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ABSTRACT
The Combinatorial Public Projects Problem (CPPP) is an
abstraction of resource allocation problems in which agents
have preferences over alternatives, and an outcome that is
to be collectively shared by the agents is chosen so as to
maximize the social welfare. We explore CPPP from both
computational and mechanism design perspectives. We ex-
amine CPPP in the hierarchy of complement-free (subad-
ditive) valuation classes and present positive and negative
results for both unrestricted and truthful algorithms.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: ,; J.4 [Social and Behavioral Science]: [Economics]

General Terms
Algorithms, Theory, Economics

Keywords
Algorithmic mechanism design

1. INTRODUCTION
The Combinatorial Public Project Problem (CPPP), intro-
duced in [13], is a resource allocation problem in which a set
of resources is chosen to be collectively shared by a group of
agents, so as to maximize the agents’ social welfare. An in-
stance of CPPP consists of n agents {1, . . . , n}, m resources
{1, . . . , m}, a valuation function vi : 2[m] → R≥0 for each
agent i mapping each set of resources to his value for that

∗Supported by NSF CCF-0346991, CCF-0830787 and BSF
2004329.
†Supported by NSF grant 0331548.
‡Supported by the Microsoft Research fellowship

set, and an integer k ∈ [m]. The goal is to choose a set S of k
resources for which the total social welfare Σivi(S) is max-
imized. CPPP captures committee elections and network
design, among other problems (see [13, 16]).

Exploring the boundaries of tractability in CPPP is natu-
ral when approaching questions from a computational per-
spective. Furthermore, this boundary plays a crucial role in
algorithmic mechanism design [12]: for social welfare maxi-
mization problems, such as CPPP, computational tractabil-
ity implies a computationally-efficient truthful implementa-
tion via the celebrated VCG mechanism. Intractability, on
the other hand, can make truthful implementations with
good approximation ratios impossible to obtain. This was
recently demonstrated in [13], where it was shown for the
first time, in the context of CPPP with submodular agents,
that even if constant approximation ratios are achievable if
one only cares about computational efficiency or truthful-
ness, combining both desiderata can lead to non-constant
lower bounds.

Our aim here is to enable an understanding of CPPP both
purely computationally and with truthfulness as an added
constraint. For the case of unrestricted agent valuations,
CPPP is known to be NP-hard to approximate well [16].
Hence, seeking interesting special cases of CPPP for which
reasonable approximation ratios are attainable is natural.
We consider the case where agents’ valuation functions are
complement-free, i.e., cases in which agents’ valuations are
subadditive set functions. The class of complement-free, or
subadditive, valuations encapsulates a rich hierarchy of val-
uation functions [9, 11] (see Fig. 1.1), that has been the
focal point of the study of approximability in combinatorial
auctions (see, e.g., [2, 5, 6, 9, 17]).

In our study of the computational feasibility of CPPP, we
search for two thresholds:

1. the point in the complement-free hierarchy of agents’
valuations at which CPPP ceases to be tractable, and
hence, for which computationally-efficient truthful im-
plementation is no longer achievable via VCG mecha-
nisms;

2. the point at which CPPP ceases to be approximable
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Figure 1.1: The Complement-Free Hierarchy

within a constant factor (i.e., not in APX), and so
CPPP cannot be well approximated even from a purely
computational perspective (disregarding incentives).

In our study of incentives in CPPP, we focus both on gen-
eral truthful mechanisms and on the broad class of “VCG-
based”, or “maximal-in-range”, mechanisms, that have re-
ceived much attention in algorithmic mechanism design re-
cently (see [2, 3, 8, 13]).

CPPP is closely related to combinatorial auctions, which
have been studied extensively across the computer science,
microeconomics and operations research disciplines over past
decades. To date, despite much research, many big questions
regarding the interplay between computation and truthful-
ness in combinatorial auctions and other related games re-
main wide open. We believe that CPPP is a more suitable
arena for exploring the fundamental connections between
computation and truthfulness. Indeed, the advances in [13]
and [7], as well as our results, demonstrate the amenability
of CPPP to an algorithmic mechanism design examination.

1.1 Our Results
We now briefly and informally survey our main results and
their implications:

Is CPPP tractable? For CPPP with n agents, we show
that even for the lowest (most restricted) class of valuations
in the complement-free hierarchy, finding an optimal out-
come is NP-hard. Specifically, CPPP is hard even for “unit-
demand” valuations, in which every agent is only interested
in getting a single resource. Moreover, going up just one
step higher in the hierarchy, CPPP becomes hard even for
a constant number of agents.

