15-780: Graduate AI Lecture 2. Proofs & FOL

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Recitations: Fri. 3PM here (GHC 4307)
- Vote: useful to have one tomorrow?
 - would cover propositional & FO logic
- Draft schedule of due dates up on web
 - subject to change with notice

Course email list

- 15780students AT cs.cmu.edu
- Everyone's official email should be in the list—we've sent a test message, so if you didn't get it, let us know

Review

What is AI?

- Lots of examples: poker, driving robots, flying birds, RoboCup
- Things that are easy for humans/animals to do, but no obvious algorithm
- Search / optimization / summation
- Handling uncertainty
- Sequential decisions

Propositional logic

- Syntax
 - variables, constants, operators
 - literals, clauses, sentences
- \circ Semantics (model \mapsto {T, F})
- Truth tables, how to evaluate formulas
- Satisfiable, valid, contradiction
- Relationship to CSPs

Propositional logic

- Manipulating formulas (e.g., de Morgan)
- Normal forms (e.g., CNF)
- Tseitin transformation to CNF
- Handling uncertainty (independent Nature choices + logical consequences)
- Compositional semantics
- How to translate informally-specified problems into logic (e.g., 3-coloring)

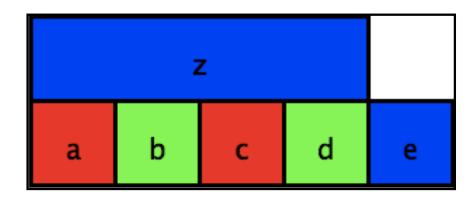
NP

Sales of the sales

Satisfiability

- SAT: determine whether a propositional logic sentence has a satisfying model
- ∘ A decision problem: instance → yes or no
- Fundamental problem in CS
 - many decision problems reduce to SAT
 - informally, if we can solve SAT, we can solve these other problems
- A SAT solver is a good AI building block

Example decision problem

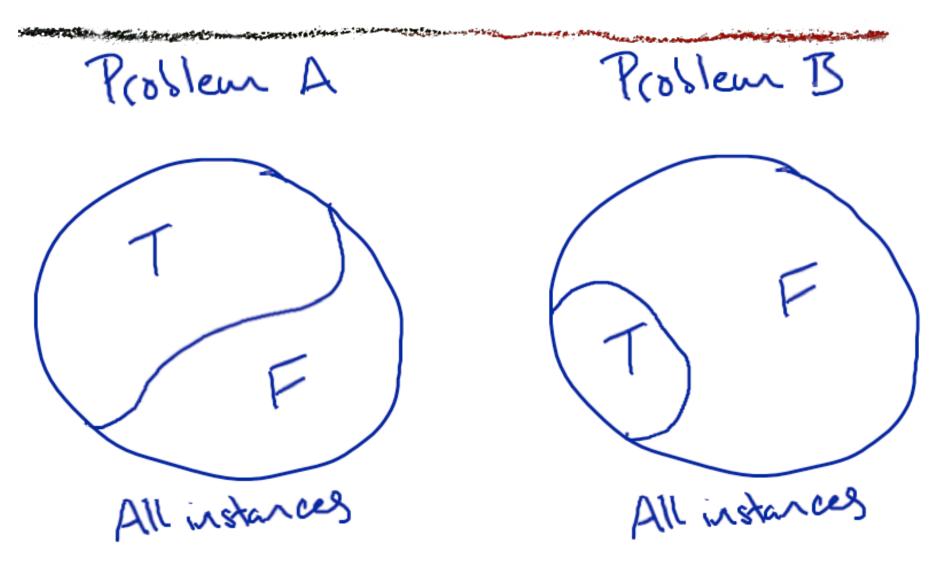


 k-coloring: can we color a map using only k colors in a way that keeps neighboring regions from being the same color?

