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Admin

® Test your handin directories
» /afs/cs/user/aothman/dropbox/USERID/
» where USERID is your Andrew ID

® Poster session:
» Mon 5/2, 1:30—4:30PM, room TBA

® Readings for today & Tuesday on class site



Project idea

® Answer the question: what is fairness?



In case anyone thinks of
slacking off




LPs, ILPs, and
their ilk

Boyd & Vandenberghe. Convex Optimization. Sec 4.3 and 4.3.1.



((M)D)LPs

® |inear program:
min 3x + 2y s.t.
X+ 2y <3
X< 2
X,y 20

® |nteger linear program: constrain x,y € Z

® Mixed ILP:x € Z,y € R



Example LP

Factory makes widgets and doodads

Each widget takes |
of steel to make

Each doodad uses |

unit of wood and 2 units

unit wood, 5 of steel

Have 4M units wood and |2M units steel

Maximize profit: eac
doodad nets $2

n widget nets $1, each



M Doodads —

Factory LP

w+d< 4

/

profit =
w + 2d

2w+ 5d =12
v

feasible

M Widgets —



M Doodads —

Factory LP

w+d< 4

profit =
w + 2d

w+5d< 12
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M Doodads —

Factory LP

w+d< 4

OPT = 16/3

M Widgets —

profit =
w + 2d

w+5d< 12




Example ILP

® |nstead of 4M units of wood, | 2M units of
steel, have 4 units wood and |2 units steel



Doodads —

Factory example
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Widgets —



Doodads —

Factory example

w+d< 4

Widgets —




LP relaxations

Above LP and ILP are the same, except for
constraint w,d € Z

LP is a relaxation of ILP

Adding any constraint makes optimal value
same or worse

So, OPT(relaxed) =2 OPT(original)

(in 2 maximization problem)



Factory relaxation is
pretty close

Doodads —

Widgets —




Unfortunately...

/

profit =
w + 2d

o—o—

Doodads —
O O
O O O

This is called an

Widgets — . )
; integrality gap




Falling into the gap

® |n this example, gap is 3 vs 8.5, or about a
ratio of 0.35

® Ratio can be arbitrarily bad

» but, can sometimes bound it for classes of
ILPs

® Gap can be different for different LP
relaxations of “same” ILP
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From ILP to SAT

® (-l ILP:all variables in {0, I}

® SAT:0-| ILP objective = constant, all
constraints of form

x+ (l-y) +(l-z) 2 |
e MAXSAT: 0-1 ILP. constraints of form
X+ (I-y) + (1-=2) 2 5

maximize s; + sy + ...



Pseudo-boolean
inequalities

® Any inequality with integer coefficients on
O-1 variables is a PBI

® Collection of such inequalities (w/o
objective): pseudo-boolean SAT

® Many SAT techniques work well on PB-SAT
as well



Complexity

® Decision versions of ILPs and MILPs are NP-
complete (e.g., ILP feasibility contains SAT)

» so, no poly-time algos unless P=NP

» in fact, no poly-time algo can approximate
OPT to within a constant factor unless P=NP

® Typically solved by search + smart techniques
for ordering & pruning nodes

® E.g., branch & cut (in a few lectures)—Ilike
DPLL (DFS) but with more tricks for pruning



Complexity

® There are poly-time algorithms for LPs
» e.g., ellipsoid, log-barrier methods
» rough estimate: n vars, m constraints =
~50-200 x cost of (n X m) regression
® No strongly polynomial LP algorithms
known—interesting open question

» simplex is “almost always” polynomial
[Spielman & Teng]



max 2X+3y s.t.
. X+y=<4
Terminology 2x + 5y < 12
X + 2y <
X,y=0




max 2X+3y s.t.

Finding the X +y <4
) 2X + 5y <12
optimum X +2y<5

X,y=0

3




max 2X+3y s.t.

Finding the . x+ys4
. GO 2X + 5y <12
optimum

X+ 2y <5

QOX5yz()



Where’s my ball?




Unhappy ball

» min 2x + 3y subject to
» X225

» X < |



Transforming LPs

® Getting rid of inequalities (except variable
bounds)

® Getting rid of unbounded variables



max 2x+3y s.t.