On the positive side, we present an optimal (and truthful via
VCG payments) algorithm for an interesting special case of
CPPP.

Is CPPP approximable? Our main inapproximability re-
sult is for fractionally-subadditive valuations. We show that,
unlike the case of CPPP with submodular valuations [13],

for fractionally-subadditive valuations, no constant approx-
imation ratio is achievable (unless P is contained in quasi-
NP). Our result is nearly tight [16], answers an open ques-
tion from [16], and is the first non-constant computational
complexity lower bound for this class (and for subadditive
valuations in general).

We present many other positive and negative approxima-
bility results: We show that the 1− 1

e approximation ratio
for CPPP with submodular valuations [13] is tight even for
unit-demand valuations. By contrast, we present improved
ratios for other well-studied subclasses of submodular valu-
ations.

Truthful mechanisms for CPPP. We present both truth-
ful mechanisms and hardness results for truthful computa-
tion. In particular, we present an inapproximability result
for truthful mechanisms for CPPP that both strengthens
and greatly simplifies the result in [13]. Surprisingly, our
result holds even for the case of a single agent, thus raising
an intriguing question in algorithmic mechanism design. We
also present a truthful constant-approximation mechanisms
for interesting special cases of CPPP.

Finally, we present several inapproximability results for the
class of “VCG-based”, or “maximal-in-range”, truthful mech-
anisms. In particular, we show that no constant approxi-
mation ratio is achievable for such mechanisms even with
unit demand valuations. Interestingly, we show a truthful
constant-factor approximation for CPPP with unit-demand
agents, thus establishing a gap between VCG-based and gen-
eral truthful mechanisms.

Our results are summarized in the tables below (Fig. 1.2
and 1.3, which also suggest interesting directions for future
research).

1.2 Organization of the Paper
Each of the sections 2-6 focuses on exactly one class in the
complement-free hierarchy. In Sec. 2 we present our results
for unit-demand valuations. Sec. 3, 4, 5 and 6, deal with
multi-unit-demand valuations, capped additive valuations,
coverage valuations, and fractionally-subadditive valuations,
respectively. We conclude and discuss our results in Sec. 7.

2. UNIT-DEMAND: TRUTHFULNESS AND
COMPLEXITY

Unit-demand valuations. The simple class of unit de-
mand valuations, in which every agent is only interested in
getting a single resource, constitutes the lowest level of the
complement-free hierarchy (see [9, 11], where unit-demand
valuations are termed “XS”).

Definition 2.1 (unit-demand valuations). A valu-
ation v is called unit demand if v(S) = maxi∈S v({i}), for
every S ⊆ [m]. Such a valuation is represented by a list of
the m values v({j}), j ∈ [m].

Our results in this section shall be proven for an even more
restrictive class of valuations: unit demand valuation such



valuation class no. of agents appx. ratio r

unit-demand
constant r = 1

n r = 1− 1
e [New]

multi-unit-demand

1, 2 r = 1 [New]
3 2/3 [New] ≤ r < 1 [New]
≥ 4 1− 1

e [10] ≤ r < 1 [New]
≥ 10 1− 1

e [10] ≤ r < 1− ε (FPTAS)[New]
n r = 1− 1

e [New]
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1 r = 1

constant ≥ 2 r = 1− ε (FPTAS) [New]
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e [New]

fractionally-subadditive
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m
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log1−γ n
6 [New]

Figure 1.2: Computational Results

valuation class no. of agents Truthful appx. ratio r VCG-based appx. ratio r
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unit-demand n ?
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Figure 1.3: Truthful Mechanism Results. Question marks indicate that the only bounds known are a 1√
m

lower bound based on the VCG-based mechanism shown in [16] and a purely computational upper-bound.

that v({i}) ∈ {0, 1} for each resource i, and each agent has a
value of 1 for at most 2 resources. We shall refer to this sub-
class of unit-demand valuations as “2-{0,1}-unit-demand”.

Theorem 2.1. CPPP with n 2-{0,1}-unit-demand valu-
ations is NP-hard to solve optimally. Furthermore, no al-
gorithm for CPPP with n unit-demand valuations has an
approximation ratio of 1− 1

e + ε unless P=NP (for any con-
stant ε > 0).

Proof. We will show an approximation preserving reduc-
tion from MAX-t-COVER. The problem of MAX-t-COVER
takes as input a collection of subsets F of a set A and an
integer t. The goal is to find t sets in F which have a union
of maximum cardinality. It was shown in [4] that MAX-t-
COVER cannot be approximated to within 1− 1/e + ε for
any constant ε > 0 unless P = NP .

