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o Recitations: Fri. 3PM here (GHC 4307)
o Vote: useful to have one tomorrow?

o would cover propositional & FO logic
o Draft schedule of due dates up on web

o Subject to change with notice
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Course email list
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o 15780students AT cs.cmu.edu

o Everyone’s official email should be in the
list—we’ve sent a test message, so if you
didn’t get it, let us know
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What 1s AI?
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o Lots of examples: poker, driving robots,
flying birds, RoboCup

o Things that are easy for humans/animals
to do, but no obvious algorithm

o Search / optimization /| summation
o Handling uncertainty

o Sequential decisions



Propositional logic
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o Syntax
o variables, constants, operators
o literals, clauses, sentences
o Semantics (model - {T, F'})
o Truth tables, how to evaluate formulas
o Satisfiable, valid, contradiction

o Relationship to CSPs



Propositional logic
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o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o Tseitin transformation to CNF

o Handling uncertainty (independent Nature
choices + logical consequences)

o Compositional semantics

o How to translate informally-specified
problems into logic (e.g., 3-coloring)
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Satisfiability
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o SAT: determine whether a propositional
logic sentence has a satisfying model

o A decision problem: instance — yes or no
o Fundamental problem in CS
o many decision problems reduce to SAT

o informally, if we can solve SAT, we can
solve these other problems

o A SAT solver is a good Al building block



Example decision problem
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o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?
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Reduction
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o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o Formally, let A, B be decision problems
(instances — Y or N)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))
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Reduction picture
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Reduction picture
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Reduction picture
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Reducmg k—colormg — SAT

(ar Vv ag Vv ap) A (br v bg Vv bp) A (CrV Cg V Cp) A
(dr v dgVvdp)AN(erVvegVep) AN(zrVZeV Zn) A
(mar Vv =br) A(—agV —bg) A (map Vv —bp) A

(marV =) AN(—agV —Zg) A(—ap V —2p) A
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o When A reduces to B:
o if we can solve B, we can solve A
o S0 B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one

16



Not-so-useful reduction
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o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly 1 path-edge touches goal

o either O or 2 touch each other node

17



More useful: SAT — CNF-SAT

it inrh
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o Given any propositional formula, Tseitin
transformation produces (in poly time) an
equivalent CNF formula

o So, given a CNF-SAT solver, we can solve
SAT with general formulas

18



More useful: CNF-SAT — 3SAT
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o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o 3CNF': at most 3 literals per clause

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

19



CNF-SAT — 3SAT
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o Must get rid of long clauses
o E.g.,(av -bvcvdvev —f)
o Replace with

(av -bvx)AN(mxVcVY)A
(myvdvz)Aa(-zvev —f)
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NP
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o A decision problem is in NP if it reduces to
SAT

o E.g., TSP, k-coloring, propositional
planning, integer programming (decision
versions)

o E.g., path planning, solving linear
equations

21



NP-complete
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o Many decision problems reduce back and
forth to SAT: they are NP-complete

o Cook showed how to simulate any poly-
time nondeterministic computation w/
(very complicated, but still poly-size)
SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,
Proceedings of ACM STOC'71, pp. 151-158, 1971.
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Open questlon P=NP

B e S e e i i Lakanin . PO, "

it inrh

o P = there is a poly-time algorithm to solve
o NP = reduces to SAT

o We know of no poly-time algorithm for
SAT, but we also can’t prove that SAT
requires more than about linear time!
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Cost of reduction
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o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o So, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...

- . - .j 7' > .'!
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Cost of reduction
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o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)

25



Choosing a reduction
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o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days

26
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Proofs

27



Entailment

o Sentence A entails sentence B,A= B, if B
is true in every model where A is

o same as saying that (A = B) is valid
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Proof tree
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o

o

A tree with a formula at each node

At each internal node, children = parent
Leaves: assumptions or premises
Root: consequence

If we believe assumptions, we should also
believe consequence

29



Proof tree example
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Proof by contradiction

WWM - ¥ a4 Tty s—'umwazsz»~--~..-w-zwv...4...m.,hm;w* - -
o Assume opposite of what we want to
prove, show it leads to a contradiction

it inrh

o Suppose we want to show KB &= §

o Write KB’ for (KB A —S)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o 5o, (KB A =S) = F (contradiction)

31



Proof by contradiction
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Proof by contradiction
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Inference rule
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o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already

35



Modus ponens
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(anbAac=d) a b c

d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:
man(Socrates) A

(man(Socrates) = mortal(Socrates))

36



Another inference rule
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o Modus tollens

o Ifit’s raining the grass is wet; the grass is
not wet, so it's not raining

37



One more...
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(ave) (7cvp)

o Resolution

o a, f are arbitrary subformulas

o Combines two formulas that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens

38



Resolution example
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o Modus ponens / tollens are special cases
o Modus tollens:

(—raining v grass-wet) A ~grass-wet =
—raining

39



Resolution example
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o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

40



Resolution example
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o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours v —outside v rusty

40



Resolution example
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o rains = pours
o pours A outside = rusty

o Can we conclude rains A outside = rusty?

