
15-780: Grad AI
Lecture 15: Planning

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Review

Planning algorithms

‣ reduce to FOL (complications)

‣ or use subset of FOL (e.g., STRIPS)

‣ linear planner: add op to end of plan

‣ partial-order planner (operators,
bindings, partial order, guards, open
preconditions): resolve open precond

STRIPS: (world) state, operator =
{ preconditions } + { effects }, variable
binding, goals

Plan Graphs

Planning & model search

For a long time, it was thought that SAT-style
model search was a non-starter as a planning
algorithm

More recently, people have written fast
planners that

‣ propositionalize the domain

‣ turn it into a CSP or SAT problem

‣ search for a model

Plan graph

Tool for making good CSPs: plan graph

Encodes a subset of the constraints that
plans must satisfy

Remaining constraints are handled

‣ during search (reject solutions that violate
them)—needs special-purpose code

‣ or by adding extra clauses/constraints

Example

Start state: have(Cake)

Goal: have(Cake) ∧ eaten(Cake)

Operators: bake, eat

Eat

‣ pre: have(Cake)

‣ post: ¬have(Cake),
eaten(Cake)

Bake

‣ pre: ¬have(Cake)

‣ post: have(Cake)

Propositionalizing

Note: this domain is fully propositional

If we had a general STRIPS domain, would
have to pick a universe and propositionalize

E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), …

Plan graph

Alternating levels: states and actions

First level: initial state

have

¬eaten

Plan graph

First action level: all applicable actions

Linked to their preconditions

have

¬eaten

eat

Plan graph

Second state level: add effects of actions to
get literals that could hold at step 2

have

¬eaten

eat

eaten

¬have

Plan graph

Also add maintenance actions to
represent effect of doing nothing

have

¬eaten

eat

have

¬eaten
eaten

¬have

Plan graph

Extend another pair of levels: now bake is a
possible action

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan graph

Can extend as far right as we want

Plan = subset of the actions at each action
level

Ordering unspecified within a level

Plan graph

In addition to the above links, add mutex
links to indicate mutually exclusive actions
or literals

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan graph

Literals are mutex if they are contradictory

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan graph

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Actions which assert contradictory literals are
mutex (inconsistent effects)

Plan graph

Literals are also mutex if there is no action
or non-mutex pair of actions that could
achieve both (inconsistent support)

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan graph

Actions are also mutex if one deletes a
precondition of other (interference), or if
preconditions are mutex (competition)

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Mutex summary

For each action level, left to right, check pairs
of actions A, B (each check linear in rep’n size):

‣ inconsistent effects: check each effect of A
vs. effects of B

‣ interference: effects of A vs. preconds of B

‣ competing preconditions: check mutex links
on preconditions of A, B

Results at action level L tell us (in)consistent
support at proposition level L+1

Getting a plan

Build the plan graph out to some length k

Search:

‣ directly on the graph

‣ or by translating to SAT or CSP

If search succeeds, read off the plan

If not, increment k and try again

There is a test to see if k is “big enough”

Plan search

DFS w/ variable ordering based on plan graph

Start from last level, fill in last action set,
compute necessary preconditions, fill in 2nd-
to-last action set, etc.

If at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Plan search

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Translation to SAT

One variable for each pair of literals in state
levels

One variable per action in action levels

Constraints implement STRIPS semantics
plus “hints”

Solution tells us which actions are
performed at each action level, which literals
are true at each state level

Action constraints

Each action can only be executed if all of its
preconditions are present:

actt+1 ⇒ pre1t ∧ pre2t ∧ …

If executed, action asserts its postconditions:

actt+1 ⇒ post1t+2 ∧ post2t+2 ∧ …

Literal constraints

In order to achieve a literal, we must
execute an action that achieves it

‣ postt+2 ⇒ act1t+1 ∨ act2t+1 ∨ …

Might be a maintenance action

Initial & goal constraints

Goals must be satisfied at end:

goal1T ∧ goal2T ∧ …

And initial state holds at beginning:

init11 ∧ init21 ∧ …

Mutex constraints

Mutex constraints between actions or
literals: add clause (¬x ∨ ¬y)

Mutexes are redundant, but help anyway

Translation to SAT: example

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
1 2 3 4 5

note: haven’t
drawn all mutexes

at levels 4 & 5

Spatial
Planning

Plans in Space…

A* can be used for many things

Here, A* for spatial planning (in contrast to,
e.g., jobshop scheduling)

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when �
decreases (from �o to �n, say) to increase the bias term by
(�o − �n) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + � · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on

Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial

Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial

Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-

ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings

of the IEEE International Conference on Intelligent Robots

and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

What’s wrong w/ A*?