Consider a MAX-t-COVER instance over set A with F =
{S1, . . . , S!} and number of sets to be chosen t. We create a
CPPP instance with resource set F and |A| agents, one cor-
responding to each element of A. The agent corresponding
to element a values each resource Si ∈ F as

va(Si) =

{
1, a ∈ Si

0, otherwise
.

So the value for agent a is 1 if a is covered by the chosen
set and 0 otherwise. Thus, the social welfare is number
of covered resources, or the cardinality of the union of the
chosen sets. By setting the number of resources allowed to be

chosen to k = t, we see that if we can approximate the social
welfare to within any factor α, we get an α-approximation
of MAX-t-COVER as well. So by [4], an approximation of
1− 1/e + ε is not achievable.

Observe that the above hardness of approximation result is
tight (a simple greedy algorithm obtains an approximation
ratio of exactly 1− 1

e ). Note that the above proof required
|F| agents, each with very simple 0/1 valuation functions.
Observe that if there is only a constant number c of agents,
one need only consider

(
m

min(c,k)

)
∈ poly(m) sets of resources

in order to find one which maximizes the social welfare, and
hence CPPP with a constant number of unit-demand agents
can be solved in polynomial time.

VCG-based mechanisms. We next consider the class of
VCG-based, or maximal-in-range (MIR), mechanisms. For a
thorough explanation about MIR/VCG-based mechanisms,
see [13]. Informally, MIR mechanisms output, for each pos-
sible input, the optimal outcome within a fixed set of out-
comes. That is, a MIR mechanism M has a fixed set R
of possible outcomes (subsets of resources of size k) and,
for each n-tuple of agents’ valuations (v1, . . . , vn), chooses a
subset r ∈ R that maximizes the social welfare Σivi over R.
The collection R is called M ’s range.

[16] shows a computationally-efficient MIR mechanism for
CPPP with subadditive valuations that has an approxima-
tion ratio of 1√

m
. This approximation ratio is tight for MIR

mechanisms even when restricted to 2-{0,1}-unit-demand



valuations.

Theorem 2.2. No computationally-efficient MIR mech-
anism can approximate CPPP with n 2-{0,1}-unit-demand

valuations within m−( 1
2−ε) (for any constant ε > 0) unless

NP ⊆ P/poly.

Proof. Our proof is based on the proof technique in [13],
where the use of VC dimension to set bounds on the approx-
imability of MIR mechanisms is introduced. The reader is
referred to [13] for a comprehensive explanation. We be-
gin by noting that in [13] it was shown that any algorithm
for CPPP which achieves an approximation ratio of at least
m1/2−ε has a range of size Ω(emε

). This proof required that
for any V ⊆ [m], it is possible to create a set of agents
such that the social welfare is v(S) = |V ∩ S|. This is easy
to do with n 2-{0,1}-unit-demand agents, resulting in the
following useful lemma:

Lemma 2.3. If a maximal-in-range mechanism for CPPP
with n 2-{0,1}-unit-demand agents achieves an approxima-
tion ratio of at least m1/2−ε, it must have a range of size
Ω(emε

).

From this, we can use the Sauer-Shelah lemma to see that
the range has a VC dimension at least mα for some constant
α > 0. This large range allows us to perform reductions
similar to the ones we use in our NP-hardness proofs to show
inapproximability. We begin with the modified unit-demand
reduction.

As shown above, any maximal-in-range mechanism which
approximates better than m1/2−ε must have a range with
VC-dimension at least mα. Re-order the resources such that
the mα corresponding to this VC-dimension are the set [mα].
We show a reduction from vertex cover with mα/2 edges.
Let k′ < k be the target size of the vertex cover. The first
|V | resources correspond to the vertices.

The first 2|E| = mα agents correspond 2 to each edge, and
have valuation 1 if the corresponding edge is covered by one
of the vertices corresponding to a resource chosen from [mα],
we have m−mα agents, one corresponding to each resource
outside of [mα] where the agent corresponding to resource i
has valuation

vi(S) =

{
1, i ∈ S
0, otherwise

.

If a single edge is unsatisfied, more social welfare can be
obtained by adding a resource from [mα], where some re-
source adds at least 2 to the social welfare than by adding
a resource from [m]− [mα], which only contributes 1. So if
the minimum vertex cover has size k∗, the maximum social
welfare is 2|E|+(k−k′). Furthermore, M will find this max-
imum, as it’s range includes every subset of [mα], padded
out with arbitrary elements from [m] − [mα] to reach size
k. Thus, M can be used to find the size of the minimum
vertex cover and therefore cannot run in polynomial time
unless NP ⊂ P/poly.

