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ABSTRACT

We study Bayesian mechanism design problems in settings where
agents have budgets. Specifically, an agent’s utility for an outcome
is given by his value for the outcome minus any payment he makes
to the mechanism, as long as the payment is below his budget, and
is negative infinity otherwise. This discontinuity in the utility func-
tion presents a significant challenge in the design of good mech-
anisms, and classical “unconstrained” mechanisms fail to work in
settings with budgets. The goal of this paper is to develop general
reductions from budget-constrained Bayesian MD to unconstrained
Bayesian MD with small loss in performance. We consider this
question in the context of the two most well-studied objectives in
mechanism design—social welfare and revenue—and present con-
stant factor approximations in a number of settings. Some of our
results extend to settings where budgets are private and agents need
to be incentivized to reveal them truthfully.
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1. INTRODUCTION
Auction and mechanism design have for the most part focused

on agents with quasilinear utility functions: each agent is described
by a function that assigns values to possible outcomes, and the
agent’s utility from an outcome is her value minus any payment
that she makes to the mechanism. This implies, for example, that
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an agent offered an outcome at a price below her value for the out-
come should in the absence of better alternatives immediately ac-
cept that outcome. This simple model fails to capture a basic prac-
tical issue—agents may not necessarily be able to afford outcomes
that they value highly. For example, most people would value a
large precious stone such as the Kohinoor diamond at several mil-
lions of dollars (for its resale value, if not for personal reasons), but
few can afford to pay even a fraction of that amount. Many real-
world mechanism design scenarios involve financially constrained
agents and values alone fail to capture agents’ preferences. Budget
constraints have frequently been observed in FCC spectrum auc-
tions [5, 8], Google’s auction for TV ads [18], and sponsored search
auctions, to take a few examples.

From a theoretical viewpoint, the introduction of budget con-
straints presents a challenge in mechanism design because they
make the utility of an agent nonlinear and discontinuous as a func-
tion of the agent’s payment—the utility decreases linearly with pay-
ment while payment stays below the budget, but drops to negative
infinity when the payment crosses the budget. The assumption of
linearity in payments (i.e. quasilinearity of utility) underlies much
of the theoretical framework for mechanism design. Consequently,
standard mechanisms such as the VCG mechanism can no longer
be employed in settings involving budgets.

The goal of this paper is to develop connections between budget-
constrained mechanism design and the well-developed theory of
unconstrained mechanism design. Specifically we ask “when can
budget-constrained mechanism design be reduced to unconstrained
mechanism design with some small loss in performance?” We con-
sider this question in the context of the two most well-studied ob-
jectives in mechanism design—social welfare and revenue. Some
of our results assume that the mechanism knows the budgets of the
agents, but others hold even when budgets are private and agents
need to be incentivized to reveal them truthfully.

Recent work in computer science has begun exploring a theory
of mechanism design for budget-constrained agents (see, for exam-
ple, [1, 4, 11, 10, 2]). Most of this work has focused on prior-free

or worst-case settings, where the mechanism designer has no infor-
mation about agents’ preferences. Unsurprisingly, the mechanism
designer has very little power in such settings, and numerous im-
possibility results hold. For example, in the worst-case setting no
truthful mechanism can obtain a non-trivial approximation to social
welfare [4]. The goal of achieving good social welfare has there-
fore been abandoned in favor of weaker notions such as Pareto op-
timality [11]. For the revenue objective while approximations can
be achieved in simple enough settings, e.g. multi-unit auctions [4],
hardness results hold for more general feasibility constraints even
in the absence of budgets. In this paper, we sidestep these impos-
sibility results by considering Bayesian settings where the mech-
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anism designer has prior information about the distributions from
which agents’ private values and private budgets are drawn.

We restrict our attention to direct revelation truthful mechanisms.
Our mechanisms are allowed to randomize, and agents’ utilities are
computed in expectation over the randomness used by the mech-
anism. As is standard, we assume that both the mechanism and
the agents possess a common prior from which values are drawn.
While we optimize over the class of Bayesian incentive compatible
(BIC) mechanisms, all of the mechanisms we develop are domi-
nant strategy incentive compatible (DSIC) (see, for example, [17]
for definitions of these solution concepts).

In addition, we require that our mechanisms satisfy the ex-post
individual rationality (EPIR) constraint, namely that the payment
of any agent never exceeds her value for the mechanism’s outcome.
This implies, in particular, that the mechanism cannot charge any
agent to whom no item or service is allocated. In contrast, most pre-
vious work has enforced the individual rationality constraint only
in expectation over the mechanism’s randomness as well as the ran-
domness in other agents’ values (i.e. interim IR).

It is worth noting here that the EPIR constraint is not without
loss in performance. Consider the following example: suppose we
are selling a single item to one of n agents, each with a value of v
with probability 1 (that is publicly known) and a public budget of
v/n with probability 1. Now, under the IIR constraint, the optimal
auction asks agents to pay what they bid and offers each agent that
pays at least v/n a fair chance at winning the item. Each agent pays
v/n, the item is allocated to a random agent, and the mechanism’s
revenue is v. Under the EPIR constraint, however, a mechanism
can only charge the agent that wins the item and can charge this
agent no more than v/n. As we can see, the revenue gap between
the optimal IIR and the optimal EPIR mechanism gets larger and
larger as n grows.

It is well known that over the class of BIC IIR mechanisms, the
revenue-optimal as well as welfare-optimal mechanisms are both
so-called “all-pay” auctions [15, 19]. In all-pay auctions agents
pay the mechanism a certain (distribution dependent) function of
their value regardless of the allocation that the mechanism makes.
The optimality of all-pay auctions follows by noting that any allo-
cation rule that admits some BIC budget-feasible payment function
can be implemented with an all-pay payment rule with worst-case
payments that are no larger than those in any other truthful payment
rule and are therefore budget-feasible. Unfortunately all-pay auc-
tions have many undesirable properties. In many settings it is sim-
ply not feasible to force the agents to pay upfront without knowing
the outcome of the mechanism. Moreover all-pay auctions may ad-
mit many Bayes-Nash equilibria (BNE), truthtelling being merely
one of them. Then the fact that a certain objective is achieved when
all the agents report their true types does not necessarily imply
that the objective will be achieved in practice if a different BNE
gets played out. Therefore, in a departure from previous work, we
choose to enforce ex-post individual rationality.

