

27

Entailment

o Sentence A entails sentence B,A= B, if B
is true in every model where A is

o same as saying that (A = B) is valid

28

Proof tree

e L e . Latanie . VWU So e S

o

o

A tree with a formula at each node

At each internal node, children = parent
Leaves: assumptions or premises
Root: consequence

If we believe assumptions, we should also
believe consequence

29

Proof tree example

P — : SOt AR Tty S I LTSGR IR s e SV it mes dl e S, PRSP S R P S

[RWAS =) P00
?ouxFS A ORKS1de =) ﬂ-m*"b

Q7 AN
WK A

30

Proof by contradiction

WWM - ¥ a4 Tty s—'umwazsz»~--~..-w-zwv...4...m.,hm;w* - -
o Assume opposite of what we want to
prove, show it leads to a contradiction

it inrh

o Suppose we want to show KB &= §

o Write KB’ for (KB A —S)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o 5o, (KB A =S) = F (contradiction)

31

Proof by contradiction

e L e ot T P

V\G)

J‘a“/\S "—? ?bdrs

?ouw‘S N ow‘“\“&& =) r\)s\?"b

QZ AN
o WS AN
/

/Q_/ VEL?M&J\- & AeS M

- - - -.l-i__,..v‘l

32

Proof by contradiction

- - ~ -.-,-_.,” >

33

R e Lo LR T e L S S N fe s XY e P

Inference
rules

Inference rule

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already

35

Modus ponens

e L e . Latanie . VWU So e S

(anbAac=d) a b c

d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:
man(Socrates) A

(man(Socrates) = mortal(Socrates))

36

Another inference rule

PSP TR b e L, Tt RS P S DA S Tty 5 I S A IR e S st mes e SR P e e AN

o Modus tollens

o Ifit’s raining the grass is wet; the grass is
not wet, so it's not raining

37

One more...

PISIETEIRE A B L Tt AT Prrma o DAY A Tty 5 OV ST I v e s S Vs

(ave) (7cvp)

o Resolution

o a, f are arbitrary subformulas

o Combines two formulas that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens

38

Resolution example

- - - .j 7' Y .'!

o Modus ponens / tollens are special cases
o Modus tollens:

(—raining v grass-wet) A ~grass-wet =
—raining

39

Resolution example

PSP TR b e L, Tt RS P S DA S Tty 5 I S A IR e S st mes e SR e TS

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

40

Resolution example

PR T s Ly Tt GO Prrmn S AN ATty = I = B I e Wi st A e Ny e ol

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours v —outside v rusty

40

Resolution example

WWMM“‘“ N At RN e VSt e e aaie” VISP ; P S

o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours v —outside v rusty

—=rains Vv —outside Vv rusty

40

Resolution

PRI TSR b B Ly Tt ST P DA S Tty = 00 S S LI v b S5V b e b s AR r0 0 i PN M I A

(ave) (mcvp)
avp

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False

41

Resolution case analysis

- . - -'-,A_ ,.'l

42

Soundness and completeness

PR LI e L, Tt GBS P S PN S ety S 0 S LI e SNt e b A OO e i B e ke

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven't discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB

43

Completeness

% m'msl . ; ii . S - ¥ 4 A Teprtiy J—'”“‘"ﬂ:mﬂ!o.»--g‘*i'-zh st s P -

o Modus ponens by itself is incomplete

o Resolution + proof by contradiction is . a. robinson
.« . 19181974
complete for propositional formulas
represented as sets of clauses

o famous theorem due to Robinson

o if KBE F,we’ll derive empty clause

o Caveat: also need factoring, removal of
redundant literals (av bv a)=(a v D)

44

Algorithms

) .) .. oL s ean —r I i
WWM 7L Do St 8- 44 2 TEE s L SR) I R st 0

o We now have our first” algorithm for SAT

o remove redundant literals (factor)
wherever possible

o pick an application of resolution
according to some fair rule

o add its consequence to KB
o repeat

o Not a great algorithm, but works

it inrh

45

Variations

o Horn clause inference
o MAXSAT

o Nonmonotonic logic

46

Horn clauses

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o Horn clause: (a A b A c=d)
o Equivalently, (—a v =b v —~c Vv d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body