General truthful mechanisms. Theorem 2.2 shows that
no constant-approximation MIR mechanisms exist even for
CPPP with 2-{0,1}-unit-demand valuations. In contrast, a
simple non-adaptive greedy algorithm achieves an approx-
imation ratio of 1

2 for 2-{0,1}-unit-demand valuations that
is truthful without payments, thus establishing a large gap
between what is achievable via MIR and general truthful
mechanisms.

Theorem 2.4. There exists a computationally efficient,
truthful mechanism for CPPP with n agents with 2-{0,1}-
unit-demand valuations that achieves an approximation ratio
of 1

2 .

Proof. The mechanism :

1. for each resource j let sj = |{i : vi({j}) = 1}|.

2. sort the m resources in decreasing order by the value
of sj , breaking ties in favor of resources with lower
indices.

3. output the set S consisting of the k first resources in
the above ordering.

This is clearly an efficient algorithm, as sort only requires
O(n log n) time, and in this case bucket sort can be used to
achieve a linear time mechanism.

The mechanism as described essentially allows agents to vote
for 2 resources, then chooses the k with the most votes. An
agent only benefits from adding votes to the 2 resources that
he actually desires, as adding other resources to the top k
does not improve his social welfare. As the two resources
are desired equally, there is no advantage to voting for one
of the resources the bidder desires and not the other. So
there is never an incentive for an agent to not declare his
valuation truthfully.

We will now see that this has an approximation ratio of 1/2.
Every agent has a value of either 0 or 1 for the chosen set.
If an agent has a value of 1, we call that agent satisfied.
For each resource j, let sj be the number of agents satis-
fied by j. For any set T ,

∑
j∈T sj is an upper bound on

the social welfare of T . Clearly, S maximizes
∑

j∈S sj for
sets of size k, so

∑
j∈S sj is an upper bound on the max-

imum social welfare. Furthermore, each agent is satisfied
by at most 2 resources in S, so the social welfare of S is
at least

∑
j∈S sj/2 = 1/2

∑
j∈S sj , which is at least 1/2 the

maximum social welfare.

3. MULTI-UNIT-DEMAND: AN OPTIMAL
MECHANISM FOR 2 AGENTS

Multi-unit-demand valuations. Multi-unit-demand val-
uations (termed “OXS” in [9, 11]) are a generalization of
unit-demand valuations.

Definition 3.1 (multi-unit-demand). A valuation v
is a multi-unit-demand valuation if there exist unit demand



valuations {v1, . . . , vw} such that, for every S ⊆ [m],

v(S) = max
P={P1,...,P w}

∑

r∈[w]

vr(P r)

where the above maximum is taken over all w-partitions P =
{P 1, . . . , P w} of S. Such a valuation agent is represented by
a list of the w unit demand valuations.

How hard is CPPP with multi-unit-demand valua-
tions? Unit-demand valuations are a subclass of multi-unit-
demand valuations, and so our negative results in Sec. 2 for
CPPP with n agents extend to multi-unit-demand valua-
tions. What about a constant number of agents? One can
easily show that CPPP with a single multi-unit-demand val-
uation is optimally solvable in a computationally-efficient
manner using maximum matching on a bipartite graph. Be-
low, we shall prove that CPPP with 2 multi-unit-demand
valuations is tractable. We now present the following hard-
ness result for CPPP with 3 multi-unit-demand valuations:

Theorem 3.1. CPPP with 3 multi-unit-demand valua-
tions is NP-hard to solve optimally.

Proof. We reduce from 3-Dimensional Matching (3DM).
Given a 3DM instance M ⊆ [q] × [q] × [q], the goal is to
determine whether there exists a set M ′ ⊂ M of size q such
that no to members of M ′ share a coordinate. Our reduction
is as follows. The set of resources is M . The number of
resources to be chosen is k = q. If there is a set of size q
such that no two members share a coordinate, then there
should be q different values for each coordinate in the set.
We will simply create an agent for each coordinate that has
a valuation equal to the number of distinct values seen in
that coordinate, so that the social welfare is maximized if
no two resources coincide on any coordinate.

The ith agent values set S by the number of different values
for the ith coordinate in set S. This valuation is multi-unit-
demand because it can be built out of the q unit-demand
valuations that value 1 to any set containing a resource with
a j in the ith coordinate, for any 1 ≤ j ≤ q. The maximum
possible value is q (1 from each unit-demand valuation), and
this is only achievable if every possible value of the ith co-
ordinate appears in S.