Our results and techniques.
We begin our investigation with the revenue objective and give

an exact characterization of the optimal mechanism for a single
agent with a public budget. While in the absence of budgets the
optimal mechanism is a fixed sale price and therefore determinis-
tic, with budgets the optimal mechanism may need to randomize
and offer multiple buying options to the agent. This complicates
the design of optimal mechanisms in more general settings involv-
ing multiple agents or private budgets. We therefore consider ap-
proximations. When budgets are known publicly, we obtain con-
stant factor approximations in nearly all settings where constant

factor approximations are known for unconstrained mechanism de-
sign. This includes, for example, all single-parameter settings with
a downwards closed feasibility constraint, but also multi-parameter
settings with “unit-demand” agents and a matroid feasibility con-
straint (see, e.g., [6]). Our mechanisms are for the most part direct
reductions to unconstrained settings, and are extremely simple.

For private budgets, the problem becomes much harder and we
focus on settings with single-dimensional values. We design a
novel mechanism based on “lotteries” that obtains a good approxi-
mation whenever each agent’s value distribution satisfies the mono-
tone hazard rate (MHR) condition (see Section 2 for a definition).
Our mechanism’s novelty lies in offering each agent a carefully
constructed set of different buying options such that the best option
for the agent is to either spend his entire budget or a fraction of
the monopoly price for that agent. The MHR assumption is a fre-
quently used assumption in mechanism design literature and many
natural distributions satisfy it. In fact the mechanism obtains a good
approximation more generally under mild technical conditions on
the values and budgets. We believe that our techniques should ex-
tend to provide good approximations for arbitrary distributions.

Next we examine the welfare objective. While for revenue, the
budget of an agent is a natural upper bound on the contribution of
that agent to the revenue and allows us to “cap” values at the budget,
for welfare this doesn’t work. In fact, a mechanism can generate a
non-trivial guarantee on welfare even when budgets are 0. Consider
a setting with two unit demand buyers and two items. Consider the
following mechanism: the mechanism asks each agent to give a
preference list of the items. If the top choices of the buyers are
different, then each buyer gets allocated his top choice and welfare
is maximized. Otherwise, the mechanism ignores the preferences
of the buyers and computes the allocation that maximizes the so-
cial welfare ex-ante. Note that this mechanism is truthful. When
agents’ values for the items are i.i.d., the obtained social welfare
from this example is at least 3/4 of the maximum social welfare
we can obtain with no budget constraint. On the other hand, a
mechanism that “ignores” values above the budget (i.e. does not
distinguish between them in the allocation function) cannot obtain
an approximation better than 1/2. The gap between the two mech-
anisms increases as the number of agents grows.

We again focus on single-parameter settings and public budgets,
but with arbitrary downwards closed feasibility constraints. For
these settings, we show a tradeoff between an approximation on
budget and an approximation on welfare: for any ǫ, we can get a
1/ǫ approximation to welfare with respect to the welfare that an op-
timal mechanism can get when budgets are scaled down by a factor
of 1−ǫ. This mechanism has an extremely simple form: it replaces
every value larger than its budget by its expectation conditioned on
being larger than the budget, and runs the VCG mechanism on these
modified values. Moreover, if we are willing to sacrifice EPIR in
favor of the less restrictive IIR, we can convert this mechanism into
a 4-approximate IIR mechanism (with no approximation on bud-
gets).

Finally, if the value distributions satisfy the MHR condition, we
achieve a 2(1 + e)-approximation to welfare via an EPIR mecha-
nism by reducing budget-feasible welfare maximization to budget-
feasible revenue maximization.

One nice property of our reductions from budget feasible mecha-
nism design to unconstrained mechanism design is that they are for
the most part oblivious to the feasibility constraint imposed on the
mechanism. They therefore work for a broad range of feasibility
constraints and add minimal complexity to the mechanism design
problem.
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Related work.
Several works in economics have studied characterizations of op-

timal BIC IIR budget-feasible mechanisms (e.g., [19, 14, 9, 15]).
However, these works are generally weak in the kinds of settings
they consider (typically just single-item auctions) and the kinds of
value distributions they allow1. Laffont and Robert [14] considered
single item settings where bidders have a private value and public
common budget. Che and Gale [9] considered the setting with a
single item and a single buyer, but allowed both the value and the
budget to be private. Pai and Vohra [19] gave a more general result
in which they designed an optimal auction for a single item and
multiple buyers with private i.i.d. values and private budgets.

Bhattacharya et al. [3] were the first to study settings beyond
single-item auctions and focused on revenue maximization. They
considered a setting with heterogeneous items and additive values,
and exhibited a (large) constant factor DSIC approximation mech-
anism as well as an all-pay auction which admits truthtelling as a
BNE and in that BNE obtains a 4-approximation. However, these
results required the value distributions to satisfy the MHR condi-
tion. The mechanisms are LP-based. In contrast most of our mech-
anisms are easy to compute, work for general distributions, enforce
EPIR, and achieve small approximation factors.

In prior-free settings few results are known for revenue maxi-
mization. Borgs et al. [4] looked at multi unit auctions for homoge-
neous goods where agents have private values and budgets and con-
sidered worst case competitive ratio (see also [1]). They designed
a mechanism based on random sampling that maximizes revenue
when the number of bidders is large.

Social welfare maximization has also been considered under bud-
get constraints. Maskin [15] considered the setting of a single
item and multiple buyers with public budgets. He defined and
showed how to compute the constrained efficient mechanism, the
truthful feasible mechanism under budget constraints that maxi-
mizes the expected social welfare (however, the result holds only
for some distribution functions [19]). In prior-free settings for multi
unit homogeneous items, Nisan et al. [11] studied Pareto efficient
DSIC mechanisms with budget constraints. They showed that if
the budgets are private there is no Pareto optimal incentive com-
patible mechanism; for public budgets they showed that there ex-
ists a unique mechanism based on the clinching auction. Chen et
al. [10] considered a setting with multiple goods and unit demand
buyers and showed how to compute competitive prices that enforce
truthfulness under budget constraints if such prices exist. Finally,
the work of Alaei et al. [2] stands out in their study of “soft” bud-
gets constraints, where buyers pay an increasing interest rate for
payments made above their budgets. They showed how to exactly
compute the smallest competitive prices in this setting that result in
an incentive compatible mechanism with an outcome in the core.

