
15-780: Grad AI
Lecture 15: Planning

Geoff Gordon (this lecture)
Tuomas Sandholm 

TAs Erik Zawadzki, Abe Othman



Review

Planning algorithms

‣ reduce to FOL (complications)

‣ or use subset of FOL (e.g., STRIPS)

‣ linear planner: add op to end of plan

‣ partial-order planner (operators, 
bindings, partial order, guards, open 
preconditions): resolve open precond

STRIPS: (world) state, operator = 
{ preconditions } + { effects }, variable 
binding, goals



Plan Graphs



Planning & model search

For a long time, it was thought that SAT-style 
model search was a non-starter as a planning 
algorithm

More recently, people have written fast 
planners that

‣ propositionalize the domain

‣ turn it into a CSP or SAT problem

‣ search for a model



Plan graph

Tool for making good CSPs: plan graph

Encodes a subset of the constraints that 
plans must satisfy

Remaining constraints are handled 

‣ during search (reject solutions that violate 
them)—needs special-purpose code

‣ or by adding extra clauses/constraints



Example

Start state: have(Cake)

Goal: have(Cake) ∧ eaten(Cake)

Operators: bake, eat

Eat

‣ pre: have(Cake)

‣ post: ¬have(Cake), 
eaten(Cake)

Bake

‣ pre: ¬have(Cake)

‣ post: have(Cake)



Propositionalizing

Note: this domain is fully propositional

If we had a general STRIPS domain, would 
have to pick a universe and propositionalize

E.g., eat(x) would become eat(Banana),      
eat(Cake), eat(Fred), …



Plan graph

Alternating levels: states and actions

First level: initial state

have

¬eaten



Plan graph

First action level: all applicable actions

Linked to their preconditions

have

¬eaten

eat



Plan graph

Second state level: add effects of actions to 
get literals that could hold at step 2

have

¬eaten

eat

eaten

¬have



Plan graph

Also add maintenance actions to 
represent effect of doing nothing

have

¬eaten

eat

have

¬eaten
eaten

¬have



Plan graph

Extend another pair of levels: now bake is a 
possible action

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake



Plan graph

Can extend as far right as we want

Plan = subset of the actions at each action 
level

Ordering unspecified within a level



Plan graph

In addition to the above links, add mutex 
links to indicate mutually exclusive actions 
or literals

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake



Plan graph

Literals are mutex if they are contradictory

have

¬eaten

eat

have

¬eaten
eaten

¬have
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Plan graph

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

Actions which assert contradictory literals are 
mutex (inconsistent effects)



Plan graph

Literals are also mutex if there is no action 
or non-mutex pair of actions that could 
achieve both (inconsistent support)
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have
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¬have
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¬have
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Plan graph

Actions are also mutex if one deletes a 
precondition of other (interference), or if 
preconditions are mutex (competition)

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake



Mutex summary

For each action level, left to right, check pairs 
of actions A, B (each check linear in rep’n size):

‣ inconsistent effects: check each effect of A 
vs. effects of B

‣ interference: effects of A vs. preconds of B

‣ competing preconditions: check mutex links 
on preconditions of A, B

Results at action level L tell us (in)consistent 
support at proposition level L+1



Getting a plan

Build the plan graph out to some length k

Search:

‣ directly on the graph

‣ or by translating to SAT or CSP

If search succeeds, read off the plan

If not, increment k and try again

There is a test to see if k is “big enough”



Plan search

DFS w/ variable ordering based on plan graph

Start from last level, fill in last action set, 
compute necessary preconditions, fill in 2nd-
to-last action set, etc.

