15-780: Grad Al
Lecture | 5: PIannlng

_,w

Geojf Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman

Rewew

e L e i i tania PRGN = PSSR T

° Planning algorithms
» reduce to FOL (complications)
» or use subset of FOL (e.g., STRIPS)
» linear planner:add op to end of plan

» partial-order planner (operators,
bindings, partial order, guards, open
preconditions): resolve open precond

o STRIPS: (world) state, operator =
{ preconditions } + { effects }, variable
binding, goals

MWMM“‘“ it 3 123 TPERE L e 'whao%mmww

Plan Graphs

Planning & model search

WWMM P T g g L T T, T S o g_“‘&,'v“

o For a long time, it was thought that SAT-style
model search was a non-starter as a planning
algorithm

© More recently, people have written fast
planners that

» propositionalize the domain
» turn it into a CSP or SAT problem

» search for a model

Plan graph

b ", g . . (o - V4 A Tty v W ST CA L SRR VS e I H NG e

° Tool for making good CSPs: plan graph

o Encodes a subset of the constraints that
plans must satisfy

© Remaining constraints are handled

» during search (reject solutions that violate
them)—needs special-purpose code

» or by adding extra clauses/constraints

Example

e L e i i tania PRGN = PSSR T

o Start state: have(Cake)

o Goal: have(Cake) A eaten(Cake)

o Operators: bake, eat

o Bake o Eat

» pre: —have(Cake) » pre: have(Cake)

» post: have(Cake) » post: ~have(Cake),
eaten(Cake)

Proposmonallzmg

e e L e Db e i 2 PR

o Note: this domain is fully propositional

o |f we had a general STRIPS domain, would
have to pick a universe and propositionalize

o E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), ...

Plan graph

PSR TN B Ly Tt G P AT Sty SO0 LS AR TG Y e S ot e b e OTNCR) 0 0 i i PSR Mol

have

—eaten

o Alternating levels: states and actions

o First level: initial state

Plan graph

PSR TN B Ly Tt G P AT Sty SO0 LS AR TG Y e S ot e b e OTNCR) 0 0 i i PSR Mol

have

N

eat

—eaten

o First action level: all applicable actions

o Linked to their preconditions

Plan graph

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s PV R e 29,000 w1 i i s TSP Sy B e i O

have

\ P have

eat
- eaten \

o Second state level: add effects of actions to
get literals that could hold at step 2

eaten

Plan graph

PSR TN B Ly Tt G P AT Sty SO0 LS AR TG Y e S ot e b e OTNCR) 0 0 i i PSR Mol

have ——[] ——have

\ P have

eat
—eaten—] %—- eaten

eaten

o Also add maintenance actions to
represent effect of doing nothing

Plan graph

HIPOROTETRE A B A FA GRS Prmar St A S8 Tty 5 I LT SR e e 2 SN it ek = OTVCR 1 10 o1 i i PN I AN

bake
have ——[] ——have] > have

eat eat
—eaten—] %—- eaten—|[| ——eaten

eaten — [| —"eaten

o Extend another pair of levels: now bake is a
possible action

Plan graph

mmmm’"‘“" W Sk s SR E N Ve er e IH YTt emes e e ng_‘«”,'”“mmw

o Can extend as far right as we want

o Plan = subset of the actions at each action
leve

o Ordering unspecified within a level

Plan graph

POEI TR A B Ay Trt G5 oS AR S Aty 5= O LT R I e TN st ek € 12 BTNCR 10, 0 o1 i iDL B IR NS

bake
have ——[] ——have] > have

eat eat
—eaten—] %—- eaten—|[| ——eaten

eaten — [| —"eaten

o |n addition to the above links, add mutex
links to indicate mutually exclusive actions
or literals

Plan graph

L e e St Lanianie . PRSP o SRR FE

bake

have — [] —have [1—have

\ >~ hay [1]— —have
eat / eat7
- eaten—|[| l‘\—- eaten— [] ——eaten

.*eaten — []—"eaten

o Literals are mutex if they are contradictory

Plan graph

W’WM“‘Y&" ""”Mm”!'“""‘*"“w""“'"mg&wﬂvﬂm

bake

have — |:| —have []—have

\ ;= hav - have
eat / eat7
—-eaten—|:| l‘\—- eaten— [] ——eaten

.*eaten — []—"eaten

o Actions which assert contradictory literals are
mutex (inconsistent effects)

Plan graph

W’WM'.‘.“ b'“mm”!‘*‘-'”'*”‘lw'-“4‘- m“‘v«:’.v“w

bake

have — |:| ——have []—have

I"