2. NOTATION AND DEFINITIONS
In this work, we consider instances of the Bayesian mechanism

design problem where agents have single- and multi-dimensional
types; instances are of the form I = (F,S ,B).

In the single-dimensional case, F =
∏

i
Fi is a product distribu-

tion; each agent i has a single value vi ∼ Fi for receiving service
(and derives value 0 if not served), and an upper limit Bi on how
much he or she can pay for service; and S is a feasibility constraint
specifying which sets of agents may be simultaneously served.

In the multi-dimensional case, the seller offers a number of ser-

1E.g., [19] and [15] make the assumption that value distributions
have a monotone hazard rate as well as a nondecreasing density
function, conditions that few distributions satisfy in combination.

vices indexed by j to agents, and F =
∏

i,j
Fij is again a prod-

uct distribution; each agent i has a value for receiving service j of
vij ∼ Fij and is interested in receiving at most one service; and the
agent has a budget limit of Bi. Here, S is a feasibility constraint
over pairs (i, j).

We also consider settings with private budgets; in that case, we
replace B with a distribution G =

∏
i
Gi and agent i has a budget

Bi ∼ Gi.
We focus on incentive compatible (IC) and individually rational

(IR) mechanisms, and further distinguish between Bayesian IC and
dominant strategy IC, and interim IR and ex post IR. See [17] for
definitions of these concepts.

Let M be a mechanism for the instance I. We shall denote
its expected allocation to each agent by the vector x(v,B), and
agents’ expected payments by p(v,B) (we omit the second pa-
rameter when B is fixed). Then the expected revenue of M is
RM = Ev,B[p(v,B) · x(v,B)], and its expected social welfare
is Ev,B[v · x(v,B)]

Given that an agent i has a value v for receiving service, and a
budget constraint B, his or her utility from receiving the service
with probability x at a price p is u(v,B) = x · v − p if p ≤ B,
and u(v,B) = −∞ otherwise. A mechanism is budget feasible if
it never requests an agent to make a payment above his budget.

Virtual values and the monotone hazard rate condi-
tion.

In the absence of budget constraints, for revenue maximization
Myerson in his seminal work [16] gives a characterization of the
optimal mechanism as a “virtual value maximizer”. Specifically,
given any distribution function F with density f , Myerson defines
a virtual value function as follows:

φ(v) = v −
1− F (v)

f(v)

We use the following characterization by Myerson of the expected
revenue of BIC mechanisms in terms of their virtual surplus.

LEMMA 1. Consider any BIC mechanism with allocation func-

tion x for a single-parameter problem I = (F,S). Then the ex-

pected revenue of the mechanism is exactly Ev∼F[
∑

i
xi(v)φi(v)].

A distribution is said to be regular if φ(v) is a non-decreasing func-
tion of v. When value distributions are regular, a mechanism that
allocates to the feasible set that maximizes the total virtual value is
BIC and optimal. For a single agent, this mechanism allocates to
the agent as long as his value is above the threshold φ−1(0); we
call this threshold the monopoly price corresponding to the value
distribution.

When value distributions are not regular, Myerson gives an “iron-
ing” procedure that converts a virtual value function into an ironed
virtual value function, φ̄, such that maximizing ironed virtual sur-
plus results in a BIC optimal mechanism. We omit the details of
the ironing.

Some of our results require a stronger condition on distributions
called the monotone hazard rate condition, a common assumption
in mechanism design literature. This condition is satisfied by many
common distributions such as the uniform, Gaussian, exponential,
and power law distributions.

DEFINITION 1. A distribution F with density f is said to have

a monotone hazard rate if the function h(v) = f(v)/(1− F (v))
is non-decreasing in v. Distributions satisfying MHR are regular.
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3. MAXIMIZING REVENUE
We first consider the revenue objective, and begin by charac-

terizing the optimal budget feasible mechanism for a single agent
setting. The characterization relies on describing the mechanism
as a collection of so-called lotteries or randomized pricings. We
then consider settings with public budgets. Our general approach
towards budget-constrained mechanism design in these settings is
to approximate the optimal revenue in two parts: the contribution to
optimal revenue by agents whose budget is binding (i.e. their bud-
get is less than their value), and the contribution by agents whose
budget is not binding (i.e. their budget is above their value). We
present different mechanisms for approximating these two bench-
marks. We demonstrate this approach first in the simple setting of
single-parameter agents with public budgets and an arbitrary down-
wards closed feasibility constraint. Then in subsequent sections we
extend the approach to settings involving more complicated incen-
tive constraints—multi-dimensional values and private budgets. In
private budget settings, instead of asking agents to reveal budgets
directly, our mechanism once again relies on collections of lotter-
ies to motivate agents to pay a good fraction of their budgets when
their values are high enough.

Single agent settings with public budgets.
Before presenting our general approach, we first consider the

most basic version of this problem—namely a setting with one
single-parameter agent and a public budget constraint. Even this
simple setting, however, reveals the challenges budget constraints
introduce to the problem of mechanism design. Without the bud-
get constraint, the optimal mechanism is to offer the item at a fixed
price. With budgets, however, the following example shows that
a single fixed price can be a factor of 2 from optimal. After the
example we proceed to characterize the optimal mechanism.

EXAMPLE 1. Fix n > 1. Consider an agent whose value for

receiving an item is v = 1 with probability 1− 1/n, and is v = n2

with probability 1/n. Let the agent have a budget of B = n. Any

single fixed price that respects the budget in this setting receives a

revenue of at most 1.

We now describe the optimal mechanism. The mechanism offers

two options to the agent: either buy the item at price n, or receive

the item with a probability of n/(n + 1) at a price of n/(n + 1).
This generates an expected revenue of 2n/(n+ 1) = 2− o(1).

The optimal mechanism in the above example is what we call a
lottery menu mechanism. A lottery is a pair (x, p) and offers to the
agent at a price p a probability x of winning. A lottery menu is a
collection of lotteries that an agent is free to choose from in order
to maximize his expected utility. We will now show that for any
single agent setting with a public budget, the optimal mechanism is
a lottery menu mechanism with at most two options.

Consider a setting I with a single agent with private value v ∼ F
and a public budget B. Let φ be the virtual value function cor-
responding to F . For ease of exposition, throughout the follow-
ing discussion we will assume that F is regular and φ is non-
decreasing; when F is non-regular, we can merely replace φ by
φ̄, the ironed virtual value, in the following discussion.