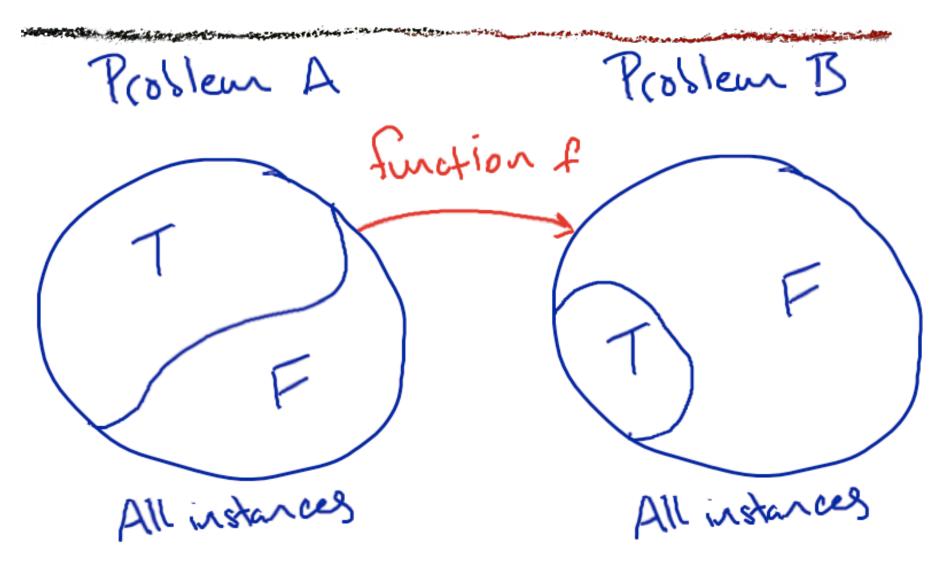
Reduction

- Loosely, "A reduces to B" means that if we can solve B then we can solve A
- Formally, let A, B be decision problems (instances \rightarrow Y or N)
- A reduction is a poly-time function f such that, given an instance a of A
 - \circ f(a) is an instance of B, and
 - $\circ \ A(a) = B(f(a))$

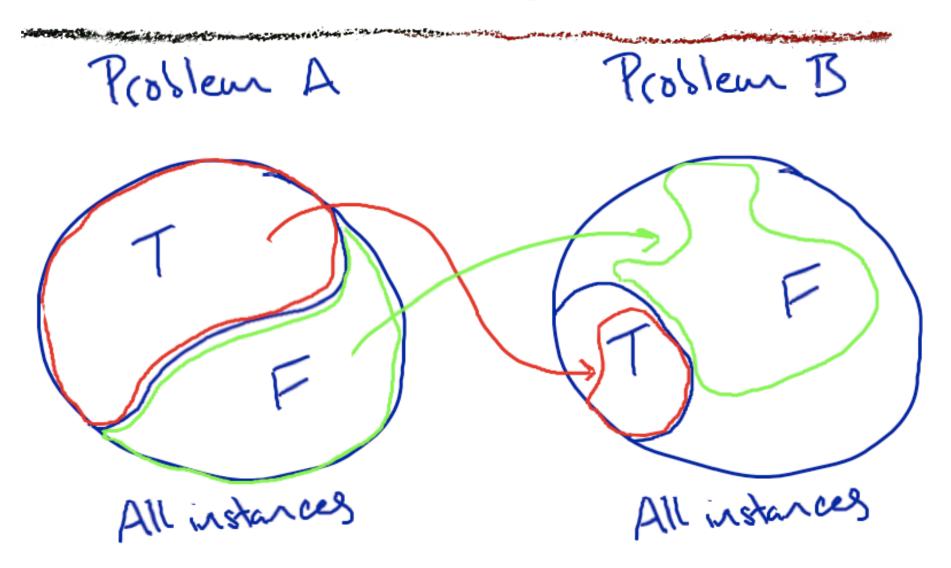
Reduction picture



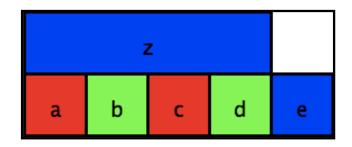
Reduction picture



Reduction picture

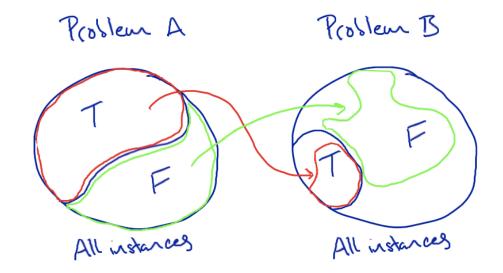


Reducing k-coloring → SAT



$$(a_r \vee a_g \vee a_b) \wedge (b_r \vee b_g \vee b_b) \wedge (c_r \vee c_g \vee c_b) \wedge (d_r \vee d_g \vee d_b) \wedge (e_r \vee e_g \vee e_b) \wedge (z_r \vee z_g \vee z_b) \wedge (\neg a_r \vee \neg b_r) \wedge (\neg a_g \vee \neg b_g) \wedge (\neg a_b \vee \neg b_b) \wedge (\neg a_r \vee \neg z_r) \wedge (\neg a_g \vee \neg z_g) \wedge (\neg a_b \vee \neg z_b) \wedge \cdots$$

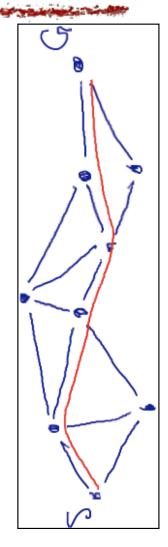
Direction of reduction



- When A reduces to B:
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
- Trivially, can take an easy problem and reduce it to a hard one

