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° Planning algorithms
» reduce to FOL (complications)
» or use subset of FOL (e.g., STRIPS)
» linear planner:add op to end of plan

» partial-order planner (operators,
bindings, partial order, guards, open
preconditions): resolve open precond

o STRIPS: (world) state, operator =
{ preconditions } + { effects }, variable
binding, goals
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Plan Graphs



Planning & model search
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o For a long time, it was thought that SAT-style
model search was a non-starter as a planning
algorithm

© More recently, people have written fast
planners that

» propositionalize the domain
» turn it into a CSP or SAT problem

» search for a model



Plan graph
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° Tool for making good CSPs: plan graph

o Encodes a subset of the constraints that
plans must satisfy

© Remaining constraints are handled

» during search (reject solutions that violate
them)—needs special-purpose code

» or by adding extra clauses/constraints



Example
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o Start state: have(Cake)

o Goal: have(Cake) A eaten(Cake)

o Operators: bake, eat

o Bake o Eat

» pre: —have(Cake) » pre: have(Cake)

» post: have(Cake) » post: ~have(Cake),
eaten(Cake)



Proposmonallzmg
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o Note: this domain is fully propositional

o |f we had a general STRIPS domain, would
have to pick a universe and propositionalize

o E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), ...




Plan graph
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have

—eaten

o Alternating levels: states and actions

o First level: initial state



Plan graph
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have

N

eat

—eaten

o First action level: all applicable actions

o Linked to their preconditions



Plan graph
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have

\ P have

eat
- eaten \

o Second state level: add effects of actions to
get literals that could hold at step 2

eaten



Plan graph
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have ——[] ——have

\ P have

eat
—eaten— ] %—- eaten

eaten

o Also add maintenance actions to
represent effect of doing nothing



Plan graph
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bake
have ——[] ——have ] > have

eat eat
—eaten— ] %—- eaten—|[ | ——eaten

eaten — [ | —"eaten

o Extend another pair of levels: now bake is a
possible action



Plan graph
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o Can extend as far right as we want

o Plan = subset of the actions at each action
leve

o Ordering unspecified within a level



Plan graph
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bake
have ——[] ——have ] > have

eat eat
—eaten— ] %—- eaten—|[ | ——eaten

eaten — [ | —"eaten

o |n addition to the above links, add mutex
links to indicate mutually exclusive actions
or literals



Plan graph
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bake

have — [] —have [1—have

\ >~ hay [1]— —have
eat / eat7
- eaten—|[ | l‘\—- eaten— [ ] ——eaten

.*eaten — []—"eaten

o Literals are mutex if they are contradictory



Plan graph
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bake

have — |:| —have []—have

\ ;= hav - have
eat / eat7
—-eaten—|:| l‘\—- eaten— [ ] ——eaten

.*eaten — []—"eaten

o Actions which assert contradictory literals are
mutex (inconsistent effects)



Plan graph
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bake

have — |:| ——have []—have

I"

\ : : s~=hav - have
eat d : eat7
—~eaten—[] l\—- eaten— [ ] —\—eaten

“w.reaten — [[]—"eaten

o Literals are also mutex if there is no action
or non-mutex pair of actions that could
achieve both (inconsistent support)



Plan graph
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bake
have — |:| Thave : |:| BN have

eat “a) eat
—eaten— |:| l\—- eaten—[ ] —\—eaten

x> eaten — [ ]——"eaten

o Actions are also mutex if one deletes a
precondition of other (interference), or if
preconditions are mutex (competition)



Mutex summary
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o For each action level, left to right, check pairs
of actions A, B (each check linear in rep’n size):

» inconsistent effects: check each effect of A
vs. effects of B

» interference: effects of A vs. preconds of B
» competing preconditions: check mutex links
on preconditions of A, B

o Results at action level L tell us (in)consistent
support at proposition level L+|



Getting a plan
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© Build the plan graph out to some length k

o Search:
» directly on the graph
» or by translating to SAT or CSP

o [f search succeeds, read off the plan
o If not, increment k and try again

°© There is a test to see if k is “big enough”



Plan search
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o DFS w/ variable ordering based on plan graph

o Start from last level, fill in last action set,
compute necessary preconditions, fill in 2nd-
to-last action set, etc.

o [f at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack



have — |:|

N\

eat

—eaten— |:|

Plan search

bake

——have =

l"

/~—-hav

: Y eat
l\—- eaten —[]

“w.reaten —[]

EI

—— have

- have
7

—eaten
—eaten



Plan search
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bake

have — L] —,.;haveezé []
\ /~—-hav 7 —have

eat ¥ eat
—-eaten—|:| l\—- eaten—|:| - eaten
-».'eaten — [] —(eaten



Plan search
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have < []—=have :
— hav [] — have
eat / N eat7

—-eaten—lji\—-eaten—lj —eaten
. eaten — []—(eaten?