We first note that if B ≥ φ−1(0) then the unconstrained optimal
mechanism is already budget feasible. Therefore, for the rest of
this section we assume that B < φ−1(0). Following Lemma 1, our

goal is to solve the following optimization problem.

max
x

∫
x(v)φ(v)f(v)dv subject to

∫
(xmax − x(v))dv ≤ B · xmax, and,

x(v) is a non-decreasing function.

Here xmax ≤ 1 is the probability of allocation at the upper end of
the support of the value distribution. The first constraint encodes
the budget constraint. In particular, the left hand side of the in-
equality is the expected payment made by the agent at his highest
value; the right side is an upper bound on the expected payment
under EPIR because the agent can pay a maximum of B when he
gets allocated, and 0 otherwise.

Let x∗ be the optimal solution to the above optimization prob-
lem. We make the following observations (each follows by observ-
ing that a function x can be modified in a natural fashion to satisfy
them, while maintaining the constraints and improving the objec-
tive value). In the following, we denote the inverse virtual value of
0 as v∗ = φ−1(0) to simplify notation.

CLAIM 1. Without loss of generality, we may assume x∗
max = 1.

CLAIM 2. Without loss of generality, we may assume that for

all v ≥ v∗, x∗(v) = 1.

Following these claims, our optimization problem changes to the
following (the monotonicity constraint on x is implicit).

max
x

∫
x(v)φ(v)f(v)dv subject to

∫
(1− x(v))dv ≤ B

x(v) = 1 ∀v ≥ v∗

This can be simplified to:

min
x

∫ v∗

0

x(v)(−φ(v)f(v))dv subject to

∫ v∗

0

(1− x(v))dv = B

Note that we replace the inequality in the budget constraint with an
equality. This is because if the constraint is not tight, we can fea-
sibly reduce x(v) and thereby reduce the objective function value.
For the sake of brevity, we define B′ = v∗ − B, and g(v) =

−φ(v)f(v). The budget constraint then changes to
∫ v∗

0
x(v)dv =

B′. Note that v∗ ≥ B′ ≥ 0, and g is nonnegative on [0, v∗]. Fi-
nally, we define the set of allocations

A =

{
increasing x : [0, v∗] → [0, 1]

such that
∫ v∗

0
x(v)dv = B′

}

Then, we can express our objective as

min
x∈A

∫ v∗

0

x(v)g(v)dv.

If g is non-increasing on [0, v∗], then we immediately have that
the optimal solution is to set x(v) = 1 if v ≥ v∗ − B′ (= B) and
0 otherwise.

If g is not non-increasing, we “iron” the function g to produce a
non-increasing function ĝ with the property that any non-decreasing
function x that is constant over intervals where ĝ is constant has the

same integral with respect to ĝ as with respect to g. Let Ã be the
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subset of A containing all functions x that are constant over inter-
vals where ĝ is constant. We obtain the following lemma. (The de-
tails of the ironing procedure and the proof of the following lemma
can be found in the full version of the paper [7].)

LEMMA 2. For all x ∈ A, there exists a x̃ ∈ Ã, such that∫ v∗

0
x(v)g(v)dv ≥

∫ v∗

0
x̃(v)g(v)dv.

The lemma lets us confine our optimization to the set Ã:

min
x∈A

∫ v∗

0

x(v)g(v)dv = min
x∈Ã

∫ v∗

0

x(v)g(v)dv

Finally, we define A∗ to be a subset of Ã in which functions x take
on at most three different values – 0, 1, and an intermediate value.
The final part of our proof is to show that the optimal solution lies
in this set.

THEOREM 3. For any single agent setting I = (F,B), there is

an optimal mechanism with allocation rule in the set A∗.

PROOF. Recall that the optimal solution x∗ lies in the set Ã.
Suppose for contradiction that this function takes on two different
intermediate values, x∗(v1) = y and x∗(v2) = z, between 0 and
1 with y < z. Then, since ĝ is non-increasing and x∗ is non-
decreasing, we must have ĝ(v1) > ĝ(v2). Now we can improve
our objective function value by increasing x∗ between v2 and the
value at which it becomes 1, and decreasing x∗ between the value
at which it becomes strictly positive and v1, while maintaining the
budget constraint. This contradicts the optimality of x∗.

Single parameter setting with public budgets.
We now consider single parameter settings with multiple agents.

Let I = (F,S ,B) be an instance of single-parameter budget-
constrained revenue maximization. Define the truncated distribu-
tions F̂i as follows.

F̂i(v) =

{
Fi(v) if v < Bi; and

1 if v ≥ Bi.
(1)

Let Î = (F̂,S) be the modified setting where we replace F with

F̂ — note that for each i, the support of F̂i ends at or before Bi,
and so we may remove the budgets since they place no constraint

on the instance Î .
A mechanism for Î naturally extends to I, while satisfying bud-

get feasibility and obtaining the same revenue. Our general tech-
nique will be to relate the revenue of a mechanism for I to that of

a mechanism for Î. In general, the latter can be quite small, and so
we introduce the following quantity to bound this loss. Define the
set B as

B = argmax
S∈S

{∑
i∈S

Bi

∣∣ ∀i ∈ S, vi ≥ Bi

}
. (2)

Our basic approach is to design a BIC mechanism M̂ for the setting

Î based on the original mechanism M such that we have

RM ≤ RM̂ + E
[∑

i∈B Bi

]
. (3)

Then, the first term on the right is bounded above by the revenue

of the optimal mechanism for Î. We further demonstrate in each
case that we can bound the expectation E

[∑
i∈B Bi

]
by another

mechanism for Î .
We define the mechanism M̂ in terms of its expected allocation

and payment. Let x(v) and p(v) be the expected allocations and

expected payments for M , respectively. Define the expected al-

location and expected payment rules for M̂ as follows. For each

agent i in the setting Î with valuation v̂i, draw a corresponding vi
consistent with v̂i = min(vi, Bi); in this case that simply means
vi = v̂i if v̂i < Bi, and vi ∼ Fi(v | v ≥ Bi) otherwise. Then

M̂ ’s expected allocation and payment are given by

x̂i(v̂) = xi(v−i, v̂i); and

p̂i(v̂) = pi(v−i, v̂i),

respectively.