A* guarantees:

‣ (optimality) A* finds a solution of cost g*

‣ (efficiency) A* expands no nodes that have
f(node) > g*

What’s wrong with A*?

Discretized space into tiny little chunks

‣ a few degrees rotation of a joint

‣ Lots of states ⇒ lots of states w/ f ≤ g*

Discretized actions too

‣ one joint at a time, discrete angles

Results in jagged paths

What’s wrong with A*?

Snapshot of A*
ht

tp
://

w
w

w
.c

s.
cm

u.
ed

u/
~

gg
or

do
n/

Pa
th

Pl
an

/

http://www.cs.cmu.edu/~ggordon/PathPlan/
http://www.cs.cmu.edu/~ggordon/PathPlan/

Wouldn’t it be nice…

… if we could break things up based more on
the real geometry of the world?

Robot Motion Planning, Jean-Claude Latombe

Physical system

Moderate number of real-valued coordinates

Deterministic, continuous dynamics

Continuous goal set (or a few pieces)

Cost = time, work, torque, …

Typical physical system

A kinematic chain

Rigid links connected by joints

‣ revolute or prismatic

Configuration

q = (q1, q2, …)

qi = angle or length of joint i

Dimension of q = “degrees of
freedom”

Mobile robots

Translating in space = 2 dof

More mobility

Translation + rotation = 3 dof

Q: How many dofs?

3d translation & rotation

credit: Andrew
 M

oore

Kinematic motion planning

Now let’s add obstacles

Configuration space

For any configuration q, can test whether it
intersects obstacles

Set of legal configs is “configuration space”
C (a subset of a dof-dimensional vector
space)

Path is a continuous function from [0,1] into
C with q(0) = qs and q(1) = qg

Note: dynamic planning

Includes inertia as well as configuration

‣ q, q

Harder, since twice as many dofs, and
typically stronger constraints

Won’t really cover here…

C-space example

More C-space examples

Another C-space example

image: J. Kuffner

Topology of C-space

Topology of C-space can be something other
than the familiar Euclidean world

E.g. set of angles = unit circle = SO(2)

‣ not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit sphere
= SO(3)

Topology example

Compare L to R: 2 planar angles v. one solid
angle — both 2 dof (and neither the same as
Euclidean 2-space)

Back to planning

Complaint with A* was that it didn’t break up
C-space intelligently

How might we do better?

Lots of roboticists have given lots of answers!

Shortest path in C-space

Shortest path in C-space

Shortest path

Suppose a planar polygonal C-space

Shortest path in C-space is a sequence of
line segments

Each segment’s ends are either start or goal
or one of the vertices in C-space

In 3-d or higher, might lie on edge, face,
hyperface, …

Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorithm

For i = 1 … points

For j = 1 … points

included = t

For k = 1 … edges

if segment ij intersects edge k

included = f

Complexity

Naive algorithm is O(n3) in planar C-space

For faster algorithms, O(n2) or O(k+n log(n)),
see [Latombe, pg 157]

‣ k = number of edges that wind up in
visibility graph

‣ in dimension d, graph gets much bigger,
more complex; speedup tricks stop working

Once we have graph, search it!

Discussion of visibility graph

Good: finds shortest path

Bad: complex C-space yields long runtime,
even if problem is easy

‣ get my 23-dof manipulator to move 1mm
when nearest obstacle is 1m

Bad: no margin for error

Getting bigger margins

Could just pad obstacles

‣ but how much is enough? might make
infeasible…

What if we try to stay as far away from
obstacles as possible?