47

Use of Horn clauses

) .] - s st e I) ‘ .
WWMM“G‘M” RRLE s et Y s P e s A Rt ea st 0 :

it inrh

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula,
again, easier to think about

48

Why are Horn clauses important

B e S e e i i Lakanin . PO, o e iman A

o Modus ponens alone is complete
o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

49

Forward chaining

PESIOTE IR A e L Tt GBS Prrma B SO AST SR Ity 5= B L I v e S F Vit ek A e BTN g | e

o Look for a clause with all body literals
satisfied

o Add its head to KB (modus ponens)
o Repeat
o See RN for more details

50

. .) - L o o ¥ P .) .
YISAETOIRL A 2o 4, Tt A L o Attt Lol g S S LS Gaanin s, WP, :

o

o

MAXSAT

it inrh

Given a CNF formula C; A C2 A ... A Cy

Clause weights wi, wa, ... w, (weighted
version) or w; = 1 (unweighted)

Find model which satisfies clauses of
maximum total weight

o decision version: max weight =w?

More generally, weights on variables
(bonus for setting to T): MAXVARSAT

51

Nonmonotonic logic

mwwm = Lt R St 8- b4 2 TR L SR e AR a0 o -

o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

52

Nonmonotonic logic

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo G s e Ml ol

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —mab(Polly) = flies(Polly)
bird(Tux) n —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

53

Nonmonotonic logic

. Y 4 - ¥ g o : s e e g - + ”_
YIPRSTERE A B Gt A L Tt daanaai d- b 3 TEEE L SR Y el PSR, .

it inrh

o Now set as few abnormality predicates as
possible (a MAXVARSAT problem)

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can'’t prove flies(Tux) any more, but can
still prove flies(Polly)

54

Nonmonotonic logic

mmxmpﬂymn&“"'““ M I aing, PWU, P b AR

o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

55

PSROTEIRL b B 4, Tt g AN v DA T4 b s e

First-order
logic

First-order logic

PSIETEIRE A B L Tt g DA Prrmar o AT A Tty 5 OV ST CAL G v e S st ek A NV g

Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

57

Predicates and objects

PPN ELIKE A B 4, Tt S P DA Sty S I AT ST v e S5V st et e BTN e i B e S Tl

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Zero-argument predicate x() plays same
role that Boolean variable x did before

58

Distinguished predicates

i D e VU SROTE S PE- LIPS

o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False / F
o Equal(x,y)

o We will also write (x = y) and (x Z)

59

Equality satisfies usual axioms

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo G s e Ml ol

o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)

60

Functions

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()

61

The nil object

ORI e Ly Tt GBS Prra e AN ATty 5= N = B e Wi st mvs e e PO I

o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense

62

Types of values

IS EN b A e AL o ATty S 9% £ L 5 e 8- AR 00 e PO RGOS
o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object-valued and Boolean-valued

o done(slides(15-780)) =
happy(professor(15-780))

o Functions map objects to objects,
predicates map objects to Booleans,
connectives map Booleans to Booleans

63

Definitions

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)

64

Definitions

AR Ao St g A s o et e S - AR 5% s e I POL SR IR IS

o Literal = possibly-negated atom
o happy(John), —happy(John)

o Sentence or formula = literals joined by
connectives like AV—~=>

o raining
o done(slides(780)) = happy(professor)

o Expression = term or formula

65

Semantics

WWMMVQQM o9 4 ""Y-'NQ!»-‘-%"’"V-IW"“!"""‘"&‘,‘0.,_*“ 2 P S

o Models are now much more complicated
o List of objects (nonempty, may be infinite)
o Lookup table for each function mentioned

o Lookup table for each predicate
mentioned

o Meaning of sentence: model — {T, F}

o Meaning of term: model — object

66

For example

IS A A, Pt A P ATty 5= 9 £ SIS e S5V it et - TR 10 a1 i DM L

\

67

KB describing example

WWMM“‘H"'“m'a""!"‘"""" ot Latanie ” VIR, £ P S

o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...