Not-so-useful reduction

- Path planning reduces to SAT
- Variables: is edge e in path?
- Constraints:
 - exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - either 0 or 2 touch each other node



More useful: $SAT \rightarrow CNF-SAT$

- Given any propositional formula, Tseitin transformation produces (in poly time) an equivalent CNF formula
- So, given a CNF-SAT solver, we can solve SAT with general formulas

More useful: $CNF-SAT \rightarrow 3SAT$

- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
 - 3CNF: at most 3 literals per clause
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)

$CNF-SAT \rightarrow 3SAT$

- Must get rid of long clauses
- \circ *E.g.*, ($a \lor \neg b \lor c \lor d \lor e \lor \neg f$)
- Replace with

$$(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)$$

NP

- A decision problem is in NP if it reduces to SAT
- E.g., TSP, k-coloring, propositional planning, integer programming (decision versions)
- E.g., path planning, solving linear equations

NP-complete

- Many decision problems reduce back and forth to SAT: they are NP-complete
 - Cook showed how to simulate any polytime nondeterministic computation w/ (very complicated, but still poly-size)
 SAT problem
- Equivalently, SAT is exactly as hard (in theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures, Proceedings of ACM STOC'71, pp. 151–158, 1971.

Open question: P = NP

- \circ P = there is a poly-time algorithm to solve
- \circ NP = reduces to SAT
- We know of no poly-time algorithm for SAT, but we also can't prove that SAT requires more than about linear time!

Cost of reduction

- Complexity theorists often ignore little things like constant factors (or even polynomial factors!)
- So, is it a good idea to reduce your decision problem to SAT?
- Answer: sometimes...

Cost of reduction

- \circ SAT is well studied \Rightarrow fast solvers
- So, if there is an efficient reduction, ability to use fast SAT solvers can be a win
 - e.g., 3-coloring
 - another example later (SATplan)
- Other times, cost of reduction is too high
 - usu. because instance gets bigger
 - will also see example later (MILP)

Choosing a reduction

- May be many reductions from problem A to problem B
- May have wildly different properties
 - e.g., solving transformed instance may take seconds vs. days

Proofs

Entailment

- Sentence A entails sentence $B, A \models B, if B$ is true in every model where A is
 - same as saying that $(A \Rightarrow B)$ is valid

Proof tree

- A tree with a formula at each node
- At each internal node, children \models parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence

Proof tree example

rains => pours
pours noutside => rusty
rains
outside

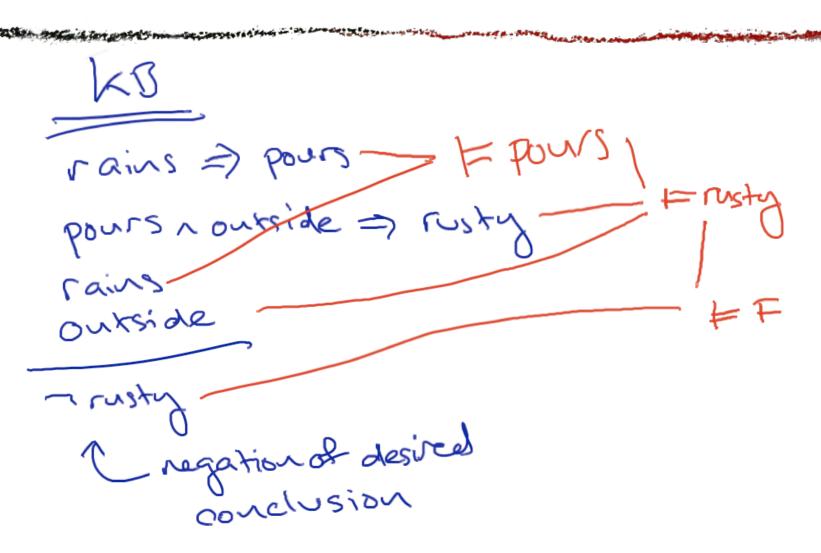
Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction
- Suppose we want to show $KB \models S$
- Write KB' for $(KB \land \neg S)$
- Build a proof tree with
 - assumptions drawn from clauses of KB'
 - \circ conclusion = F
 - \circ so, $(KB \land \neg S) \models F (contradiction)$

Proof by contradiction

rains => pours pours , outside => rusty 1 régation de desired

Proof by contradiction



Inference rules

Inference rule

- To make a proof tree, we need to be able to figure out new formulas entailed by KB
- Method for finding entailed formulas = inference rule
- We've implicitly been using one already

Modus ponens

$$\frac{(a \land b \land c \Rightarrow d) \ a \ b \ c}{d}$$

- Probably most famous inference rule: all men are mortal, Socrates is a man, therefore Socrates is mortal
- Quantifier-free version:

 $(man(Socrates) \Rightarrow mortal(Socrates))$

Another inference rule

$$\frac{(a \Rightarrow b) \ \neg b}{\neg a}$$

- Modus tollens
- If it's raining the grass is wet; the grass is not wet, so it's not raining

One more...

$$\frac{(\alpha \vee c) \quad (\neg c \vee \beta)}{\alpha \vee \beta}$$

- Resolution
 - \circ α , β are arbitrary subformulas
- Combines two formulas that contain a literal and its negation
- Not as commonly known as modus ponens / tollens

- Modus ponens / tollens are special cases
- Modus tollens:

```
(\neg raining \lor grass-wet) \land \neg grass-wet \vDash \neg raining
```

- $\circ rains \Rightarrow pours$
- \circ pours \land outside \Rightarrow rusty
- Can we conclude rains \land outside \Rightarrow rusty?

- $\circ rains \Rightarrow pours$
- \circ pours \land outside \Rightarrow rusty
- Can we conclude rains \land outside \Rightarrow rusty?

¬rains ∨ pours ¬pours ∨ ¬outside ∨ rusty

- $\circ rains \Rightarrow pours$
- \circ pours \land outside \Rightarrow rusty
- Can we conclude rains \land outside \Rightarrow rusty?

¬rains ∨ pours
¬pours ∨ ¬outside ∨ rusty
¬rains ∨ ¬outside ∨ rusty

Resolution

$$\frac{(\alpha \vee c) \quad (\neg c \vee \beta)}{\alpha \vee \beta}$$

- Simple proof by case analysis
- Consider separately cases where we assign c = True and c = False

Resolution case analysis

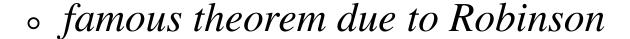
$$(\alpha \vee c) \quad (\neg c \vee \beta)$$

Soundness and completeness

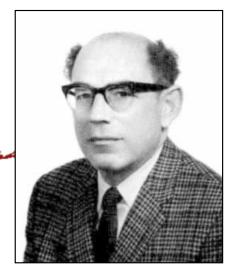
- An inference procedure is sound if it can only conclude things entailed by KB
 - common sense; haven't discussed anything unsound
- A procedure is complete if it can conclude everything entailed by KB

Completeness

- Modus ponens by itself is incomplete
- Resolution + proof by contradiction is complete for propositional formulas represented as sets of clauses



- if $KB \models F$, we'll derive empty clause
- Caveat: also need **factoring**, removal of redundant literals $(a \lor b \lor a) \vDash (a \lor b)$



J. A. Robinson 1918–1974

Algorithms

- We now have our first* algorithm for SAT
 - remove redundant literals (factor) wherever possible
 - pick an application of resolution according to some fair rule
 - add its consequence to KB
 - repeat
- Not a great algorithm, but works

Variations

- Horn clause inference
- MAXSAT
- Nonmonotonic logic

Horn clauses

- *Horn clause:* $(a \land b \land c \Rightarrow d)$
- \circ Equivalently, $(\neg a \lor \neg b \lor \neg c \lor d)$
- Disjunction of literals, **at most one** of which is positive
- \circ Positive literal = head, rest = body

Use of Horn clauses

People find it easy to write Horn clauses
 (listing out conditions under which we can conclude head)

 $happy(John) \land happy(Mary) \Rightarrow happy(Sue)$

No negative literals in above formula;
 again, easier to think about

Why are Horn clauses important

- Modus ponens alone is complete
- So is modus tollens alone
- Inference in a KB of propositional Horn clauses is linear
 - e.g., by forward chaining

Forward chaining

- Look for a clause with all body literals satisfied
- Add its head to KB (modus ponens)
- Repeat
- See RN for more details

MAXSAT

- Given a CNF formula $C_1 \wedge C_2 \wedge ... \wedge C_n$
- Clause weights $w_1, w_2, ... w_n$ (weighted version) or $w_i = 1$ (unweighted)
- Find model which satisfies clauses of maximum total weight
 - \circ decision version: max weight ≥ w?
- More generally, weights on variables (bonus for setting to T): MAXVARSAT

- Suppose we believe all birds can fly
- Might add a set of sentences to KB

```
bird(Polly) \Rightarrow flies(Polly)
```

 $bird(Tweety) \Rightarrow flies(Tweety)$

 $bird(Tux) \Rightarrow flies(Tux)$

 $bird(John) \Rightarrow flies(John)$

• • •

- Fails if there are penguins in the KB
- Fix: instead, add

$$bird(Polly) \land \neg ab(Polly) \Rightarrow flies(Polly)$$

 $bird(Tux) \land \neg ab(Tux) \Rightarrow flies(Tux)$

. . .