—rains v pours
= pours v —outside v rusty

—=rains Vv —outside Vv rusty

40



Resolution
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(ave) (mcvp)
avp

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False

41



Resolution case analysis
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Soundness and completeness
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o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven't discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB

43



Completeness
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o Modus ponens by itself is incomplete

o Resolution + proof by contradiction is . a. robinson
.« . 19181974
complete for propositional formulas
represented as sets of clauses

o famous theorem due to Robinson

o if KBE F,we’ll derive empty clause

o Caveat: also need factoring, removal of
redundant literals (av bv a)=(a v D)
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Algorithms
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o We now have our first” algorithm for SAT

o remove redundant literals (factor)
wherever possible

o pick an application of resolution
according to some fair rule

o add its consequence to KB
o repeat

o Not a great algorithm, but works

it inrh
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Variations

o Horn clause inference
o MAXSAT

o Nonmonotonic logic

46



Horn clauses
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o Horn clause: (a A b A c=d)
o Equivalently, (—a v =b v —~c Vv d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body

47



Use of Horn clauses
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o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula,
again, easier to think about

48



Why are Horn clauses important
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o Modus ponens alone is complete
o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

49



Forward chaining
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o Look for a clause with all body literals
satisfied

o Add its head to KB (modus ponens)
o Repeat
o See RN for more details

50
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o

o

MAXSAT

it inrh

Given a CNF formula C; A C2 A ... A Cy

Clause weights wi, wa, ... w, (weighted
version) or w; = 1 (unweighted)

Find model which satisfies clauses of
maximum total weight

o decision version: max weight =w?

More generally, weights on variables
(bonus for setting to T): MAXVARSAT

51



Nonmonotonic logic
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o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

52



Nonmonotonic logic
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o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —mab(Polly) = flies(Polly)
bird(Tux) n —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

53



Nonmonotonic logic
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o Now set as few abnormality predicates as
possible (a MAXVARSAT problem)

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can'’t prove flies(Tux) any more, but can
still prove flies(Polly)
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Nonmonotonic logic
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o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

55
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First-order logic
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Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”
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Predicates and objects
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o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Zero-argument predicate x() plays same
role that Boolean variable x did before
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Distinguished predicates
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o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False / F
o Equal(x,y)

o We will also write (x = y) and (x Z )
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Equality satisfies usual axioms
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o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)
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Functions
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o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()

61



The nil object
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o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense
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Types of values
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o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object-valued and Boolean-valued

o done(slides(15-780)) =
happy(professor(15-780))

o Functions map objects to objects,
predicates map objects to Booleans,
connectives map Booleans to Booleans
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Definitions
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o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)
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Definitions
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o Literal = possibly-negated atom
o happy(John), —happy(John)

o Sentence or formula = literals joined by
connectives like AV—~=>

o raining
o done(slides(780)) = happy(professor)

o Expression = term or formula
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Semantics
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o Models are now much more complicated
o List of objects (nonempty, may be infinite)
o Lookup table for each function mentioned

o Lookup table for each predicate
mentioned

o Meaning of sentence: model — {T, F}

o Meaning of term: model — object
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For example
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KB describing example
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o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...

68



Aside: avo1d1ng Verb081ty
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o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

it inrh
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Aside: typed variables
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o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Include rules saying function instances
which disobey type rules have value nil
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Model of example
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o Objects: C,B, E, N
o Function values:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), =in(C, C), =in(C, N), ...
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Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects
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Another possible model
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o Objects: C,B, E, N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear
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An embarrassment of models
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o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don’t
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

it inrh
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Getting rid of extra objects
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o Can use quantifiers to rule out CBENX
model.:

Vx.x=catvx=boxVv x=ear v x = nil

o Called a domain closure assumption
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Quanuﬁers 1nforma11y
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o Add quantifiers and object variables
o Vx.man(x) = mortal(x)
o =dx. lunch(x) A free(x)

o V. no matter how we replace object
variables with objects, formula is still true

o d: there is some way to fill in object
variables to make formula true
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New syntax
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o Object variables are terms

o Build atoms from variables x, vy, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