68

Aside: avo1d1ng Verb081ty

PR TIE A s Ly Tt GO Prmn e AT 8Tt 5= OV LT ER T e SN st et M e MR v e

o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

it inrh

69

Aside: typed variables

‘ma— -"H”"‘L:&. Nt 4 l‘\—-" -~ M“.&" e

o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Include rules saying function instances
which disobey type rules have value nil

70

Model of example

PN TR B 4, a7t GBS o DA S8 Tty S N L m BT I i s SN it e b B OTNCR 0 il DSV R B

o Objects: C,B, E, N
o Function values:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), =in(C, C), =in(C, N), ...

71

Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects

72

Another possible model

PN TR B 4, a7t GBS o DA S8 Tty S N L m BT I i s SN it e b B OTNCR 0 il DSV R B

o Objects: C,B, E, N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear

73

An embarrassment of models

) .] - s st e I) ‘ .
WWMM“G‘M” RRLE s et Y s P e s A Rt ea st 0 :

o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don’t
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

it inrh

74

Getting rid of extra objects

e L T L e i it Lattanie . PV, ~ e s TR

o Can use quantifiers to rule out CBENX
model.:

Vx.x=catvx=boxVv x=ear v x = nil

o Called a domain closure assumption

75

Quanuﬁers 1nforma11y

PSP TR b e L Tt S Prrmr S DA S Tty 5 N S AL IR s e Ntk ARy | e Bl el

o Add quantifiers and object variables
o Vx.man(x) = mortal(x)
o =dx. lunch(x) A free(x)

o V. no matter how we replace object
variables with objects, formula is still true

o d: there is some way to fill in object
variables to make formula true

76

New syntax

AT A A T A T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o Object variables are terms

o Build atoms from variables x, vy, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

77

New syntax = new semantics

it inrh

B e S e e i i Lakanin . PO,

o Variable assignment for a model M maps
syntactic variables to model objects

o x:C,y: N

o Meaning of expression w/ free vars: look up
in assignment, then continue as before

o term: (model, var asst) — object

o formula: (model, var asst) — truth value

78

Example

o Model: CEBN model from above
o Assignment: (x: C,y: N)
o alive(ear(x)) » alive(ear(C)) » alive(E) » T

79

Working with assignments

WINPT 1 v ." ; . - PPV Pl b . 3. DO ,v-.‘qg.mu“;tv“ - -

o Write € for an arbitrary assignment (e.g.,
all variables map to nil)

o Write (V/ x: obj) for the assignment which
is just like V except that variable x maps to
object obj

80

More new syntax:
Quant1ﬁers blndlng

e hae i b N St chanie . PR,

OISR B 4 T A

it inrh

o For any variable x and formula F, (Vx. F)
and (dx. F) are formulas

o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like AV — in any order

o But must eventually wind up with ground
formula (no free variables)

81

Semantics of V

o Sentence (Vx.S)isTin(M,V)ifSisTin
(M, V' / x: obj) for all objects obj in M

82

Example

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo G s e Ml ol

o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence Vx. happy(x) is satisfied in (M,)

o since happy(A), happy(B), happy(C) are
all satisfied in M

o more precisely, happy(x) is satisfied in
(M, e/x:A), (M, ¢/x:B), (M, e/x:C)

83

Semantics of 3

PRI TSR b B Ly Tt ST P DA S Tty = 00 S S LI v b S5V b e b s AR r0 0 i PN M I A

o Sentence (Ix.S) is true in (M, V) if there is

some object obj in M such that S is true in
(M, V/x:obj)

84

Example

o M has objects (A, B, C) and predicate

o happy(A) = happy(B) = True

o happy(C) = False
o Sentence dx. happy(x) is satisfied in (M,)
o Since happy(x) is satisfied in (M, &/x:B)

85

Scoping rules (so we don’t have
to write a gazﬂhon parens)