- ab(Tux) is an "abnormality predicate"
- Need separate $ab_i(x)$ for each type of rule

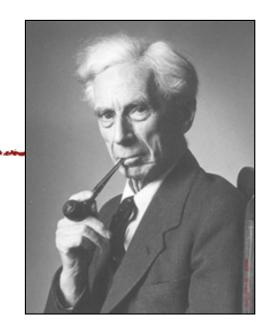
- Now set as few abnormality predicates as possible (a MAXVARSAT problem)
- Can prove flies(Polly) or flies(Tux) with no ab(x) assumptions
- ∘ If we assert ¬flies(Tux), must now assume ab(Tux) to maintain consistency
- Can't prove flies(Tux) any more, but can still prove flies(Polly)

- Works well as long as we don't have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don't wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don't, but superhero penguins do, but ...

First-order logic

First-order logic

Bertrand Russell 1872-1970



- So far we've been using opaque vars like rains or happy(John)
- Limits us to statements like "it's raining" or "if John is happy then Mary is happy"
- Can't say "all men are mortal" or "if John is happy then someone else is happy too"

Predicates and objects

- Interpret happy(John) or likes(Joe, pizza)
 as a predicate applied to some objects
- Object = an object in the world
- Predicate = boolean-valued function of objects
- Zero-argument predicate x() plays same role that Boolean variable x did before

Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True / T, False / F
 - $\circ Equal(x, y)$
- We will also write (x = y) and $(x \neq y)$

Equality satisfies usual axioms

- Reflexive, transitive, symmetric
- Substituting equal objects doesn't change value of expression

 $(John = Jonathan) \land loves(Mary, John)$

 $\Rightarrow loves(Mary, Jonathan)$

Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-commonancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()

The nil object

- Functions are untyped: must have a value for any set of arguments
- Typically add a **nil** object to use as value when other answers don't make sense

Types of values

- Expressions in propositional logic could only have Boolean (T/F) values
- Now we have two types of expressions: object-valued and Boolean-valued
 - $done(slides(15-780)) \Rightarrow$ happy(professor(15-780))
- Functions map objects to objects;
 predicates map objects to Booleans;
 connectives map Booleans to Booleans

Definitions

- **Term** = expression referring to an object
 - John
 - left-leg-of(father-of(president-of(USA)))
- **Atom** = predicate applied to objects
 - happy(John)
 - raining
 - at(robot, Wean-5409, 11AM-Wed)

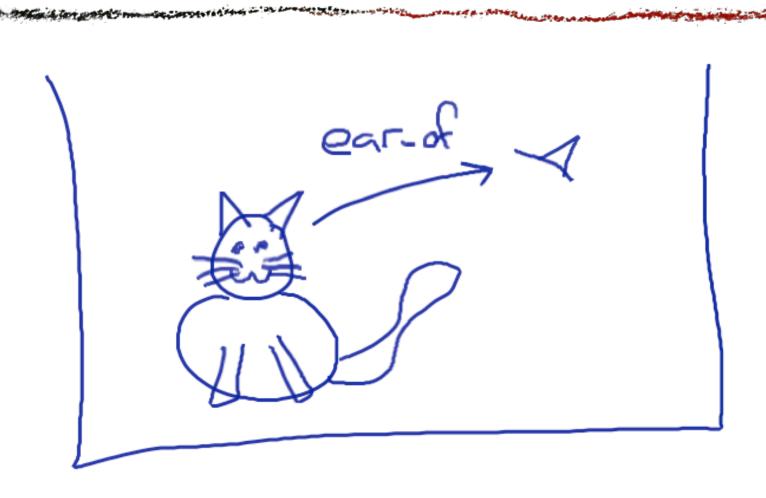
Definitions

- *Literal* = possibly-negated atom
 - \circ happy(John), \neg happy(John)
- **Sentence** or **formula** = literals joined by connectives like $\land \lor \neg \Rightarrow$
 - raining
 - $\circ done(slides(780)) \Rightarrow happy(professor)$
- **Expression** = term or formula

Semantics

- Models are now much more complicated
 - List of objects (nonempty, may be infinite)
 - Lookup table for each function mentioned
 - Lookup table for each predicate mentioned
- *Meaning of sentence:* $model \rightarrow \{T, F\}$
- ∘ Meaning of term: model → object

For example



KB describing example

- alive(cat)
- \circ ear-of(cat) = ear
- \circ in(cat, box) \land in(ear, box)
- $\circ \neg in(box, cat) \land \neg in(cat, nil) \dots$
- \circ ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- \circ cat \neq box \land cat \neq ear \land cat \neq nil ...

Aside: avoiding verbosity

- Closed-world assumption: literals not assigned a value in KB are false
 - \circ avoid stating $\neg in(box, cat)$, etc.
- Unique names assumption: objects with separate names are separate
 - avoid $box \neq cat$, $cat \neq ear$, ...

