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Admin

• Test your handin directories

‣ /afs/cs/user/aothman/dropbox/USERID/

‣ where USERID is your Andrew ID

• Poster session: 

‣ Mon 5/2, 1:30–4:30PM, room TBA

• Readings for today & Tuesday on class site



Project idea

• Answer the question: what is fairness?



In case anyone thinks of 
slacking off



LPs, ILPs, and 
their ilk

Boyd & Vandenberghe. Convex Optimization. Sec 4.3 and 4.3.1.



((M)I)LPs

• Linear program:

min  3x + 2y  s.t.

x + 2y ≤ 3

x ≤ 2

x, y ≥ 0

• Integer linear program: constrain x, y ∈ ℤ

• Mixed ILP: x ∈ ℤ, y ∈ ℝ



Example LP

• Factory makes widgets and doodads

• Each widget takes 1 unit of wood and 2 units 
of steel to make

• Each doodad uses 1 unit wood, 5 of steel

• Have 4M units wood and 12M units steel

• Maximize profit: each widget nets $1, each 
doodad nets $2



Factory LP
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M
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 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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(8/3,4/3)
OPT = 16/3



Example ILP

• Instead of 4M units of wood, 12M units of 
steel, have 4 units wood and 12 units steel



Factory example

Widgets →
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OPT = 5
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LP relaxations

• Above LP and ILP are the same, except for 
constraint w, d ∈ ℤ

• LP is a relaxation of ILP

• Adding any constraint makes optimal value 
same or worse

• So, OPT(relaxed) ≥ OPT(original)

(in a maximization problem)



Factory relaxation is 
pretty close

Widgets →

D
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13

Unfortunately…

profit = 
w + 2d

This is called an 
integrality gap



Falling into the gap

• In this example, gap is 3 vs 8.5, or about a 
ratio of 0.35

• Ratio can be arbitrarily bad

‣ but, can sometimes bound it for classes of 
ILPs

• Gap can be different for different LP 
relaxations of “same” ILP

14









From ILP to SAT

• 0-1 ILP: all variables in {0, 1}

• SAT: 0-1 ILP, objective = constant, all 
constraints of form

x + (1–y) + (1–z) ≥ 1

• MAXSAT: 0-1 ILP, constraints of form

x + (1–y) + (1–z) ≥ sj

maximize s1 + s2 + …



Pseudo-boolean 
inequalities

• Any inequality with integer coefficients on 
0-1 variables is a PBI

• Collection of such inequalities (w/o 
objective): pseudo-boolean SAT

• Many SAT techniques work well on PB-SAT 
as well



Complexity

• Decision versions of ILPs and MILPs are NP-
complete (e.g., ILP feasibility contains SAT)

‣ so, no poly-time algos unless P=NP

‣ in fact, no poly-time algo can approximate 
OPT to within a constant factor unless P=NP

• Typically solved by search + smart techniques 
for ordering & pruning nodes

• E.g., branch & cut (in a few lectures)—like 
DPLL (DFS) but with more tricks for pruning



Complexity

• There are poly-time algorithms for LPs

‣ e.g., ellipsoid, log-barrier methods

‣ rough estimate: n vars, m constraints ⇒  
~50–200 × cost of (n × m) regression

• No strongly polynomial LP algorithms 
known—interesting open question

‣ simplex is “almost always” polynomial
[Spielman & Teng]



max 2x+3y s.t.

 x + y ≤ 4


 2x + 5y ≤ 12

 x + 2y ≤ 5


 x, y ≥ 0

Terminology
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Where’s my ball?



Unhappy ball

‣ min  2x + 3y  subject to

‣ x ≥ 5

‣ x ≤ 1



Transforming LPs

• Getting rid of inequalities (except variable 
bounds)

• Getting rid of unbounded variables



Standard form LP

• all variables are nonnegative

• all constraints are equalities

• E.g.: q = (x y u v w)T

max 2x+3y s.t.
x + y ≤ 4

2x + 5y ≤ 12
x + 2y ≤ 5
x, y ≥ 0


max cTq   s.t.  
Aq = b,  q ≥ 0

(componentwise)



Why is standard form 
useful?

• Easy to find corners

• Easy to manipulate via row operations

• Basis of simplex algorithm

 Bertsimas and Tsitsiklis. Introduction to Linear Optimization. Ch. 2–3.