77



New syntax = new semantics

it inrh
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o Variable assignment for a model M maps
syntactic variables to model objects

o x:C,y: N

o Meaning of expression w/ free vars: look up
in assignment, then continue as before

o term: (model, var asst) — object

o formula: (model, var asst) — truth value
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Example

o Model: CEBN model from above
o Assignment: (x: C,y: N)
o alive(ear(x)) » alive(ear(C)) » alive(E) » T
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Working with assignments
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o Write € for an arbitrary assignment (e.g.,
all variables map to nil)

o Write (V/ x: obj) for the assignment which
is just like V except that variable x maps to
object obj
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More new syntax:
Quant1ﬁers blndlng
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o For any variable x and formula F, (Vx. F)
and (dx. F) are formulas

o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like AV — in any order

o But must eventually wind up with ground
formula (no free variables)
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Semantics of V

o Sentence (Vx.S)isTin(M,V)ifSisTin
(M, V' / x: obj) for all objects obj in M
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Example
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o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence Vx. happy(x) is satisfied in (M, )

o since happy(A), happy(B), happy(C) are
all satisfied in M

o more precisely, happy(x) is satisfied in
(M, e/x:A), (M, ¢/x:B), (M, e/x:C)
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Semantics of 3
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o Sentence (Ix.S) is true in (M, V) if there is

some object obj in M such that S is true in
(M, V/x:obj)
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Example

o M has objects (A, B, C) and predicate

o happy(A) = happy(B) = True

o happy(C) = False
o Sentence dx. happy(x) is satisfied in (M, )
o Since happy(x) is satisfied in (M, &/x:B)
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Scoping rules (so we don’t have
to write a gazﬂhon parens)
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o In(Vx.F)and (3x. F), F = scope = part of
formula where quantifier applies

o Variable x is bound by innermost possible
quantifier (matching name, in scope)

o Two variables in different scopes can have
same name—they are still different vars

o Quantification has lowest precedence

86



Scoping examples
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o (Vx. happy(x)) v (Ax. —happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet
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Scoping examples
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o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx. loves(x, y)
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Entailment, etc.
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it inrh

o As before, entailment, satisfiability, validity,
equivalence, etc. refer to all possible models

o these words only apply to ground sentences,
so variable assignment doesn’t matter

o But now, can’t determine by enumerating
models, since there could be infinitely many

o So, must do reasoning via equivalences or
entailments
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Equivalences
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o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S = dx. =S
-dx.S = Vx. -5

o And, rules for getting rid of quantifiers
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Generalizing CNF

B e S e e i i Lakanin . PO,

o Eliminate =, move -~ in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute nv, or use Tseitin

it inrh
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Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))
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Skolemization
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o Called Skolemization
(after Thoraf Albert

Skolem ) | Thoraf Albert olem
1887-1963

o Eliminate 3 by substituting a function of
arguments of all enclosing N quantifiers

o Make sure to use a new name!
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Do we really need V?
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o Positions of quantifiers irrelevant (as long
as variable names are distinct)

o Vx. happy(x) n Yy. takes(y, CS780)
o Vx.Vy. happy(x) n takes(y, CS780)

o So, might as well drop them
o happy(x) A takes(y, CS780)
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Getting rid of quant1ﬁers
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it inrh

o Standardize apart (avoid name collisions)
o Skolemize

o Drop Y (free variables implicitly
universally quantified)

o Terminology: still called “free” even
though quantification is implicit
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For example
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o Vx.man(x) = mortal(x)
o —man(x) v mortal(x)

o Vy.dx. loves(y, x)

o loves(y, f(y))
o Vx. honest(x) = happy(Diogenes)

o —honest(x) v happy(Diogenes)
o (Vx. honest(x)) = happy(Diogenes)
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Exercise

o (Vx. honest(x)) = happy(Diogenes)
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Proofs 1n
FOL
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FOL 1s special
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it inrh

o Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for
FOL w/ equality

o Almost any significant extension breaks
this property

o This is why FOL is popular: very powerful
language with a sound & complete
inference procedure
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o Proofs by contradiction work as before:
o add -~S to KB
o putin CNF
o run resolution

o If we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed
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Generalizing resolution

. . . B L e o 2 s ST X .
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it inrh

o Propositional: (~av b) nak= b
o FOL:
(mman(x) v mortal(x)) A man(Socrates)

= (—~man(Socrates) v mortal(Socrates))
A man(Socrates)

= mortal(Socrates)

o Difference: had to substitute x — Socrates
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Universal instantiation
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it inrh

o What we just did is Ul:

(—man(x) v mortal(x))
= (—man(Socrates) v mortal(Socrates))

o Works for x — any term not containing x

...E (7man(uncle(y)) v mortal(uncle(y)))

o For proofs, need a good way to find useful
instantiations

103



Substitution lists
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o List of variable — term pairs

o Values may contain variables (leaving
flexibility about final instantiation)

o But, no LHS may be contained in any RHS

o 1.e., applying substitution twice is the
same as doing it once

o E.g.,L = (x— Socrates,y — uncle(z))
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Substitution lists
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o Apply a substitution to an expression:
syntactically substitute vars — terms

o E.g.,L = (x— Socrates,y — uncle(z))

o mortal(x) A man(y): L —
mortal(Socrates) A man(uncle(z))

o Substitution list # variable assignment
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Unification
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o Two FOL terms unify with each other if
there is a substitution list that makes them

syntactically identical

o man(x), man(Socrates) unify using the
substitution x — Socrates

o Importance: purely syntactic criterion for
identifying useful substitutions
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Unification examples
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o loves(x, x), loves(John, y) unify using
x — John,y — John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples
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o loves(x, x), loves(John, y) unify using
x — John, y — John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o 7 —> uncle(x), y — aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))
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o Can we unify

knows(John, x) knows(x, Mary)

o What about
knows(John, x) knows(y, Mary)
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o Can we unify
knows(John, x) knows(x, Mary)
No!

o What about
knows(John, x) knows(y, Mary)

x — Mary, y — John
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Standardize apart
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o But knows(x, Mary) is logically equivalent
to knows(y, Mary)!

o Moral: standardize apart before unifying
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Most general unifier

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.
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First-order resolution

- - - .j 7' Y .'!

o Given clauses (o v ¢), (=d v ), and a
substitution list L unifying c and d

o Conclude (avv ) : L
o In fact, only ever need L to be MGU of c, d
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Example
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First-order factoring

it inrh

) . ] - s st e I ) ‘ .
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o When removing redundant literals, we
have the option of unifying them first

o Given clause (a v b v 0), substitution L
o Ifa:Landb : L are the same

o Then we can conclude (a v 0) : L

o Again L = MGU is enough
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Completeness
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o First-order resolution (w/ FO
factoring) is sound and complete for

Jacques Herbrand

FOL w/o = (famous theorem due to 19081931
Herbrand and Robinson)

o Unlike propositional case, may be infinitely many
possible resolutions

o So, FO entailment is semidecidable (entailed
statements are recursively enumerable)

117



Variation
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o Restrict semantics so we only need to
check one finite propositional KB

o NP-complete much better than RE

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don’t exist
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Wh-questions
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o We’ve shown how to answer a question
like “is Socrates mortal?”

o What if we have a question whose answer
is not just yes/no, like “who killed JR?” or
“Where is my robot?”

o Simplest approach: prove Ax. killed(x, JR),
hope the proof is constructive
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Answer literals
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o Simple approach doesn’t always work
o Instead of =S(x), add (=S(x) v answer(x))

o If there’s a contradiction, we can eliminate
=S(x) by resolution and unification,
leaving answer(x) with x bound to a value
that causes a contradiction
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Example
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—"IL/\\\S ( SC_/_,L’-\J pd )
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Extensions
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Equahty
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o Paramodulation is sound and complete
for FOL+equality (see RN)

o Or, resolution + axiom schema
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Uncertainty
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o Same trick as before: many independent
random choices by Nature, logical rules
for their consequences

o Two new difficulties
o ensuring satisfiability (not new, harder)

o describing set of random choices
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Independent Choice Logle
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o Generalizes Bayes nets, Markov logic,
Prolog programs—incomparable to FOL

o Satisfiability: uses only acyclic KBs
(always feasible)

o Random choices: assume all syntactically
distinct terms are distinct (so we know
what objects are in our model)

o Attach random choices to tuples of objects
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Other choices: Markov loglc

YISAETOIRL A 2o 4, Tt A
o Assume unique names, domam closure,
known fns: KB determines finite universe

L o Attt Lol g S S LS Gaanin s, WP,

it inrh

o Fach FO statement now has a known set
of ground instances

o e.g., loves(x,y) = happy(x) has n?
instances if there are n people

o One random choice per rule instance:
enforce w/p p (KBs that satisfy the rule are
p/(1-p) times more likely)

Richardson & Domingos
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Inference under uncertainty
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o Wide open topic: lots of recent work!

o We’ll cover only the special case of
propositional inference under uncertainty

o The extension to FO is left as an exercise
for the listener
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Second order logic
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o SOL adds quantification over predicates

o E.g., principle of mathematical induction:

o YP. P(0) A (Vx. P(x) = P(S(x)))
= Vx. P(x)

o There is no sound and complete inference
procedure for SOL (Gddel’s famous
incompleteness theorem)
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Others
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o Temporal and modal logics (“P(x) will be
true at some time in the future,” “John
believes P(x)”)

o Nonmonotonic FOL

o First-class functions (lambda operator,
application)
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