Aside: typed variables

- KB also illustrates need for data types
- Don't want to have to specify ear-of(box)
 or ¬in(cat, nil)
- Could design a type system
 - argument of happy() is of type animate
- Include rules saying function instances which disobey type rules have value nil

Model of example

- *Objects: C*, *B*, *E*, *N*
- Function values:
 - *cat: C*, *box: B*, *ear: E*, *nil: N*
 - ear-of(C): E, ear-of(B): N, ear-of(E): N,
 ear-of(N): N
- Predicate values:
 - \circ $in(C, B), \neg in(C, C), \neg in(C, N), ...$

Failed model

- Objects: C, E, N
- Fails because there's no way to satisfy inequality constraints with only 3 objects

Another possible model

- *Objects:* C, B, E, N, X
- Extra object X could have arbitrary properties since it's not mentioned in KB
- E.g., X could be its own ear

An embarrassment of models

- In general, can be infinitely many models
 - unless KB limits number somehow
- Job of KB is to rule out models that don't match our idea of the world
- Saw how to rule out CEN model
- Can we rule out CBENX model?

Getting rid of extra objects

 Can use quantifiers to rule out CBENX model:

$$\forall x. \ x = cat \lor x = box \lor x = ear \lor x = nil$$

• Called a domain closure assumption

Quantifiers, informally

- Add quantifiers and object variables
 - $\circ \forall x. man(x) \Rightarrow mortal(x)$
 - $\circ \neg \exists x. lunch(x) \land free(x)$
- ∀: no matter how we replace object
 variables with objects, formula is still true
- ∘ ∃: there is some way to fill in object variables to make formula true

New syntax

- Object variables are terms
- Build atoms from variables x, y, ... as well as constants John, Fred, ...
 - man(x), loves(John, z), mortal(brother(y))
- Build formulas from these atoms
 - $\circ man(x) \Rightarrow mortal(brother(x))$
- New syntactic construct: term or formula w/ free variables

New syntax ⇒ new semantics

- Variable assignment for a model M maps syntactic variables to model objects
 - \circ x: C, y: N
- Meaning of expression w/ free vars: look up in assignment, then continue as before
 - \circ term: (model, var asst) \rightarrow object
 - ∘ formula: (model, var asst) → truth value

Example

- Model: CEBN model from above
- Assignment: (x: C, y: N)
- \circ alive(ear(x)) \mapsto alive(ear(C)) \mapsto alive(E) \mapsto T

Working with assignments

- Write ε for an arbitrary assignment (e.g., all variables map to nil)
- Write (V / x: obj) for the assignment which is just like V except that variable x maps to object obj

More new syntax: Quantifiers, binding

- For any variable x and formula F, $(\forall x. F)$ and $(\exists x. F)$ are formulas
- Adding quantifier for x is called **binding** x
 - In $(\forall x. likes(x, y))$, x is bound, y is free
- Can add quantifiers and apply logical operations like ∧∨¬ in any order
- But must eventually wind up with ground formula (no free variables)

Semantics of ∀

• Sentence $(\forall x. S)$ is T in (M, V) if S is T in $(M, V \mid x: obj)$ for all objects obj in M

Example

- M has objects (A, B, C) and predicate happy(x) which is true for A, B, C
- Sentence $\forall x$. happy(x) is satisfied in (M, ε)
 - since happy(A), happy(B), happy(C) are all satisfied in M
 - more precisely, happy(x) is satisfied in $(M, \varepsilon/x:A), (M, \varepsilon/x:B), (M, \varepsilon/x:C)$

Semantics of 3

• Sentence $(\exists x. S)$ is true in (M, V) if there is some object obj in M such that S is true in $(M, V \mid x: obj)$

Example

- M has objects (A, B, C) and predicate
 - $\circ happy(A) = happy(B) = True$
 - \circ happy(C) = False
- Sentence $\exists x. happy(x)$ is satisfied in (M, ε)
- Since happy(x) is satisfied in $(M, \varepsilon/x:B)$

Scoping rules (so we don't have to write a gazillion parens)

- In $(\forall x. F)$ and $(\exists x. F)$, $F = scope = part \ of$ formula where quantifier applies
- Variable x is bound by **innermost** possible quantifier (matching name, in scope)
- Two variables in different scopes can have same name—they are still different vars
- Quantification has lowest precedence

Scoping examples

- $\circ (\forall x. happy(x)) \lor (\exists x. \neg happy(x))$
 - Either everyone's happy, or someone's unhappy
- $\circ \ \forall x. (raining \land outside(x) \Rightarrow (\exists x. wet(x)))$
 - The x who is outside may not be the one who is wet

Scoping examples

- English sentence "everybody loves somebody" is ambiguous
- Translates to logical sentences
 - $\circ \forall x. \exists y. loves(x, y)$
 - \circ $\exists y. \forall x. loves(x, y)$

Equivalence in FOL

Entailment, etc.