Standard form LP  3,75%,
x+2ys5

X,y 20
® all variables are nonnegative

® all constraints are equalities
max c'q s.t.
Agq=b, q=20

(componentwise)

® Es:q=(xyuvw)'



Why is standard form
useful?

® Easy to find corners
® Easy to manipulate via row operations

® Basis of simplex algorithm

Bertsimas and Tsitsiklis. Introduction to Linear Optimization. Ch. 2—3.



Finding corners

X v U v w RHS

4 setx,y=0

11100
25010

12
5

1 2001

4 setv,w=0

11100
25010

12
5

1 2001

4 setx,u=0

11100
25010

12
5

1 2001




Row operations

X v uvw RHS

® Can replace any row with linear 11100 4
combination of existing rows 25010 12

| don'’t lose 200 1

» as long as we don > 3000 1

independence

® Elim.x from 2nd and 3rd rows of A

® And from c:



Presto change-o

® Which are the slacks now?

Xy uvw RHS

) 11 100 4
| 03-210 4

» vars that appear in 01 -1 0 1 1
01 -2 00 T

® Terminology: “slack-like”
variables are called basic



4.5

3.57

257

1.5)

0.5¢

-0.5

The “new’” LP

2 3

maxy—2uU x v u v w_ RHS
ytus<4 11 100 4
3y—2u<4 03 -210 4
y,u =0 01 -200 T

Many different-looking but
equivalent LPs, depending on
which variables we choose to
make into slacks

Or, many corners of same LP



® Which variables

can we choose to
make basic!?

Xy uvw RHS
1 1100 4
2 2010 5
3 3 001 9
21000 T




Nonsingular

® Ve can assume
» n 2 m (at least as many vars as constrs)

» A has full row rank

® FElse, drop rows (w/o reducing rank) until true:
dropped rows are either redundant or
impossible to satisfy

» easy to distinguish: pick a corner of reduced
LP, check dropped = constraints

e Called nonsingular standard form LP

» means basis is an invertible m X m submatrix



Nalive (slooow) algorithm

® |terate through all subsets B of m vars

» if m constraints, n vars, how many subsets!?

® Check each B for

» full rank (“basis-ness”)
» feasibility (A(;,B) \ RHS =2 0)

® |f pass both tests, compute objective

® Maintain running winner, return at end



Degeneracy

® Not every set of m variables yields a corner
» some have rank < m (not a basis)
» some are infeasible

® Can the reverse be true? Can two bases

yield the same corner? (Assume nonsingular
standard-form LP))



Degeneracy

V. W _RHS

u
0
2 5 0 1 0

'

0

1

12

1 2 06 0 1 16/3

1 06 0 -2 5 8&/3
o 1 0 1-2 4/3

0

o 0 1 1 -3

1 8/3
o 1-1 0 1 4/3

1 0 2 0

0

o 0 1 1 -3




Degeneracy in 3D




Degeneracy in 3D

we’ll pretend this
never happens



Neighboring bases

® [wo bases are neighbors if
they share (m—1I) variables

® Neighboring feasible bases
correspond to vertices
connected by an edge (note:
degeneracy)

RH
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O R OK
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O R O
R O O |5
=R = =N



Improving our search

® Naive: enumerate all possible bases

® Smarter: maybe neighbors of good bases are
also good!?

® Simplex algorithm: repeatedly move to a
neighboring basis to improve objective

» important advantage: rank-| update is fast



Example

max 2x + 3y s.t.

x+ty<4

2x + 5y < 12

Xx+2y<5

X Yy S t u_RHS
1 1 1 0 0 4
2 5 0 1 0 12
1 2 0 0 1 5
2 3 0 0 0 T




Example

max 2x + 3y s.t.

X+yS4

2x + 5y < |2

Xx+2y<5

X \% S t U RHS
0.4 1 0O 0.2 0 2.4
0.6 0 1 -0.2 0O 1.6
0.2 0 0 -0.4 1 0.2
0.8 0 0 -0.6 0 T



Example

max 2x + 3y s.t.

3

2.5}

2,

1.5

1_

x+ty<4

2x + 5y < 12
Xx+2y<5

X y s t u RHS
1 0 0 -2 5 1
O 1 0 1 -2 2
0O 0 1 1 -3 1
O 0 O 1 -4 T




Example =

max 2x + 3y s.t. |

x+ty<4
2x + 5y < 12 >
x+2y<5 ‘B
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