PSR EIE A s Ly Tt T oo G AN S Tty 5= N B2 CAL I v i SN st il e By, N Sl

o In(Vx.F)and (3x. F), F = scope = part of
formula where quantifier applies

o Variable x is bound by innermost possible
quantifier (matching name, in scope)

o Two variables in different scopes can have
same name—they are still different vars

o Quantification has lowest precedence

86

Scoping examples

PR TR I Ly Tt G Prma o AT ATt 5= N LS S TR e S N st ek M BTNCR 10 0 o i PPN s B

o (Vx. happy(x)) v (Ax. —happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet

87

Scoping examples

PRI TSR b B Ly Tt ST P DA S Tty = 00 S S LI v b S5V b e b s AR r0 0 i PN M I A

o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx. loves(x, y)

88

POIETOIRL A 2o 4, Tt A PG DA T84 b s Lt A e ISP I A

Equwal@nce
in FOL

Entailment, etc.

; v ‘ - iy S N 3 e W Y .
HBIOTNE b At Tt A e e P

it inrh

o As before, entailment, satisfiability, validity,
equivalence, etc. refer to all possible models

o these words only apply to ground sentences,
so variable assignment doesn’t matter

o But now, can’t determine by enumerating
models, since there could be infinitely many

o So, must do reasoning via equivalences or
entailments

90

Equivalences

AT A A T A T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S = dx. =S
-dx.S = Vx. -5

o And, rules for getting rid of quantifiers

91

Generalizing CNF

B e S e e i i Lakanin . PO,

o Eliminate =, move -~ in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute nv, or use Tseitin

it inrh

92

Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))

93

Skolemization

FOIOTEIRE A oy Tt GBS Prrm i SOEAST SR Tty 5= I L G IR v e S H Vst it e 0

o Called Skolemization
(after Thoraf Albert

Skolem) | Thoraf Albert olem
1887-1963

o Eliminate 3 by substituting a function of
arguments of all enclosing N quantifiers

o Make sure to use a new name!

94

Do we really need V?

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo G s e Ml ol

o Positions of quantifiers irrelevant (as long
as variable names are distinct)

o Vx. happy(x) n Yy. takes(y, CS780)
o Vx.Vy. happy(x) n takes(y, CS780)

o So, might as well drop them
o happy(x) A takes(y, CS780)

95

Getting rid of quant1ﬁers

WWMM 8 Sy 5 I hrrw s v Sy Y et ¥ Sk [hande ! PR -t . -

it inrh

o Standardize apart (avoid name collisions)
o Skolemize

o Drop Y (free variables implicitly
universally quantified)

o Terminology: still called “free” even
though quantification is implicit

96

For example

HISTEIRE S A 4 Gt WA T ettt L L S R

o Vx.man(x) = mortal(x)
o —man(x) v mortal(x)

o Vy.dx. loves(y, x)

o loves(y, f(y))
o Vx. honest(x) = happy(Diogenes)

o —honest(x) v happy(Diogenes)
o (Vx. honest(x)) = happy(Diogenes)

97

Exercise

o (Vx. honest(x)) = happy(Diogenes)

98

PDEIOT RS A A A TN GRS P AN 44Ty O LT LI e 3 SN ot e 6 B2 BANCR 110 0 o1 i i DTSV M IR AN

Proofs 1n
FOL

99

FOL 1s special

o o s v . . - r44" Al e i3, 1.0 3 PP oot "-“4‘.“‘.&"‘4&"-*@ . - -

it inrh

o Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for
FOL w/ equality

o Almost any significant extension breaks
this property

o This is why FOL is popular: very powerful
language with a sound & complete
inference procedure

100

o Proofs by contradiction work as before:
o add -~S to KB
o putin CNF
o run resolution

o If we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed

101

Generalizing resolution

. . . B L e o 2 s ST X .
YISAIOTERL A B 4 Tt A TAA Ty = B it Lankanie . PRSP .

it inrh

o Propositional: (~av b) nak= b
o FOL:
(mman(x) v mortal(x)) A man(Socrates)

= (—~man(Socrates) v mortal(Socrates))
A man(Socrates)