Plan search
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eat © *Yeat
—-eaten—|:| l\—- eaten—|:| —eaten
. eaten —€[] )—Ceaten




Plan search




Plan search




Plan search
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[Dake

(havey— [l —have o/~ [ —have>

T NN

—-eaten—|:|: . —-eaten—|:| —eaten

:.:.- L1 )—Ceaten



Translatlon to SAT
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© One variable for each pair of literals in state
levels

© One variable per action in action levels

o Constraints implement STRIPS semantics
plus “hints”

o Solution tells us which actions are
performed at each action level, which literals
are true at each state level




Action constralnts
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o Each action can only be executed if all of its
preconditions are present:

acte+] = prele A pre2¢ A ...

o [f executed, action asserts its postconditions:

acte+] = postli+2 A post2e A ...



Literal constralnts
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o |n order to achieve a literal, we must
execute an action that achieves it

» postw2 = actler) V act2er Vv ...

o Might be a maintenance action



Initial & goal constraints
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o @Goals must be satisfied at end:

goallt A goal2t A ...

o And initial state holds at beginning:

initl| A init2; A ...




Mutex constramts
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o Mutex constraints between actions or
literals: add clause (-x v —y)

o Mutexes are redundant, but help anyway



Translation to SAT: example
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I 2 3 4 5
_,bake
have —— [ —=have &—[] AN have ,
AN :t/ﬁhav I:I7 ~have note: haven't
ea i “Veat drawn all mutexes

—-eaten—|ji\—- eaten— []—\—eaten at levels 4 & 5

“w.;eaten — [ |]—"eaten
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Spatial
Planning




Plans in Space...
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Optimal Solution End-effector Trajectory

o A* can be used for many things

o Here,A* for spatial planning (in contrast to,
e.g., jobshop scheduling)



What's wrong w/ A*?
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o A* guarantees:
» (optimality) A* finds a solution of cost g*

» (efficiency) A* expands no nodes that have
f(node) > g*



What’s wrong with A*?
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o Discretized space into tiny little chunks

» a few degrees rotation of a joint

» Lots of states = lots of states w/ f < g*
o Discretized actions too

» one joint at a time, discrete angles

o Results in jagged paths



What'’s wrong with A*?
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http://www.cs.cmu.edu/~ggordon/PathPlan/
http://www.cs.cmu.edu/~ggordon/PathPlan/

Wouldn’t it be nice...
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o ... if we could break things up based more on
the real geometry of the world?

o Robot Motion Planning, Jean-Claude Latombe

- - 4 e ,II
- ~ -



Physical system
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© Moderate number of real-valued coordinates
o Deterministic, continuous dynamics
o Continuous goal set (or a few pieces)

o Cost = time, work, torque, ...




Typical physical system
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UPPER ARM
(INNER LINK)

SHOULDER

FOREARM
(OUTER LINK)

WRIST
(Gripper not shown)




A kmematlc chaln
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Fip 11. Swucture of the 10-DOF manipulatar.

o Rigid links connected by joints

» revolute or prismatic

o Configuration

q=nq9-..)
qi = angle or length of joint i

o Dimension of q = “degrees of
freedom”



Mobile robots
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© Translating in space = 2 dof



More mobility
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o Translation + rotation = 3 dof



Q: How many dofs?
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o 3d translation & rotation




How Mo alofs?

Fixed Fren Clying

: How mawy dofs ¢
mﬁi}i:%w:?'u TTALY
How many Dofs ?

Twe m&ﬁjuuku\ 9 has one. real valuad
ertey por DOF.

2J00[A/ MaJPUY/:1PaID



Kinematic motion plannlng
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o Now let’s add obstacles



Configuration space
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o For any configuration ¢, can test whether it
intersects obstacles

o Set of legal configs is “configuration space”
C (a subset of a dof-dimensional vector
space)

o Path is a continuous function from [0, ] into
C with q(0) = qsand q(l) = qg




Note: dynamlc plannlng
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° |ncludes inertia as well as configuration

> q.9

o Harder, since twice as many dofs, and
typically stronger constraints

o Won't really cover here...




C-space example
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More C- space examples
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Another C-space example
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Topology of C -space
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o Topology of C-space can be something other
than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
» not [0, 2r) !

o Ball & socket joint (3d angle) C unit sphere
=S0O(3)



lopology example
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o Compare L to R: 2 planar angles v. one solid
angle — both 2 dof (and neither the same as
Euclidean 2-space)



Back to plannlng
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o Complaint with A* was that it didn’t break up
C-space intelligently

o How might we do better?

o Lots of roboticists have given lots of answers!