LEMMA 4. M̂ is a feasible BIC mechanism for Î .

PROOF. We first note that from the point of view of a single

agent i, the expected allocation and price function of M̂ behave
as though other agents’ values are the same as before. Therefore,
the expected allocation is still an increasing function of value and
the payments satisfy BIC. We will now argue that the expected al-
location function can be implemented in a way that the resulting
outcome is a randomization over feasible outcomes. To do so, we
first compute xi(v), as well as x̂i(v̂) for all i. Starting with the al-
location returned by x(v), for every agent i in this allocation, with
probability x̂i(v̂)/xi(v), we serve this agent, and with the remain-
ing probability we remove her from the allocated set. Since S is
a downward closed feasibility constraint, feasibility is maintained,
and we achieve the target allocation probabilities. We remark here

that our goal is to merely exhibit that M̂ is feasible and not to ac-
tually compute it.

We now prove the bound (3) on RM .

LEMMA 5. Given any mechanism M for I = (F,S ,B), where

S is downward-closed, if we define the mechanism M̂ for Î as

above, then (3) holds.

PROOF. In order to prove the statement, we couple the values v

that M̂ draws for each v̂ with the v in the other expectations. So
fix some corresponding pair of value vectors v and v̂; consider the
contribution of each agent i to the revenue of M . Split the agents
into two sets L and H , defined by

L = {i|vi ≤ Bi}; and H = {i|vi ≥ Bi}.

Recall that for all i ∈ L, we have that vi = v̂i, and so p̂i(v̂) =
pi(v−i, v̂) = pi(v). Furthermore, since M faces the downward-
closed feasibility constraint S , any subset of H that M serves is
one of the sets B maximizes over. Since M can never charge any
agent more than their budget, we can see that

RM (v) =
∑

i∈L

RM
i (v) +

∑

i∈H

RM
i (v)

≤
∑

i∈L

RM̂
i (v̂) +

∑

i∈B

Bi

≤ RM̂ (v̂) +
∑

i∈B

Bi.

Taking expectations on both sides (according to the previously men-
tioned coupling) proves the claim.

Note that RM̂ can be easily achieved by simply running the (un-

constrained) revenue-optimal mechanism over Î. It remains to be
shown that we can, in fact, upper bound E[

∑
i∈B Bi] also by the

revenue of the same (unconstrained) revenue-optimal mechanism

over Î .
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LEMMA 6. There exists a mechanism MB for the setting Î such

that Ev∼F

[∑
i∈B Bi

]
≤ RMB .

PROOF. We define the mechanism MB as implementing the al-
location rule B. Note that membership of i in B is monotone in
vi, and that the truthful payment for i ∈ B is precisely Bi, since
this is the minimum value required for allocation. Thus, we can
immediately see that

RMB = E
v̂∼F̂

[
∑

i∈B

Bi

]
= E

v∼F

[
∑

i∈B

Bi

]
,

as desired.

By combining the results of Lemmas 5 and 6, we get the follow-
ing theorem.

THEOREM 7. Given a single parameter setting I = (F,S ,B),

the optimal mechanism M for the modified setting Î = (F̂,S)
gives a 2-approximation to the optimal revenue for I.

Multi-parameter setting with public budgets.
We next consider settings where a seller offers multiple kinds of

service and agents have different preferences over them. Agents
are unit-demand and want any one of the services; the seller faces
a general downward closed feasibility constraint. As before, we
use the tuple I = (F,S ,B) to denote an instance of this prob-
lem; throughout, i indexes agents and j indexes services. Let S
be a downward-closed feasibility constraint over (i, j) pairs, and
furthermore assume each agent i has a budget Bi.

Ideally, we would like to follow the same approach as in the

previous section. We use the same basic benchmark, defining F̂ and
B analogously to (1) and (2) for the instance I. We can’t apply the

same reduction from M to M̂ directly, however, because truncating
each of a multi-parameter agent’s values to their budget affects the
agents’ preferences across different items, a concern we did not
have before.

Instead, we make use of a reduction of Chawla et al. [6] from
multi-parameter Bayesian MD to single-parameter Bayesian MD
to first bring the problem into a single parameter domain and then
apply the approach from the previous section. We describe the re-
duction and our mechanism in the full version of the paper [7],
obtaining the following theorem.

THEOREM 8. Let I = (F,S ,B) be an instance with multi-

parameter, unit-demand agents and S being a matroid or simpler

feasibility constraint. Then, there exists a polynomial time com-

putable mechanism for Î that is budget feasible and DSIC for I and

obtains a constant fraction of the revenue of the optimal budget-

feasible mechanism for I.

Private budgets.
We next consider settings where budgets are part of agents’ pri-

vate types, but where the mechanism designer knows the distribu-
tions from which budgets are drawn. We assume that values and
budgets are drawn from independent distributions. We focus on
settings where agents’ values are single-dimensional.

Let I = (F,S ,G) denote an instance of this setting. We follow
a similar approach as for public budgets. Switching from public
to private budgets, however, adds new complexity; in particular it
becomes tricky to achieve our benchmark E[

∑
i∈B Bi]. In this sec-

tion, we present an approximately optimal mechanism for the case

when each distribution in F satisfies the MHR condition (see Def-
inition 1 in Section 2). Our analysis uses the MHR condition in
a very mild way and in fact holds for any setting where for every
agent the probability that his value exceeds his monopoly price is
lower bounded by a constant. Even when this condition is not sat-
isfied, we can obtain a good approximation through a slight mod-
ification of our mechanism under a technical condition on values
and budgets. These details are discussed in the full version of the
paper [7]. We believe that the general idea behind our mechanism
can be extended to obtain good approximations for arbitrary distri-
butions.

We focus on settings I = (F,S ,G) where S is a matroid set
system, and each distribution in F satisfies the MHR condition.
We begin with some definitions. Given a pair of value and budget
vectors, we consider the “extractable value” of an agent i to be
min(vi, Bi); we modify our definition of B to reflect this:

B = argmaxS∈S

∑

i∈S

min(vi, Bi).

Similarly to the public budgets case, our approach is to split the
revenue of an arbitrary mechanism into two terms, which (loosely
speaking) look like revenue in a truncated value setting, and the
sum of the budgets in B; we then demonstrate a lottery menu mech-
anism whose revenue upper bounds both of these terms.