- As before, entailment, satisfiability, validity, equivalence, etc. refer to all possible models
 - these words only apply to ground sentences, so variable assignment doesn't matter
- But now, can't determine by enumerating models, since there could be infinitely many
- So, must do reasoning via equivalences or entailments

Equivalences

- All transformation rules for propositional logic still hold
- In addition, there is a "De Morgan's Law" for moving negations through quantifiers

$$\neg \forall x. S \equiv \exists x. \neg S$$

$$\neg \exists x. S \equiv \forall x. \neg S$$

And, rules for getting rid of quantifiers

Generalizing CNF

- ∘ $Eliminate \Rightarrow$, move ¬ in w/ De Morgan
 - ∘ |but ¬ moves through quantifiers too|
- | Get rid of quantifiers (see below)
- Distribute AV, or use Tseitin

Do we really need \exists ?

- $\circ \exists x. happy(x)$
- happy(happy_person())

- $\circ \forall y. \exists x. loves(y, x)$
- $\circ \forall y. loves(y, loved_one(y))$

Skolemization

Called Skolemization

 (after Thoraf Albert
 Skolem)

Thoraf Albert Skolem 1887–1963

- Eliminate \exists by substituting a function of arguments of all enclosing \forall quantifiers
- Make sure to use a new name!

Do we really need \forall ?

- Positions of quantifiers irrelevant (as long as variable names are distinct)
 - $\bullet \ \forall x. \ happy(x) \land \forall y. \ takes(y, CS780)$
 - $\bullet \ \forall x. \ \forall y. \ happy(x) \land takes(y, CS780)$
- So, might as well drop them
 - \circ happy(x) \land takes(y, CS780)

Getting rid of quantifiers

- Standardize apart (avoid name collisions)
- Skolemize
- Drop ∀ (free variables implicitly universally quantified)
- Terminology: still called "free" even though quantification is implicit

For example

- $\circ \ \forall x. man(x) \Rightarrow mortal(x)$
 - $\circ \neg man(x) \lor mortal(x)$
- $\circ \forall y. \exists x. loves(y, x)$
 - $\circ loves(y, f(y))$
- $\circ \forall x. honest(x) \Rightarrow happy(Diogenes)$
 - $\circ \neg honest(x) \lor happy(Diogenes)$
- $\circ (\forall x. honest(x)) \Rightarrow happy(Diogenes)$

Exercise

 $\circ (\forall x. honest(x)) \Rightarrow happy(Diogenes)$

Proofs in FOL

FOL is special

- Despite being much more powerful than propositional logic, there is still a sound and complete inference procedure for FOL w/ equality
- Almost any significant extension breaks this property
- This is why FOL is popular: very powerful language with a sound & complete inference procedure

Proofs

- Proofs by contradiction work as before:
 - \circ add $\neg S$ to KB
 - put in CNF
 - run resolution
 - if we get an empty clause, we've proven
 S by contradiction
- But, CNF and resolution have changed

Generalizing resolution

- *Propositional:* $(\neg a \lor b) \land a \vDash b$
- FOL:

```
(\neg man(x) \lor mortal(x)) \land man(Socrates)
```

- ⊨ (¬man(Socrates) ∨ mortal(Socrates)) ∧ man(Socrates)
- $\models mortal(Socrates)$
- Difference: had to substitute $x \rightarrow Socrates$

Universal instantiation

• What we just did is UI:

```
(\neg man(x) \lor mortal(x))
\vDash (\neg man(Socrates) \lor mortal(Socrates))
```

- Works for $x \to any$ term not containing x... $\models (\neg man(uncle(y)) \lor mortal(uncle(y)))$
- For proofs, need a good way to find useful instantiations

Substitution lists

- ∘ *List of variable* → *term pairs*
- Values may contain variables (leaving flexibility about final instantiation)
- But, no LHS may be contained in any RHS
 - i.e., applying substitution twice is the same as doing it once
- \circ E.g., $L = (x \rightarrow Socrates, y \rightarrow uncle(z))$

Substitution lists

- Apply a substitution to an expression:
 syntactically substitute vars → terms
- \circ E.g., $L = (x \rightarrow Socrates, y \rightarrow uncle(z))$
 - ∘ $mortal(x) \land man(y): L \rightarrow mortal(Socrates) \land man(uncle(z))$

Substitution list ≠ variable assignment

Unification

- Two FOL terms unify with each other if there is a substitution list that makes them syntactically identical
- man(x), man(Socrates) unify using the substitution $x \rightarrow Socrates$
- Importance: purely syntactic criterion for identifying useful substitutions

Unification examples

- loves(x, x), loves(John, y) unify using $x \rightarrow John, y \rightarrow John$
- \circ loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):

Unification examples

- loves(x, x), loves(John, y) unify using $x \rightarrow John, y \rightarrow John$
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):
 - \circ $z \rightarrow uncle(x), y \rightarrow aunt(uncle(x))$
 - loves(uncle(x), aunt(uncle(x)))

Quiz

Can we unify
 knows(John, x) knows(x, Mary)

What about
 knows(John, x) knows(y, Mary)

Quiz

• Can we unify

knows(John, x) knows(x, Mary)
No!