If at some level there is no way to do any 
actions, or no way to fill in consistent 
preconditions, backtrack



Plan search
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Plan search
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Translation to SAT

One variable for each pair of literals in state 
levels

One variable per action in action levels

Constraints implement STRIPS semantics 
plus “hints”

Solution tells us which actions are 
performed at each action level, which literals 
are true at each state level



Action constraints

Each action can only be executed if all of its 
preconditions are present:

actt+1 ⇒ pre1t ∧ pre2t ∧ …

If executed, action asserts its postconditions:

actt+1 ⇒ post1t+2 ∧ post2t+2 ∧ …



Literal constraints

In order to achieve a literal, we must 
execute an action that achieves it

‣ postt+2 ⇒ act1t+1 ∨ act2t+1 ∨ …

Might be a maintenance action



Initial & goal constraints

Goals must be satisfied at end: 

goal1T ∧ goal2T ∧ …

And initial state holds at beginning:

init11 ∧ init21 ∧ …



Mutex constraints

Mutex constraints between actions or 
literals: add clause (¬x ∨ ¬y)

Mutexes are redundant, but help anyway



Translation to SAT: example

have

¬eaten

eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
1        2        3        4        5

note: haven’t 
drawn all mutexes 

at levels 4 & 5



Spatial 
Planning



Plans in Space…

A* can be used for many things

Here, A* for spatial planning (in contrast to, 
e.g., jobshop scheduling)

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing
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Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when �
decreases (from �o to �n, say) to increase the bias term by
(�o − �n) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + � · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.
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What’s wrong w/ A*?

A* guarantees:

‣ (optimality) A* finds a solution of cost g*

‣ (efficiency) A* expands no nodes that have 
f(node) > g*



What’s wrong with A*?

Discretized space into tiny little chunks

‣ a few degrees rotation of a joint

‣ Lots of states ⇒ lots of states w/ f ≤ g*

Discretized actions too

‣ one joint at a time, discrete angles

Results in jagged paths



What’s wrong with A*?
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Wouldn’t it be nice…

… if we could break things up based more on 
the real geometry of the world?

Robot Motion Planning, Jean-Claude Latombe



Physical system

Moderate number of real-valued coordinates

Deterministic, continuous dynamics

Continuous goal set (or a few pieces)

Cost = time, work, torque, …



Typical physical system



A kinematic chain

Rigid links connected by joints

‣ revolute or prismatic 

Configuration

q = (q1, q2, …)

qi = angle or length of joint i

Dimension of q = “degrees of 
freedom”



Mobile robots

Translating in space = 2 dof



More mobility

Translation + rotation = 3 dof



Q: How many dofs?

3d translation & rotation



credit: Andrew
 M

oore



Kinematic motion planning

Now let’s add obstacles



Configuration space

For any configuration q, can test whether it 
intersects obstacles

Set of legal configs is “configuration space” 
C (a subset of a dof-dimensional vector 
space) 

Path is a continuous function from [0,1] into 
C with q(0) = qs and q(1) = qg



Note: dynamic planning

Includes inertia as well as configuration

‣ q, q

Harder, since twice as many dofs, and 
typically stronger constraints

Won’t really cover here…



C-space example



More C-space examples



Another C-space example

image: J. Kuffner



Topology of C-space

Topology of C-space can be something other 
than the familiar Euclidean world

E.g. set of angles = unit circle = SO(2)

‣ not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit sphere 
= SO(3)



Topology example

Compare L to R: 2 planar angles v. one solid 
angle — both 2 dof (and neither the same as 
Euclidean 2-space)



Back to planning

Complaint with A* was that it didn’t break up 
C-space intelligently

How might we do better?

Lots of roboticists have given lots of answers!



Shortest path in C-space



Shortest path in C-space



Shortest path

Suppose a planar polygonal C-space

Shortest path in C-space is a sequence of 
line segments

Each segment’s ends are either start or goal 
or one of the vertices in C-space

In 3-d or higher, might lie on edge, face, 
hyperface, …



Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html
http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html


Naive algorithm

For i = 1 … points

For j = 1 … points

included = t

For k = 1 … edges

if segment ij intersects edge k

included = f



Complexity

Naive algorithm is O(n3) in planar C-space

For faster algorithms, O(n2) or O(k+n log(n)), 
see [Latombe, pg 157]

‣ k = number of edges that wind up in 
visibility graph

‣ in dimension d, graph gets much bigger, 
more complex; speedup tricks stop working

Once we have graph, search it!