Our proposed mechanism (which we denote ML) is based on
lottery menus L(p, p̄) parameterized by a minimum price p and a
maximum price p̄. (Recall the discussion of lotteries at the begin-
ning of this section.) There are two cases. If p ≥ p̄/3, then L(p, p̄)
contains the single fixed price of p; otherwise, it contains, for all
2p/p̄ ≤ α ≤ 2/3, a lottery that with probability (1/3 + α) allows
the agent to purchase service at a price of αp̄/2.

Note that the probability of allocation in the above lottery sys-
tem rises faster as a function of α than the price of the lottery.
Effectively this ensures that the agent is willing to buy the most
expensive lottery that he can afford. So, in particular, if all lotteries
bring positive utility then the agent spends his entire budget, the
maximum amount that any mechanism can hope to achieve from
the agent. This powerful idea is what enables our approximation.

Note the following properties of the lottery menu L(p, p̄).

LEMMA 9. When an agent with min(v,B) ≥ p is offered the

menu L(p, p̄), he purchases an option yielding expected revenue at

least p/3.

PROOF. Note that in either case, the lottery system L(p, p̄) al-
ways contains an option with price exactly p, and that this is the
lowest priced option. Furthermore, for min(v,B) ≥ p, this option
always gives non-negative utility. Thus our claim follows immedi-
ately from the fact that every lottery assigns the item with proba-
bility at least 1/3.

LEMMA 10. When an agent with v ≥ p̄ is offered the menu

L(p, p̄), he purchases an option yielding expected revenue at least

min(p̄, B)/3.

PROOF. In the first case (when L(p, p̄) contains the single price
of p), this follows trivially; in the other case, consider the utility of
an agent with value v when purchasing the lottery with parameter
α, which we denote uα(v). We can see that

uα(v) = (1/3 + α)(v − αp̄/2), and so

∂uα(v)

∂α
= v − (α+ 1/6)p̄ ≥ 0

by our assumption. So we can see that an agent will purchase the
lottery with the highest α value they can afford; since the lottery for
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α = 2/3 assigns service with probability 1 at a price of p̄/3, and
every lottery provides service with probability at least one third,
we can see that an agent will purchase a lottery yielding revenue at
least min(p̄, B)/3.

Our mechanism ML serves the set B. For each i, let Ti be the
threshold corresponding to inclusion in B, i.e. Ti = min{v′ :
i ∈ B for ((v−i, v

′), (B−i, v
′))}. Our mechanism offers agent i

the lottery system L(Ti, φi
−1(0)), where φ−1

i (0) is the monopoly
price for i.

In order to relate the revenue of a mechanism M for the setting
I to that of our proposed mechanism ML, we break the revenue of
M into two parts – that derived from agents in B, and that derived
from agents not in B; we denote these quantities by RM∩B and
RM\B, respectively. We bound the two terms separately.

LEMMA 11. RM\B ≤ 3RML

PROOF. Let S denote the set of agents served by M . Note that
by our definition of B, it will always be a maximal independent set
in S ; as such, for every pair of vectors (v,B), we can get a 1-1
function g : S \ B → B such that for all i ∈ S \ B, B \ {g(i)} ∪
{i} ∈ S . Note that by EPIR, we must have that the revenue M
derives from each agent i is no more than min(vi, Bi), and by the
definition of Ti, we get that

RM\B(v,B) ≤
∑

i∈S\B

min(vi, Bi)

≤
∑

i∈S\B

Tg(i) ≤
∑

i∈B

Ti

≤ 3RML

(v,B)

Here the second inequality follows from noting that in order to be in
the set B, the agent g(i) must have an extractable value no smaller
than that of i. The last inequality follows from applying Lemma 9
to L(Ti, φi

−1(0)). Taking expectation over (v,B) completes the
proof.

In order to prove our next revenue bound, we need the following
property of MHR variables (Lemma 4.1 in [12]):

LEMMA 12. For v distributed according to some F satisfying

the MHR, the probability that the value v exceeds the monopoly

price φ−1(0) is at least 1/e.

LEMMA 13. RM∩B ≤ 3eRML

PROOF. Consider some agent i, and fix (v−i,B−i); note that
this fixes Ti as well. Fix Bi. Recall that an agent i contributes to
RM∩B

i only when min(vi, Bi) ≥ Ti. We split the analysis into
two cases; in each case we consider the optimal revenue a mech-
anism could derive from agents with vi ≥ Ti if allowed to ignore
the budgets constraints.

• Case 1: Ti ≥ φi
−1(0). In this case, the maximum revenue

that can be obtained from agent i conditioned on vi ≥ Ti

and ignoring feasibility constraints is Ti and can be obtained
by offering a fixed price of Ti. Our mechanism on the other
hand offers a single option of buying service at a fixed price
of Ti. Therefore,

E
vi

[
RM∩B

i (v,B) | vi ≥ Ti

]

≤ E
vi

[
RML

(v,B) | vi ≥ Ti

]

• Case 2: Ti < φi
−1(0). The maximum revenue that can be

obtained from agent i conditioned on vi ≥ Ti and ignoring
feasibility constraints is at most φi

−1(0) and can be obtained
by offering a fixed price of φi

−1(0). Considering the budget
constraint we conclude that Evi [R

M∩B
i (v,B) | vi ≥ Ti] ≤

min(φi
−1(0), Bi). On the other hand, applying Lemma 10

to L(Ti, φi
−1(0)), we get that for vi ≥ φi

−1(0), RML

i ≥
min(φi

−1(0), Bi)/3. Lemma 12 implies that the event vi ≥
φi

−1(0) happens with probability at least 1/e. So we get

E
vi
[RM∩B

i (v,B)| vi ≥ Ti]

≤ (1/3e) E
vi
[RML

(v,B) | vi ≥ Ti]

We have Evi [R
M∩B
i (v,B)] ≤ 3eEvi [R

ML

(v,B)] in either
case; taking expectations over (v−i,B), and summing over i yields
our claim.

Combining the above two lemmas immediately gives the follow-
ing theorem.

THEOREM 14. For any setting I = (F,S ,G) where S is a

matroid constraint and each distribution in F satisfies MHR, the

mechanism ML is a 3(1+e) approximation to the optimal revenue.