\ : : s~=hav - have
eat d : eat7
—~eaten—[] l\—- eaten— [] —\—eaten

“w.reaten — [[]—"eaten

o Literals are also mutex if there is no action
or non-mutex pair of actions that could
achieve both (inconsistent support)

Plan graph

W’WM“‘Y&" ""”Mm”!'“""‘*"“w""“'"mg&wﬂvﬂm

bake
have — |:| Thave : |:| BN have

eat “a) eat
—eaten— |:| l\—- eaten—[] —\—eaten

x> eaten — []——"eaten

o Actions are also mutex if one deletes a
precondition of other (interference), or if
preconditions are mutex (competition)

Mutex summary

mmmm" .Qmo— u".‘h‘&ﬂ ---------------- M*‘i‘b"”m - » ».w

o For each action level, left to right, check pairs
of actions A, B (each check linear in rep’n size):

» inconsistent effects: check each effect of A
vs. effects of B

» interference: effects of A vs. preconds of B
» competing preconditions: check mutex links
on preconditions of A, B

o Results at action level L tell us (in)consistent
support at proposition level L+|

Getting a plan

PSR TN B Ly Tt G P AT Sty SO0 LS AR TG Y e S ot e b e OTNCR) 0 0 i i PSR Mol

© Build the plan graph out to some length k

o Search:
» directly on the graph
» or by translating to SAT or CSP

o [f search succeeds, read off the plan
o If not, increment k and try again

°© There is a test to see if k is “big enough”

Plan search

PESISTESRE A B L Tt g KT oS DA A K s 52N £ RO et SV s s e e P

o DFS w/ variable ordering based on plan graph

o Start from last level, fill in last action set,
compute necessary preconditions, fill in 2nd-
to-last action set, etc.

o [f at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack

have — |:|

N\

eat

—eaten— |:|

Plan search

bake

——have =

l"

/~—-hav

: Y eat
l\—- eaten —[]

“w.reaten —[]

EI

—— have

- have
7

—eaten
—eaten

Plan search

POPOATE IR DI L, T8 GRS Prrn B AT Sty 519 £ A IR G Y b St ek A RO oo e i e

bake

have — L] —,.;haveezé []
\ /~—-hav 7 —have

eat ¥ eat
—-eaten—|:| l\—- eaten—|:| - eaten
-».'eaten — [] —(eaten

Plan search

PSR TR b DM Ly Tt AT P S DA Aty S OV ST CI I v e 50 Lt e 2 BTNCR o 20 00 s i i DS OBL l I V N?

have < []—=have :
— hav [] — have
eat / N eat7

—-eaten—lji\—-eaten—lj —eaten
. eaten — []—(eaten?

Plan search

PSR TR b DM Ly Tt AT P S DA Aty S OV ST CI I v e 50 Lt e 2 BTNCR o 20 00 s i i DS OBL l I V N?

eat © *Yeat
—-eaten—|:| l\—- eaten—|:| —eaten
. eaten —€[])—Ceaten

Plan search

Plan search

Plan search

AR TSR A B T GRS o SO OAST S8ty = I LT R I e e SN bt e b 1 MR 10 0 o1 i i DTSV RIS

[Dake

(havey— [l —have o/~ [—have>

T NN

—-eaten—|:|: . —-eaten—|:| —eaten

:.:.- L1)—Ceaten

Translatlon to SAT

y . B i, T
WWMM S ATty i 80 04 2 ST L0 SRS kel PISSGTSPUNN

© One variable for each pair of literals in state
levels

© One variable per action in action levels

o Constraints implement STRIPS semantics
plus “hints”

o Solution tells us which actions are
performed at each action level, which literals
are true at each state level

Action constralnts

PASORSTEIRE A B L Tt G o S T OANT A Tty 5= 0 ST LI b s SN st v e e PP

o Each action can only be executed if all of its
preconditions are present:

acte+] = prele A pre2¢ A ...

o [f executed, action asserts its postconditions:

acte+] = postli+2 A post2e A ...

Literal constralnts

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s e P e T

o |n order to achieve a literal, we must
execute an action that achieves it

» postw2 = actler) V act2er Vv ...

o Might be a maintenance action

Initial & goal constraints

e e L e Db e i 2 PR

o @Goals must be satisfied at end:

goallt A goal2t A ...

o And initial state holds at beginning:

initl| A init2; A ...