Voronoi graph

Set of all places equidistant from two or more
obstacles: Voronoi graph

‣ point obstacles: network of line segments

‣ nonzero extent: graph may include curves

1.5 1 0.5 0 0.5

1

0.5

0

0.5

1

Voronoi w/ polygonal C-space

Voronoi method for planning

Compute Voronoi diagram of C-space

Go straight from start to nearest point on
diagram

Plan within diagram to get near goal (A*)

Go straight to goal

Voronoi discussion

Good: stays far away from obstacles

Bad: assumes polygons

Bad: gets kind of hard in higher dimensions (but
see Howie Choset’s web page and book)

!"#$%&'()*+,- ./*0-1'(+,1/(0,23,4,5631(5*78,32(49*:((;<=<()62-9(+/*(

>**0->8(?60-@(/,0(3*1-0(*3(3*1-0(?8(A6358(B:61*

C*D(+,1/(E7-3,32

!"#$%&'()*+,- ./*0-1'(+,1/(0,23,4,5631(5*78,32(49*:((;<=<()62-9(+/*(

>**0->8(?60-@(/,0(3*1-0(*3(3*1-0(?8(A6358(B:61*

C*D(+,1/(E7-3,32

Voronoi discussion

Bad: kind of gun-shy about obstacles

(Approximate) cell
decompositions

Planning algorithm

Lay down a grid in C-space

Delete cells that intersect obstacles

Connect neighbors

A*

If no path, double resolution and try again

‣ never know when we’re done

Planning algorithm

This method is what we were using in end-
effector planning examples above

Works pretty well except:

‣ need high resolution near obstacles

‣ want low res away from obstacles

Fix: variable resolution

Lay down a coarse grid

Split cells that intersect obstacle borders

‣ empty cells good

‣ full cells also don’t need splitting

Stop at fine resolution

Data structure: quadtree

Discussion

Works pretty well, except:

‣ Still don’t know when to stop

‣ Won’t find shortest path

‣ Still doesn’t really scale to high-d

Better yet

Adaptive decomposition
Split only cells that actually make a difference
‣ are on path from start
‣ make a difference to our policy

An adaptive splitter: parti-game

G

Start

Goal

G

G

G

Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement
Learning in Multidimensional State-spaces. http://www.autonlab.org/autonweb/14699.html

http://www.autonlab.org/autonweb/14699.html
http://www.autonlab.org/autonweb/14699.html

Parti-game algorithm

Sample actions from several points per cell

Try to plan a path from start to goal

On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

If we can get to goal, we win

Otherwise we can split a cell

9dof planar arm

Fixed

base

Start

Goal

85 partitions total

Randomness
in search

Rapidly-exploring Random Trees

Break up C-space into Voronoi regions
around random landmarks

Invariant: landmarks always form a tree

‣ known path to root

Subject to this requirement, placed in a way
that tends to split large Voronoi regions

‣ coarse-to-fine search

Goal: feasibility not optimality (*)

RRT assumptions

RANDOM_CONFIG

‣ samples from C-space

EXTEND(q, q’)

‣ local controller, heads toward q’ from q

‣ stops before hitting obstacle (and perhaps
also after bound on time or distance)

FIND_NEAREST(q, Q)

‣ searches current tree Q for point near q

Path Planning with RRTs

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

Path Planning with RRTs

qinit

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

Path Planning with RRTs

qinit
qrand

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

Path Planning with RRTs

qnearqinit
qrand

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

Path Planning with RRTs

qnear

qnew

qinit
qrand

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

RRT example

Pl
an

ar
 h

ol
on

om
ic

 r
ob

ot

RRTs explore coarse to fine

Tend to break up large Voronoi regions

‣ higher probability of qrand being in them

Limiting distribution of vertices given by
RANDOM_CONFIG

‣ as RRT grows, probability that qrand is
reachable with local controller (and so
immediately becomes a new vertex)
approaches 1

RRT example

RRT for a car (3 dof)

Planning with RRTs

Build RRT from start until we add a node
that can reach goal using local controller

(Unique) path: root → last node → goal

Optional: “rewire” tree during growth by
testing connectivity to more than just
closest node

Optional: grow forward and backward