Shortest path in C- -space.
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Shortest path in C- -space
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Shortest path

e L T O P, P T T

o Suppose a planar polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or goal
or one of the vertices in C-space

© |n 3-d or higher, might lie on edge, face,
hyperface, ...



Visibility graph
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http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html



http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorlthm .
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Fori=1 ... points
Forj=1 ... points
included =t
For k=1 ... edges

if segment ij intersects edge k
included = f

- ‘ - s »_ ‘_'




Complexity
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o Naive algorithm is O(n3) in planar C-space
o For faster algorithms, O(n?) or O(k+n log(n)),
see [Latombe, pg 157]

» k = number of edges that wind up in
visibility graph

» in dimension d, graph gets much bigger,
more complex; speedup tricks stop working

o Once we have graph, search it!



Discussion of visibility graph
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o Good: finds shortest path

o Bad: complex C-space yields long runtime,
even if problem is easy

» get my 23-dof manipulator to move Imm
when nearest obstacle is Im

© Bad: no margin for error



Getting bigger margins
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o Could just pad obstacles

» but how much is enough? might make
infeasible...

°© What if we try to stay as far away from
obstacles as possible!?




Voronoi graph

o Set of all places equidistant from two or more
obstacles: Voronoi graph

» point obstacles: network of line segments

» nonzero extent: graph may include curves



Voronoi w/ polygonal C- -space
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Voronoi method for plannlng
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o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal (A*)

o Go straight to goal



Voronoi dlscu55|on
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o Good: stays far away from obstacles

© Bad:assumes polygons

o Bad: gets kind of hard in higher dimensions (but
see Howie Choset’s web page and book)




Voronoi dlscu55|on
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o Bad: kind of gun-shy about obstacles

LT




(Approximate) cell
decompositions
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Planning algorlthm
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o lay down a grid in C-space

o Delete cells that intersect obstacles

o Connect neighbors

o AX

o [f no path, double resolution and try again

» never know when we’re done




Planning algorlthm
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© This method is what we were using in end-
effector planning examples above

°© Works pretty well except:

» need high resolution near obstacles

» want low res away from obstacles




Fix: varlable resolutlon
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o Lay down a coarse grid

o Split cells that intersect obstacle borders
» empty cells good

» full cells also don’t need splitting
o Stop at fine resolution

o Data structure: quadtree
















DISCUSSIOn
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°© Works pretty well, except:
» Still don’t know when to stop
» Won't find shortest path
» Still doesn’t really scale to high-d



Better " yet
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o Adaptive decomposition

o Split only cells that actually make a difference
» are on path from start
» make a difference to our policy



An adaptive splitter: partl-game
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Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement
Learning in Multidimensional State-spaces. http://www.autonlab.org/autonweb/14699.html



http://www.autonlab.org/autonweb/14699.html
http://www.autonlab.org/autonweb/14699.html

Parti-game algorlthm
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o Sample actions from several points per cell
°© Try to plan a path from start to goal

©  On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o [f we can get to goal, we win

o Otherwise we can split a cell



9dof planar arm
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Goal

% e
base

85 partitions total
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Randomness
in search




Rapidly-exploring Random Trees
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o Break up C-space into Voronoi regions
around random landmarks

o

Invariant:

4

known

andmarks always form a tree

bath to root

o Subject to this requirement, placed in a way
that tends to split large Voronoi regions

» coarse-to-fine search

o Goal: feasibility not optimality (*)



RRT assumptions
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o RANDOM CONFIG

» samples from C-space

o EXTEND(q, q’)
» local controller, heads toward q’ from q

» stops before hitting obstacle (and perhaps
also after bound on time or distance)

o FIND_NEAREST(q, Q)

» searches current tree Q for point near q

. - - » »_ » .'l




Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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BUILT_RRT(qinit) {
T = init
fork =1 to K{
Qrand = RANDOM_CONHG()
EXTEND(T, C|rand);

}

}

EXTEND(T, q) {
Qnear = F|ND_NEAREST(C|, T)
Jnew = EXTEND(CInear, CI)
T =T + (Qnear, Jnew)

[ Kuffner & LaValle , ICRA’00]



Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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qim’t

BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[ Kuffner & LaValle , ICRA’00]



Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[ Kuffner & LaValle , ICRA’00]



Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[ Kuffner & LaValle , ICRA’00]



Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

[ Kuffner & LaValle , ICRA’00]



RRT example
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Planar holonomic robot




RRTs explore coarse to fine
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i = il

o Tend to break up large Voronoi regions

» higher probability of grand being in them

o Limiting distribution of vertices given by
RANDOM _ CONFIG

» as RRT grows, probability that grand is
reachable with local controller (and so

immediately becomes a new vertex)
approaches |
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RRT example
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RRT for a car (3 dof)




Planning W|th RRTs
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o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional:“rewire” tree during growth by
testing connectivity to more than just
closest node

o Optional: grow forward and backward