= mortal(Socrates)

o Difference: had to substitute x — Socrates

102

Universal instantiation

. .) - L o o ¥ P .) .
YISAETOIRL A 2o 4, Tt A L o Attt Lol g S S LS Gaanin s, WP, :

it inrh

o What we just did is Ul:

(—man(x) v mortal(x))
= (—man(Socrates) v mortal(Socrates))

o Works for x — any term not containing x

...E (7man(uncle(y)) v mortal(uncle(y)))

o For proofs, need a good way to find useful
instantiations

103

Substitution lists

e L e . Latanie . VWU So e S

o List of variable — term pairs

o Values may contain variables (leaving
flexibility about final instantiation)

o But, no LHS may be contained in any RHS

o 1.e., applying substitution twice is the
same as doing it once

o E.g.,L = (x— Socrates,y — uncle(z))

104

Substitution lists

HPRTE b Mo A Tt S T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o Apply a substitution to an expression:
syntactically substitute vars — terms

o E.g.,L = (x— Socrates,y — uncle(z))

o mortal(x) A man(y): L —
mortal(Socrates) A man(uncle(z))

o Substitution list # variable assignment

105

Unification

mmxmpﬂymn&“"'““ M I aing, PWU, P b AR

o Two FOL terms unify with each other if
there is a substitution list that makes them

syntactically identical

o man(x), man(Socrates) unify using the
substitution x — Socrates

o Importance: purely syntactic criterion for
identifying useful substitutions

106

Unification examples

DI EIRE A o L Tt g Prran S SAEDANT K Ty 5 I LTS L R v e s OV stk e TR oo e D P i s AN

o loves(x, x), loves(John, y) unify using
x — John,y — John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x), y), loves(z, aunt(z)):

107

Unification examples

- - - .j 7' Y .'!

o loves(x, x), loves(John, y) unify using
x — John, y — John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o 7 —> uncle(x), y — aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))

108

o Can we unify

knows(John, x) knows(x, Mary)

o What about
knows(John, x) knows(y, Mary)

109

o Can we unify
knows(John, x) knows(x, Mary)
No!

o What about
knows(John, x) knows(y, Mary)

x — Mary, y — John

110

Standardize apart

PRI TSR b B Ly Tt ST P DA S Tty = 00 S S LI v b S5V b e b s AR r0 0 i PN M I A

o But knows(x, Mary) is logically equivalent
to knows(y, Mary)!

o Moral: standardize apart before unifying

111

Most general unifier

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.

112

First-order resolution

- - - .j 7' Y .'!

o Given clauses (o v ¢), (=d v), and a
substitution list L unifying c and d

o Conclude (avv) : L
o In fact, only ever need L to be MGU of c, d

113

Example

OO s ot g e ettt 5t el AT
(Crng A ©UTIAe (1) = Loek ()
e (A2 mﬁ»&u&\ VU (JfDBE (&]
okoy (D — (‘uxSﬁ‘Q/Dt?C <\

' C':u\%
‘d;w‘wo% (RS @l o) A ovisde Lo

114

(Cong v © VAL (R —> Lok (<)
e} (2 mﬁkm v/ »FucﬁfJfDBC C&}

\[_OLQU‘\' L?L\?—) - ruxsﬁ‘g/bac OQX

s G':U\%
a,w‘Mo; (A @bor() A oisde L]

115

First-order factoring

it inrh

) .] - s st e I) ‘ .
WWMM“G‘M” RRLE s et Y s P e s A Rt ea st 0 :

o When removing redundant literals, we
have the option of unifying them first

o Given clause (a v b v 0), substitution L
o Ifa:Landb : L are the same

o Then we can conclude (a v 0) : L

o Again L = MGU is enough

116

Completeness

PSRN A e R L L At b D Sl L SN Y i, T L0 A adr i]

o First-order resolution (w/ FO
factoring) is sound and complete for

Jacques Herbrand

FOL w/o = (famous theorem due to 19081931
Herbrand and Robinson)

o Unlike propositional case, may be infinitely many
possible resolutions

o So, FO entailment is semidecidable (entailed
statements are recursively enumerable)