Mutex constramts

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s e P e T

o Mutex constraints between actions or
literals: add clause (-x v —y)

o Mutexes are redundant, but help anyway

Translation to SAT: example

IO E I, A 4, G S P AN Ty 90 0 ST e 3 SVl s e R 100 e
I 2 3 4 5
_,bake
have —— [—=have &—[] AN have ,
AN :t/ﬁhav I:I7 ~have note: haven't
ea i “Veat drawn all mutexes

—-eaten—|ji\—- eaten— []—\—eaten at levels 4 & 5

“w.;eaten — [|]—"eaten

y WMMV.Q‘M it I L s ¥ <y
\&Q!‘&"'N“‘"l

v-.cqg-.ld\qh . .

Mg L1 e e i ISP Bl I eI

Spatial
Planning

Plans in Space...

SO TNE Ao Tt A Promari AT s S5 T TR S5V a8+ ORI

b

Optimal Solution End-effector Trajectory

o A* can be used for many things

o Here,A* for spatial planning (in contrast to,
e.g., jobshop scheduling)

What's wrong w/ A*?

e e L e Db e i 2 PR

el

o A* guarantees:
» (optimality) A* finds a solution of cost g*

» (efficiency) A* expands no nodes that have
f(node) > g*

What’s wrong with A*?

PSISTEIRE A B 4 Tt AT oS DAY S K Tty 5 N S AL IR v e s SNtk A OANCR g i B gt TNl

o Discretized space into tiny little chunks

» a few degrees rotation of a joint

» Lots of states = lots of states w/ f < g*
o Discretized actions too

» one joint at a time, discrete angles

o Results in jagged paths

What'’s wrong with A*?

PSISTEIRE A B L, Tt AT Prrman o AT S Tty = 90 £ A2 3K VLt s

m“v“.. -

JUe|JUIe4/UOPIOSS~/NPa NWD ST MMAM//:d1IY

http://www.cs.cmu.edu/~ggordon/PathPlan/
http://www.cs.cmu.edu/~ggordon/PathPlan/

Wouldn’t it be nice...

' v L - ¥ oy o W, L sin s g Y e g
WMMMMVQQM Ad- 4.2 7 et L R - ""“.8.4,‘0-"”“

o ... if we could break things up based more on
the real geometry of the world?

o Robot Motion Planning, Jean-Claude Latombe

- - 4 e ,II
- ~ -

Physical system

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s anier’, PISRPP,

© Moderate number of real-valued coordinates
o Deterministic, continuous dynamics
o Continuous goal set (or a few pieces)

o Cost = time, work, torque, ...

Typical physical system

e L L s i P SRS

UPPER ARM
(INNER LINK)

SHOULDER

FOREARM
(OUTER LINK)

WRIST
(Gripper not shown)

A kmematlc chaln

WMMM'.Q“u L g i3 4 R e T, T Suro ooy M’h«&".mm

Fip 11. Swucture of the 10-DOF manipulatar.

o Rigid links connected by joints

» revolute or prismatic

o Configuration

q=nq9-..)
qi = angle or length of joint i

o Dimension of q = “degrees of
freedom”

Mobile robots

L e e St Lanianie . PRSP o SRR FE

/

\

pd\
N\
A

© Translating in space = 2 dof

More mobility

L e e St Lanianie . PRSP o SRR FE

o Translation + rotation = 3 dof

Q: How many dofs?

e L T L e i e P e e

A

o 3d translation & rotation

How Mo alofs?

Fixed Fren Clying

: How mawy dofs ¢
mﬁi}i:%w:?'u TTALY
How many Dofs ?

Twe m&ﬁjuuku\ 9 has one. real valuad
ertey por DOF.

2J00[A/ MaJPUY/:1PaID

Kinematic motion plannlng

PESISTERE A Bl Tt g KT Prrmar S DA A K Tty = OV LS AL IR e SN stk A AN g

=
Ry

P M il

o Now let’s add obstacles

Configuration space

e e L e Db e i 2 PR

o For any configuration ¢, can test whether it
intersects obstacles

o Set of legal configs is “configuration space”
C (a subset of a dof-dimensional vector
space)

o Path is a continuous function from [0,] into
C with q(0) = qsand q(l) = qg

Note: dynamlc plannlng

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s AR a2t 0 o

° |ncludes inertia as well as configuration

> q.9

o Harder, since twice as many dofs, and
typically stronger constraints

o Won't really cover here...