Discussion of visibility graph

Good: finds shortest path

Bad: complex C-space yields long runtime, 
even if problem is easy

‣ get my 23-dof manipulator to move 1mm 
when nearest obstacle is 1m

Bad: no margin for error



Getting bigger margins

Could just pad obstacles

‣ but how much is enough? might make 
infeasible…

What if we try to stay as far away from 
obstacles as possible?



Voronoi graph

Set of all places equidistant from two or more 
obstacles: Voronoi graph

‣ point obstacles: network of line segments

‣ nonzero extent: graph may include curves

1.5 1 0.5 0 0.5

1

0.5

0

0.5

1



Voronoi w/ polygonal C-space



Voronoi method for planning

Compute Voronoi diagram of C-space

Go straight from start to nearest point on 
diagram

Plan within diagram to get near goal (A*)

Go straight to goal



Voronoi discussion

Good: stays far away from obstacles

Bad: assumes polygons

Bad: gets kind of hard in higher dimensions (but 
see Howie Choset’s web page and book)
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Voronoi discussion

Bad: kind of gun-shy about obstacles



(Approximate) cell 
decompositions



Planning algorithm

Lay down a grid in C-space

Delete cells that intersect obstacles

Connect neighbors

A*

If no path, double resolution and try again

‣ never know when we’re done



Planning algorithm

This method is what we were using in end-
effector planning examples above

Works pretty well except:

‣ need high resolution near obstacles

‣ want low res away from obstacles



Fix: variable resolution

Lay down a coarse grid

Split cells that intersect obstacle borders

‣ empty cells good

‣ full cells also don’t need splitting

Stop at fine resolution

Data structure: quadtree











Discussion

Works pretty well, except:

‣ Still don’t know when to stop

‣ Won’t find shortest path

‣ Still doesn’t really scale to high-d



Better yet

Adaptive decomposition
Split only cells that actually make a difference
‣ are on path from start
‣ make a difference to our policy



An adaptive splitter: parti-game

G

Start

Goal

G

G

G

Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement 
Learning in Multidimensional State-spaces.  http://www.autonlab.org/autonweb/14699.html

http://www.autonlab.org/autonweb/14699.html
http://www.autonlab.org/autonweb/14699.html


Parti-game algorithm

Sample actions from several points per cell

Try to plan a path from start to goal

On the way, pretend an opponent gets to 
choose which outcome happens (out of all 
that have been observed in this cell)

If we can get to goal, we win

Otherwise we can split a cell



9dof planar arm

Fixed

base

Start

Goal

85 partitions total



Randomness 
in search



Rapidly-exploring Random Trees

Break up C-space into Voronoi regions 
around random landmarks

Invariant: landmarks always form a tree

‣ known path to root

Subject to this requirement, placed in a way 
that tends to split large Voronoi regions

‣ coarse-to-fine search

Goal: feasibility not optimality (*)



RRT assumptions

RANDOM_CONFIG

‣ samples from C-space

EXTEND(q, q’)

‣ local controller, heads toward q’ from q

‣ stops before hitting obstacle (and perhaps 
also after bound on time or distance)

FIND_NEAREST(q, Q)

‣ searches current tree Q for point near q



Path Planning with RRTs

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}



Path Planning with RRTs

qinit

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}



Path Planning with RRTs

qinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}



Path Planning with RRTs

qnearqinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}



Path Planning with RRTs

qnear

qnew

qinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 
 qrand = RANDOM_CONFIG()

 
 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}



RRT example
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RRTs explore coarse to fine

Tend to break up large Voronoi regions

‣ higher probability of qrand being in them

Limiting distribution of vertices given by 
RANDOM_CONFIG

‣ as RRT grows, probability that qrand is 
reachable with local controller (and so 
immediately becomes a new vertex) 
approaches 1













RRT example



RRT for a car (3 dof)



Planning with RRTs

Build RRT from start until we add a node 
that can reach goal using local controller

(Unique) path: root → last node → goal

Optional: “rewire” tree during growth by 
testing connectivity to more than just 
closest node

Optional: grow forward and backward