117

Variation

mmmpmmm’udm bt 8- 4.3 TEREE b

o Restrict semantics so we only need to
check one finite propositional KB

o NP-complete much better than RE

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don’t exist

118

FBOIOT TR b Ao 4, Tt GBS Promrai OE DA 44 o bowsiny Brare

Who? What?
Where’

Wh-questions

PR LS e Ly Tt GBS Prrmar i O Sty S N S LI e OV b ek AR BTN v i P B R AN

o We’ve shown how to answer a question
like “is Socrates mortal?”

o What if we have a question whose answer
is not just yes/no, like “who killed JR?” or
“Where is my robot?”

o Simplest approach: prove Ax. killed(x, JR),
hope the proof is constructive

120
120

Answer literals

PR LS e Ly Tt GBS Prrmar i O Sty S N S LI e OV b ek AR BTN v i P B R AN

o Simple approach doesn’t always work
o Instead of =S(x), add (=S(x) v answer(x))

o If there’s a contradiction, we can eliminate
=S(x) by resolution and unification,
leaving answer(x) with x bound to a value
that causes a contradiction

121
121

Example
ity \\\\S (\jo‘c_l\ ICC.* \ v - L\« (C un DQ‘J.('] [Cc::ﬁ')*

—"IL/\\\S (SC_/_,L’-\J pd)

122

FPIOTERE A B A Gt A AT 4 s S b e N ¥ e 6 2 BANCR 10,0 o i i TSV M IR 0 AN
J i v L ot ;

Extensions

123

Equahty

PSRN A B Ly Gt g Prrmr B O OAST KTt = O LS R I e SV st st e e P =

o Paramodulation is sound and complete
for FOL+equality (see RN)

o Or, resolution + axiom schema

124

Uncertainty

PO TR D 4, Tt GO P DA Sy 5 O B0 SR v eSS st e R e PR T

o Same trick as before: many independent
random choices by Nature, logical rules
for their consequences

o Two new difficulties
o ensuring satisfiability (not new, harder)

o describing set of random choices

125
125

Independent Choice Logle

Ty S I s b o O e sV et A e NTNR st aon : N

OISR B 4 T A

o Generalizes Bayes nets, Markov logic,
Prolog programs—incomparable to FOL

o Satisfiability: uses only acyclic KBs
(always feasible)

o Random choices: assume all syntactically
distinct terms are distinct (so we know
what objects are in our model)

o Attach random choices to tuples of objects

126
126

Other choices: Markov loglc

YISAETOIRL A 2o 4, Tt A
o Assume unique names, domam closure,
known fns: KB determines finite universe

L o Attt Lol g S S LS Gaanin s, WP,

it inrh

o Fach FO statement now has a known set
of ground instances

o e.g., loves(x,y) = happy(x) has n?
instances if there are n people

o One random choice per rule instance:
enforce w/p p (KBs that satisfy the rule are
p/(1-p) times more likely)

Richardson & Domingos

127

Inference under uncertainty

WWMMVQQM o9 4 ""Y-'NQ!»-‘-%"’"V-IW"“!"""‘"&‘,‘0.,_*“ 2 P S

o Wide open topic: lots of recent work!

o We’ll cover only the special case of
propositional inference under uncertainty

o The extension to FO is left as an exercise
for the listener

128
128

Second order logic

AT A A T A T4 T 2 o b S et e S 2 BTNCR 50 0 1 i i DAL R IS

o SOL adds quantification over predicates

o E.g., principle of mathematical induction:

o YP. P(0) A (Vx. P(x) = P(S(x)))
= Vx. P(x)

o There is no sound and complete inference
procedure for SOL (Gddel’s famous
incompleteness theorem)

129

Others

BN, A 4, T G P AT Ay 5= e LI S5 bt e SR e

- - - .j 7' > .'!

o Temporal and modal logics (“P(x) will be
true at some time in the future,” “John
believes P(x)”)

o Nonmonotonic FOL

o First-class functions (lambda operator,
application)

130