C-space example

PSSR b B L, Tt T Proman G DA SN Tty 5= I ST CRI T s eSSV st ek A MR e

More C- space examples

MWMMW S Ty S I b s o vy i Landanie L VWP

-~

Another C-space example

L T L i S Laianie - PHR, e

i ‘"1“:“\“\“ lll—ln-l,-.lq“m'-]lml_h—u:m,H \l
-
= N L |
s 7o e Y

Topology of C -space

e e L e Db e i 2 PR

el

o Topology of C-space can be something other
than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
» not [0, 2r) !

o Ball & socket joint (3d angle) C unit sphere
=S0O(3)

lopology example

PO TIRE b i L, Tt GO P S DAY S Tty 5= O B IR s e SN o mes e MR el R i

o Compare L to R: 2 planar angles v. one solid
angle — both 2 dof (and neither the same as
Euclidean 2-space)

Back to plannlng

’ .) P e L P T Y
DAL e L, Tt A Prrmar o AT A Tty 5= N S S R s S5Vl vmest s, TR

o Complaint with A* was that it didn’t break up
C-space intelligently

o How might we do better?

o Lots of roboticists have given lots of answers!

Shortest path in C- -space.

WWM PRl e i3 4,03 PR et v ol o Py ear e 'm

0 goa\
7, |

Shortest path in C- -space

e LN R R e S Rttt e L I T

/. goa\

Shortest path

e L T O P, P T T

o Suppose a planar polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or goal
or one of the vertices in C-space

© |n 3-d or higher, might lie on edge, face,
hyperface, ...

Visibility graph

WWM“QM” R D13 1,05 AR e L TR m&““‘”v“ . .

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorlthm .

e e L e Db e i 2 PR

Fori=1 ... points
Forj=1 ... points
included =t
For k=1 ... edges

if segment ij intersects edge k
included = f

- ‘ - s »_ ‘_'

Complexity

e e L e Db e i 2 PR v £ B R e

o Naive algorithm is O(n3) in planar C-space
o For faster algorithms, O(n?) or O(k+n log(n)),
see [Latombe, pg 157]

» k = number of edges that wind up in
visibility graph

» in dimension d, graph gets much bigger,
more complex; speedup tricks stop working

o Once we have graph, search it!

Discussion of visibility graph

e e L e Db e i 2 PR e M il

o Good: finds shortest path

o Bad: complex C-space yields long runtime,
even if problem is easy

» get my 23-dof manipulator to move Imm
when nearest obstacle is Im

© Bad: no margin for error

Getting bigger margins

e e L e Db e i 2 PR

o Could just pad obstacles

» but how much is enough? might make
infeasible...

°© What if we try to stay as far away from
obstacles as possible!?

Voronoi graph

o Set of all places equidistant from two or more
obstacles: Voronoi graph

» point obstacles: network of line segments

» nonzero extent: graph may include curves

Voronoi w/ polygonal C- -space

PISISTEIRE A D L Tt G A v S DAY A Tty = O S C2 IR e e it L anial, PSS W

Voronoi method for plannlng

PDIST LR B Ly T2 GRS Prn o AT STty 5 I L AL I e PN it ek M e MRt e n

o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal (A*)

o Go straight to goal

Voronoi dlscu55|on

SIOT T A A Ay Tt GRS P AT A3y S O A LI e S it ek = MR 10

o Good: stays far away from obstacles

© Bad:assumes polygons

o Bad: gets kind of hard in higher dimensions (but
see Howie Choset’s web page and book)

Voronoi dlscu55|on

WWM PL e Tt St 8- b4 3 TR L SR (SN L e Lndanie . PUPS,

o Bad: kind of gun-shy about obstacles

LT

(Approximate) cell
decompositions

L T T e i e Lanianie - VWG

APPSR

Planning algorlthm

PEPRSTERE A Bl Tt g T Prmar S A T A K Tty = OV TS IR v e SN st s Lande L VISP

o lay down a grid in C-space

o Delete cells that intersect obstacles

o Connect neighbors

o AX

o [f no path, double resolution and try again

» never know when we’re done

Planning algorlthm

MWMM PPV P L e T) D T I PR ke’ PR

© This method is what we were using in end-
effector planning examples above

°© Works pretty well except:

» need high resolution near obstacles

» want low res away from obstacles

Fix: varlable resolutlon

’ . B . bt 3 T e P Advgy
PESISTESRE A B Tt g K oS DA A 45 a1, 4 3 T T N L PR

o Lay down a coarse grid

o Split cells that intersect obstacle borders
» empty cells good

» full cells also don’t need splitting
o Stop at fine resolution

o Data structure: quadtree

DISCUSSIOn

mmmm’"‘f“" W b i s SR Ys g I H YT temes e ng_‘«”,'”“mmw

°© Works pretty well, except:
» Still don’t know when to stop
» Won't find shortest path
» Still doesn’t really scale to high-d