Finding corners

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, y = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set v, w = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, u = 0

x y u v w  RHS



Row operations

• Can replace any row with linear 
combination of existing rows

‣ as long as we don’t lose 
independence

• Elim. x from 2nd and 3rd rows of A

• And from c:

x y u v w RHS
1 1 1 0 0   4
2 5 0 1 0  12
1 2 0 0 1   5
2 3 0 0 0   ↑



Presto change-o

• Which are the slacks now?

‣  

‣ vars that appear in

• Terminology: “slack-like” 
variables are called basic

x y  u v w  RHS
1 1  1 0 0    4
0 3 -2 1 0    4
0 1 -1 0 1    1
0 1 -2 0 0    ↑



The “new” LP
max y – 2u 
y + u ≤ 4
3y – 2u ≤ 4
y – u ≤ 1
y, u ≥ 0

Many different-looking but 
equivalent LPs, depending on 
which variables we choose to 
make into slacks

Or, many corners of same LP

x y  u v w  RHS
1 1  1 0 0    4
0 3 -2 1 0    4
0 1 -1 0 1    1
0 1 -2 0 0    ↑



Basis

• Which variables 
can we choose to 
make basic?

x y u v w  RHS
1 1 1 0 0    4
2 2 0 1 0    5
3 3 0 0 1    9
2 1 0 0 0    ↑



Nonsingular
• We can assume

‣ n ≥ m (at least as many vars as constrs)

‣ A has full row rank

• Else, drop rows (w/o reducing rank) until true: 
dropped rows are either redundant or 
impossible to satisfy

‣ easy to distinguish: pick a corner of reduced 
LP, check dropped = constraints

• Called nonsingular standard form LP

‣ means basis is an invertible m × m submatrix



Naïve (slooow) algorithm

• Iterate through all subsets B of m vars

‣ if m constraints, n vars, how many subsets?

• Check each B for

‣ full rank (“basis-ness”)

‣ feasibility (A(:,B) \ RHS ≥ 0)

• If pass both tests, compute objective

• Maintain running winner, return at end



Degeneracy

• Not every set of m variables yields a corner

‣ some have rank < m (not a basis)

‣ some are infeasible

• Can the reverse be true?  Can two bases 
yield the same corner?  (Assume nonsingular 
standard-form LP.)



Degeneracy
x  y  u  v  w  RHS
1  1  1  0  0    4  
2  5  0  1  0   12  
1  2  0  0  1 16/3 

1  0  0 -2  5  8/3
0  1  0  1 -2  4/3
0  0  1  1 -3    0 

1  0  2  0 -1  8/3
0  1 -1  0  1  4/3
0  0  1  1 -3    0 



Degeneracy in 3D



Degeneracy in 3D

we’ll pretend this 
never happens



Neighboring bases
• Two bases are neighbors if 

they share (m–1) variables

• Neighboring feasible bases 
correspond to vertices 
connected by an edge (note: 
degeneracy)

x y z u v w RHS
1 0 0 1 0 0   1
0 1 0 0 1 0   1
0 0 1 0 0 1   1



Improving our search

• Naïve: enumerate all possible bases

• Smarter: maybe neighbors of good bases are 
also good?

• Simplex algorithm: repeatedly move to a 
neighboring basis to improve objective

‣ important advantage: rank-1 update is fast



Example

  x   y   s   t   u  RHS
  1   1   1   0   0    4 
  2   5   0   1   0   12 
  1   2   0   0   1    5 
  2   3   0   0   0    ↑ 

max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

   x   y   s    t   u  RHS
 0.4   1   0  0.2   0  2.4
 0.6   0   1 -0.2   0  1.6
 0.2   0   0 -0.4   1  0.2
 0.8   0   0 -0.6   0    ↑



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

 x  y  s  t  u  RHS
 1  0  0 -2  5    1 
 0  1  0  1 -2    2 
 0  0  1  1 -3    1 
 0  0  0  1 -4    ↑ 



Example
max 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5

 x  y  s  t  u  RHS
 1  0  2  0 -1    3 
 0  1 -1  0  1    1 
 0  0  1  1 -3    1 
 0  0 -1  0 -1    ↑ 