• What about

knows(John, x) knows(y, Mary)

 $x \rightarrow Mary, y \rightarrow John$

Standardize apart

- But knows(x, Mary) is logically equivalent to knows(y, Mary)!
- Moral: standardize apart before unifying

Most general unifier

- May be many substitutions that unify two formulas
- MGU is unique (up to renaming)
- Simple, moderately fast algorithm for finding MGU (see RN); more complex, linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the eighth annual ACM symposium on Theory of Computing, 1976.

First-order resolution

- Given clauses $(\alpha \lor c)$, $(\neg d \lor \beta)$, and a substitution list L unifying c and d
- Conclude $(\alpha \lor \beta) : L$
- In fact, only ever need L to be MGU of c, d

Example

rains no outside (x) => wet(x)

wet(x)=> rusty (x) v rust proof (x)

robot (x)=> - rust proof (x)

rains

guidebot (Robby)

guidebot (B) => robot (x) no outside (x)

rains no outside (x) => wet(x)

wet(x)=> rusty (x) v rust proof (x)

robot (x)=> - rust proof (x)

rains

guidebot (Robby)

guidebot (A) => robot (x) n outside (x)

First-order factoring

- When removing redundant literals, we have the option of unifying them first
- \circ Given clause (a \vee b \vee θ), substitution L
- If a: L and b: L are the same
- Then we can conclude $(a \lor \theta) : L$
- Again L = MGU is enough

Completeness

First-order resolution (w/ FO factoring) is sound and complete for FOL w/o = (famous theorem due to Herbrand and Robinson)

Jacques Herbrand 1908–1931

- Unlike propositional case, may be infinitely many possible resolutions
- So, FO entailment is semidecidable (entailed statements are recursively enumerable)

Variation

- Restrict semantics so we only need to check one finite propositional KB
 - NP-complete much better than RE
- Unique names: objects with different names are different (John ≠ Mary)
- **Domain closure**: objects without names given in KB don't exist

Who? What? Whohere?

Wh-questions

- We've shown how to answer a question like "is Socrates mortal?"
- What if we have a question whose answer is not just yes/no, like "who killed JR?" or "where is my robot?"
- Simplest approach: prove $\exists x$. killed(x, JR), hope the proof is constructive

Answer literals

- Simple approach doesn't always work
- Instead of $\neg S(x)$, add $(\neg S(x) \lor answer(x))$
- If there's a contradiction, we can eliminate $\neg S(x)$ by resolution and unification, leaving answer(x) with x bound to a value that causes a contradiction

Example

Extensions

Equality

- **Paramodulation** is sound and complete for FOL+equality (see RN)
- Or, resolution + axiom schema

Uncertainty

- Same trick as before: many independent random choices by Nature, logical rules for their consequences
- Two new difficulties
 - ensuring satisfiability (not new, harder)
 - describing set of random choices

Independent Choice Logic

- Generalizes Bayes nets, Markov logic,
 Prolog programs—incomparable to FOL
- Satisfiability: uses only acyclic KBs (always feasible)
- Random choices: assume all syntactically distinct terms are distinct (so we know what objects are in our model)
- Attach random choices to tuples of objects

Richardson & Domingos

Other choices: Markov logic

- Assume unique names, domain closure, known fns: KB determines finite universe
- Each FO statement now has a known set of ground instances
 - e.g., $loves(x,y) \Rightarrow happy(x) has n^2$ instances if there are n people
- One random choice per rule instance: enforce w/p p (KBs that satisfy the rule are p/(1-p) times more likely)

Inference under uncertainty

- Wide open topic: lots of recent work!
- We'll cover only the special case of propositional inference under uncertainty
- The extension to FO is left as an exercise for the listener

Second order logic

- SOL adds quantification over predicates
- E.g., principle of mathematical induction:

$$\bullet \quad \forall P. P(0) \land (\forall x. P(x) \Rightarrow P(S(x)))$$

$$\Rightarrow \forall x. P(x)$$

• There is no sound and complete inference procedure for SOL (Gödel's famous incompleteness theorem)

Others

- Temporal and modal logics ("P(x) will be true at some time in the future," "John believes P(x)")
- Nonmonotonic FOL
- First-class functions (lambda operator, application)

0 ...