Better " yet

mmmm’"‘“" W Sk s SR E N Ve er e IH YTt emes e e ng_‘«”,'”“mmw

o Adaptive decomposition

o Split only cells that actually make a difference
» are on path from start
» make a difference to our policy

An adaptive splitter: partl-game

- 8 ot o
PESISTESRE A B Tt g K oS DA A 45 i D D gt SN 2SS £ hania l, PR

|
i

Goa

~+

Stargw

Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement
Learning in Multidimensional State-spaces. http://www.autonlab.org/autonweb/14699.html

http://www.autonlab.org/autonweb/14699.html
http://www.autonlab.org/autonweb/14699.html

Parti-game algorlthm

p . o i, bt 5 T T
WWMM A Tty 4o s RN Ve eI H NGy temesd g Ritvan 000 oo

o Sample actions from several points per cell
°© Try to plan a path from start to goal

© On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o [f we can get to goal, we win

o Otherwise we can split a cell

9dof planar arm

o ll ,HIS‘ . ‘ ':‘ - i - '.6. : "o)\,mvquo..s...,"’.'ﬁéz“ s g M“'u L0 o o

Goal

% e
base

85 partitions total

PEPRSTESRE A Bl Tt g AT oS oDt 144 A et i ISP i s T AN

Randomness
in search

Rapidly-exploring Random Trees

mmwm" Q“o— nm&ﬂ 4 lw L = S5 u‘qa_“

2V g VRV

o Break up C-space into Voronoi regions
around random landmarks

o

Invariant:

4

known

andmarks always form a tree

bath to root

o Subject to this requirement, placed in a way
that tends to split large Voronoi regions

» coarse-to-fine search

o Goal: feasibility not optimality (*)

RRT assumptions

PDIST LR B Ly T2 GRS Prn o AT STty 5 I L AL I e PN it ek M e MRt e n

o RANDOM CONFIG

» samples from C-space

o EXTEND(q, q’)
» local controller, heads toward q’ from q

» stops before hitting obstacle (and perhaps
also after bound on time or distance)

o FIND_NEAREST(q, Q)

» searches current tree Q for point near q

. - - » »_ » .'l

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

e LN R R e S Rttt e L I T

S n

BUILT_RRT(qinit) {
T = init
fork =1 to K{
Qrand = RANDOM_CONHG()
EXTEND(T, C|rand);

}

}

EXTEND(T, q) {
Qnear = F|ND_NEAREST(C|, T)
Jnew = EXTEND(CInear, CI)
T =T + (Qnear, Jnew)

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

PSSR A B Ly T GBS Prmear S AT DANT S8 Tty S I ST CAL IR e SNt e M TR e

S n

qim’t

BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

PSSR A B Ly T GBS Prmear S AT DANT S8 Tty S I ST CAL IR e SNt e M TR e

S n

BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

PSSR A B Ly T GBS Prmear S AT DANT S8 Tty S I ST CAL IR e SNt e M TR e

S n

BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

}

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

PSSR A B Ly T GBS Prmear S AT DANT S8 Tty S I ST CAL IR e SNt e M TR e

S n

BUILT_RRT(Qinit) {

T = Qinit EXTEND(T, q) {
fork =1to K{ dnear = FIND_NEAREST(qg, T)
qrand - RANDOM_CONFIG() qnew == EXTEND(qnear, C|)

EXTEND(T, Qrand); T =T + (Qnear, Qnew)
} }

[Kuffner & LaValle , ICRA’00]

RRT example

NS O B 4 T GRS Promar S DA $ 879y = O LT O It e SV it e b - OTNR 1 10 1 i i DTSV N SIS

Planar holonomic robot

RRTs explore coarse to fine

PDIST LR B Ly T2 GRS Prn o AT STty 5 I L AL I e PN it ek M e MRt e n

i = il

o Tend to break up large Voronoi regions

» higher probability of grand being in them

o Limiting distribution of vertices given by
RANDOM _ CONFIG

» as RRT grows, probability that grand is
reachable with local controller (and so

immediately becomes a new vertex)
approaches |

/

RRT example

PO TR i Ly Tt g oo G AT S5ty 5= I = AL v e i it ek e TR g | e P i T

e

RRT for a car (3 dof)

Planning W|th RRTs

POSIST IR B L Tt A v B DAY S Tty 5= O S G I v e s SV st s e

ALY

o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional:“rewire” tree during growth by
testing connectivity to more than just
closest node

o Optional: grow forward and backward