In fact, we can use a similar lottery pricing technique to get a
constant approximation even in the absence of the MHR assump-
tion; however, we still need a technical assumption relating the dis-
tributions of agents’ values and budgets. This once again ensures
that there is a good probability that agents’ values are high enough
for the lottery system to extract a constant fraction of their budget.
We state the theorem here, but defer the proof of this result to the
full version of the paper [7].

THEOREM 15. Suppose that every agent’s median value is no

smaller than a constant fraction of her maximum budget. Then

we can construct a budget-feasible mechanism that is DSIC with

respect to both values and budgets, and obtains a constant fraction

of the revenue of the optimal such mechanism.

4. MAXIMIZING WELFARE
In this section we focus on the welfare objective. In particular,

the seller’s goal is to maximize the total value of the allocation in
expectation. Once again we assume that budgets are known pub-
licly.

We first note that we cannot use the approach of the previous
section as a roadmap. Even with public budgets, truncating values
to the corresponding budgets does not work for the social welfare
objective. In particular, the following example shows it is possi-
ble for a budget feasible mechanism to distinguish between values
above the budget without exceeding the budget in payments.

EXAMPLE 2. Consider an n agent single-item auction, where

agents have i. i. d. values for the item. Each agent has a budget

of 1. Each agent’s value is 1 with probability 1 − 1/n and n with

probability 1/n. Then a mechanism that simply truncates values

to budgets cannot distinguish between the agents and gets a social

welfare of at most 2. On the other hand, consider a mechanism that

orders agents in an arbitrary order and offers two options to each

agent in turn while the item is unallocated: getting the item for free

with probability 1/n and nothing otherwise, or purchasing the item

at a price of 1. Then, an agent picks the first option if and only if her

value is below n/(n − 1), and otherwise picks the second option.
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In particular, an agent with value n always picks the second option,

and an agent with value 1 always picks the first option. For large n,

with probability approaching 1− 1/e at least one agent has value

n, and with probability at least 1/e the item is unsold before the

first agent with value n is made an offer. The mechanism’s expected

welfare is therefore at least 1/e(1− 1/e)n = Ω(n).

Note that the precise choice of budgets in the above example was
critical: if budgets were any lower, the proposed mechanism would
have been infeasible; and if they were any higher, truncation would
have still allowed for distinguishing between agents with low and
high values. This suggests considering bicriteria approximations
where we compete against an optimal mechanism that faces smaller
budgets. We first demonstrate a mechanism achieving an approxi-
mation of this sort; we then show that our mechanism also gives a
good approximation if we relax the EPIR constraint to an IIR con-
straint, instead of relaxing budgets. Of course, our ultimate goal is
to provide a good approximation for the social welfare objective via
an EPIR budget feasible mechanism. While we are unable to do so
in general, the final section presents a constant factor approxima-
tion for settings where the distributions Fi for every agent i satisfy
the MHR condition (Definition 1 in Section 2).

A bicriteria approximation.
Consider a setting I with budgets B. Let OPT′ denote the EPIR

mechanism that is welfare-maximizing and feasible for budgets
(1 − ǫ)B (i.e. where each budget is scaled down by a factor of
1−ǫ). We claim that we can approximate the welfare of this mech-
anism while maintaining budget feasibility with respect to the orig-
inal budgets B.

THEOREM 16. For a given instance I = (F,S ,B), let I′ be

the instance (F,S , (1− ǫ)B) where each agent’s budget is scaled

down by a factor of 1 − ǫ. Let OPT′ denote the welfare optimal

budget feasible mechanism for I′. Then, there exists an easy to

compute ex post IR mechanism (namely, the VCG mechanism over

a modified instance) that is budget feasible for I and obtains at

least an ǫ fraction of the social welfare of OPT′.

PROOF. We first use OPT′ to construct a new mechanism M .
M proceeds as follows. It elicits values from agents. For all agents
i with vi ≥ Bi, it resamples agent i’s value from the distribution
Fi restricted to the set [Bi,∞). Other values are left unchanged. It
then runs the mechanism OPT′ on the resampled values. It is easy
to see that M is budget feasible for I′.

We claim that the social welfare of M is at least ǫ times the so-
cial welfare of OPT′. To prove the claim, consider a single agent
i, and let xi

1 denote the probability of allocation for this agent in
OPT′ when her value is Bi, and xi

2 denote the probability of allo-
cation for this agent in OPT′ when her value is vi

max (the agent’s
maximum possible value). Note that the expected payment that the
agent makes at vi

max is at least (xi
2−xi

1)Bi plus the payment she
makes at Bi. Then, EPIR implies that (xi

2 − xi
1)Bi is at most the

budget (1−ǫ)Bi times xi
2. This implies xi

2 < xi
1/ǫ. Now, noting

that the value distributions for agents are unaltered by resampling,
it holds that for vi ≥ Bi, the probability of allocation for agent i
at vi under M is equal to the expected probability of allocation for
the agent under OPT′ conditioned on the agent’s value being in the
range [Bi,∞). Since the probability of allocation under OPT′ for
this range is always between xi

1 and xi
2, the expected probability

of allocation is at least xi
1 ≥ ǫxi

2. So compared to those under
OPT ′, the probabilities of allocation under M are at most a factor
of ǫ smaller. Therefore, the expected social welfare of M is also at
most a factor of ǫ smaller than that of OPT′.

Our goal will then be to approximate the social welfare of M .
Note that for every agent i, M treats values above Bi identically.
We can therefore consider the following optimization problem: for
an instance I, construct a DSIC EPIR mechanism that maximizes
social welfare subject to the additional constraint that for every
agent i the mechanism’s (distribution over) allocation should be
identical across value vectors that differ only in agent i’s value
and where agent i’s value is ≥ Bi. For any such mechanism,
agent i’s expected contribution to social welfare from value vec-
tors with vi ≥ Bi conditioned on being allocated is vi, where
vi = E[vi|vi ≥ Bi]. Therefore, the following mechanism maxi-
mizes welfare over the above class of mechanisms: for every agent
i with vi ≥ Bi, replace vi by vi; other values remain unmodified;
run the VCG mechanism over the modified value vector; charge ev-
ery agent the minimum of the payment returned by the VCG mech-
anism and their budget. It is easy to verify that this mechanism is
DSIC, ex post IR, budget feasible for the original budgets Bi, and
obtains expected social welfare at least that of M . Therefore, it
satisfies the claim in the theorem.

An interim IR mechanism.
Next we note that it is in fact easy to remove the approxima-

tion on budget in the above theorem if we are willing to give up
on EPIR. In particular, consider an optimal mechanism OPT on the
instance I = (F,S ,B). Then the above theorem implies the exis-
tence of a mechanism V that is budget feasible for I′ = (F,S , 2B)
and obtains half the welfare of OPT (taking ǫ = 1/2). Now con-
sider the mechanism V ′ described as follows. V ′ simulates V on
the given value vector. Then for every agent i it charges i half the
payment charged by V and with probability 1/2 makes an alloca-
tion to i if V makes an allocation to i. Agent i’s expected utility
from any strategy under V ′ is exactly half her expected utility from
the same strategy under V . Therefore, V ′ is DSIC. Moreover, it is
budget feasible for the original budgets B since it always charges
half the payments in V . Its expected social welfare is exactly half
that of V . We therefore get the following theorem.

THEOREM 17. For a given instance I = (F,S ,B), let OPT

denote the welfare optimal EPIR budget feasible mechanism for I.

Then, there exists an easy to compute IIR mechanism that is budget

feasible for I and obtains at least a quarter of the social welfare of

OPT.

An ex-post IR mechanism for MHR distributions.
As previously remarked, our ultimate goal is to provide a good

approximation for the social welfare objective via an EPIR budget
feasible mechanism. We now show that under an MHR condition
on distributions, we can achieve precisely this goal. In particular,
we present a constant factor approximation for settings where the
distributions Fi for every agent i satisfy the MHR condition (Defi-
nition 1 in Section 2).

Under the MHR condition, we can exhibit a close relationship
between the welfare and revenue of any mechanism. Using this
relationship along with results from the previous section, we can
come up with a budget feasible approximately-revenue-maximizing
mechanism that also provides an approximation to social welfare.
The MHR condition is quite crucial to our approach. In fact our
solution consists of two mechanisms, one of which charges no pay-
ments, and the other of which truncates values to their correspond-
ing budgets – approaches that don’t work for the example we con-
sidered above.
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Let v∗i = φi
−1(0) denote the monopoly price for the distribution

Fi. We then get the following bound on social welfare, which we
are able to approximate.

LEMMA 18. For any instance I = (F,S ,B), if all the distri-

butions Fi satisfy the MHR condition, then for any non-decreasing

allocation function x(v), we have that

∫

v

(
∑

i

vixi(v)

)
dF(v)

≤

∫

v

(
∑

i

(φi(vi) + 2v∗i )xi(v)

)
dF(v).

In order to prove the Lemma, we require some new definitions
and claims. Consider a single agent with MHR distribution F , vir-
tual value function φ, and monopoly price v∗. Let φ+ and φ− be
the positive and negative portions of φ respectively; i.e. for all v,
φ+(v), φ−(v) ≥ 0 and φ(v) = φ+(v)−φ−(v). We can then claim
the following (the first is a restatement of Lemma 3.1 in [13]).

LEMMA 19. For a distribution F satisfying the MHR, all val-

ues v satisfy v ≤ v∗ + φ+(v) = v∗ + φ(v) + φ−(v).

LEMMA 20. For any monotone allocation function x(·),
∫

φ−(v)x(v)dF (v) ≤

∫
v∗x(v)dF (v).

PROOF. We begin by recalling that by Lemma 1, the expected
revenue of any BIC mechanism is equal to its expected virtual sur-
plus. Now consider a mechanism for a single agent with value
distribution F that always serves the agent. Clearly the revenue of
this mechanism is 0. So we get

∫

v

(φ+(v)− φ−(v))dF (v) = 0,

which implies that
∫

v

φ+(v)dF (v) =

∫

v

φ−(v)dF (v).

Second, the revenue from offering the agent the monopoly price v∗

is precisely v∗(1− F (v∗)). Therefore,
∫ ∞

v∗

(φ+(v)− φ−(v))dF (v) =

∫
φ+(v)dF (v)

= v∗
∫ ∞

v∗

dF (v),

where the first equality follows from regularity of F .
Note that the regularity of F implies that φ+ and φ− are identi-

cally 0 below and above v∗, respectively. Now, from the above two
equalities, we can see that if x is monotone non-decreasing, then,

∫
φ−(v)x(v)dF (v) ≤

∫
φ−(v)x(v∗)dF (v)

= x(v∗)

∫
φ+(v)dF (v) = x(v∗)v∗

∫ ∞

v∗

dF (v)

≤

∫
v∗x(v)dF (v);

the claim follows.

The proof of Lemma 18 follows immediately by combining Lem-
mas 19 and 20. The Lemma gives us the following approximation.

THEOREM 21. Let I = (F,S ,B) be an instance where all dis-

tributions Fi satisfy the MHR condition. Then, one of the following

mechanisms obtains a 2(1 + e)-approximation to the social wel-

fare of a welfare-optimal budget-feasible mechanism for I. Both of

these mechanisms are DSIC, EPIR and budget feasible.

• Mechanism 1: Always allocate to the set S∗
1 and charge zero

payments, where S∗
1 = argmaxS∈S

∑
i∈S

v∗i .

• Mechanism 2: Elicit values from agents; for all i with vi >
Bi, replace vi by Bi; run Myerson’s mechanism on the re-

sulting instance.

PROOF. We begin by noting that an immediate consequence of
Lemma 12 is that for a distribution F satisfying the MHR, EF [v] ≥
v∗/e.

Now, consider some budget feasible mechanism M for the in-
stance I. Then by Theorem 7, the optimal mechanism for the
truncated distributions (1) obtains revenue, and therefore also so-
cial welfare, no less than a 1/2 fraction of the expected revenue∫ ∑

i φi(vi)xi(v)dF(v).
Moreover,

∫
v

∑
i
v∗i x(v)dF(v) is upper bounded by

∑
i∈S∗ v

∗
i ,

where S∗ = argmaxS∈S

∑
i∈S

v∗i . Then a mechanism which al-
ways allocates to the set S∗ and charges no payments is budget fea-
sible, DSIC, and obtains welfare

∑
i∈S∗ EFi

[vi] ≥ 1/e
∑

i∈S∗ v
∗
i ,

where the inequality follows from Lemma 12. The original claim
follows.
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