The maximum social welfare of this auction is 3q iff the
3DM instance is positive. Clearly, any set M ′ of size q will
have social welfare 3q iff none of the resources in the set
share a coordinate, as the maximum value of q is achieved
by each agent none of the resources share the coordinate
corresponding to that agent.

While the above theorem leaves open the possibility of a
PTAS for any constant number of agents, we can rule out
this possibility by presenting a hardness of approximation
result for 10 (or more) agents.

Theorem 3.2. There exists a constant ε > 0 such that it
is NP-hard to approximate the social welfare in CPPP with
10 multi-unit-demand valuations within a ratio of 1− ε.

Due to space limitations, we defer the proof to the full ver-
sion of the paper. The proof of Theorem 3.2 reduces from
MAX-3SAT-5 to an instance with n unit-demand agents,
and then compresses these agents into 10 multi-unit-demand
agents without changing the social welfare function.

Optimal mechanism for CPPP with 2 agents. We now
show that CPPP with 2 multi-unit-demand valuations can
be optimally solved in a computationally efficient manner
via minimum cost flow. Thus, the use of VCG payments
implies the existence of an optimal truthful mechanism.

Theorem 3.3. There exists an optimal computationally-
efficient and truthful mechanism for CPPP with 2 multi-
unit-demand valuations.

Our mechanism uses minimum cost flow, for which integral
solutions can be found in polynomial time [14]. Minimum
cost flow is similar to network flow, except that each edge
has a cost and the goal is to find a flow of value f with
minimum total edge cost. We now formally describe the
mechanism:

Input: an instance of CPPP with two agents 1, 2, where
each agent i has a multi-unit-demand valuation vi such that
each vi is composed of wi unit-demand valuations v1

i , . . . , vwi
i

(see Def. 3.1).

The mechanism:

1. Step I: add “dummy” unit-demand valuations
(that equal 0 for all subsets of resources) if necessary
to ensure that w1 = w2 = w ≥ k.

2. Step II: create a minimum-cost flow network
(see Fig. 3.1). In addition to the source and target
nodes s and t, the network contains node pi,r corre-
sponding to agent i’s rth unit-demand valuation vr

i ,
and two nodes q1,j and q2,j for each resource j ∈ [m].
The edge set contains an edge from s to each node p1,j ,
and an edge from each node p2,j to t. In addition, for
each j ∈ [m], create an edge from q1,j to q2,j . Set the
cost of each of these edges to be 1.

Let vmax be a positive real value that is strictly higher
than both agents’ values for each single resource (say,
vmax = maxi∈[2],j∈[m] vi({j}) + 1). Create, for each
j ∈ [m], r ∈ [w], an edge from p1,r to q1,j of cost
vmax − vr

1({j}) and an edge from q2,j to p2,r of cost
vmax − vr

2({j}). (Observe that all costs are positive
integers.)

Set the capacities of all edges to be 1.

3. Step III: compute a minimum-cost flow f with
flow value k and integer flow along each edge (i.e., the
flow along each edge is in {0, 1}).

4. Step IV: set S to be the subset of [m] such that
j ∈ S iff the flow in f along the edge from q1,j

to q2,j is positive. Observe that the k units of flow
in f emanating from s must traverse exactly k edges
of the form (q1,j , q2,j), and hence |S| = k.
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Figure 3.1: example of minimum-cost flow network
construction for w = 2 and m = 3.

5. Step V: output the set of resources S and the
VCG payments.

Clearly, the mechanism is computationally efficient (recall
that the computation of minimum-cost flow with integer
values is tractable [14]). We are left with showing that the
mechanism outputs the social-welfare maximizing subset of
resources, after which truthfulness follows from the use of
VCG payments.

Lemma 3.4. The above mechanism which solves CPPP
with 2 multi-unit-demand valuations outputs a subset of re-
sources of size k that maximizes the social welfare.

Proof. Observe that the k units of flow in f emanating
from s, and the k units of flow going into t traverse edges
that have a total cost of 2k, and that the k units of flow
along the edges from q1,j nodes to q2,j nodes traverse edges
that have a total cost of k. Hence, the total cost of these
edges is 3k regardless of how the flow f is achieved.

Consider j ∈ S (computed in Step IV of the mechanism).
Observe that because there is 1 unit of flow traversing the
edge (q1,j , q2,j), there must be exactly one incoming edge
leading to node q1,j , and exactly one outgoing edge leav-
ing node q1,j , on which the flow in f is 1. Consider a spe-
cific edge (q1,j , q2,j) and let (p1,r, q1,j) and (q2,j , p2,r′) be the
edges through which the flow in f equals 1. Observe that the
total cost of these two edges is 2vmax − vr

1({j}) − vr′
2 ({j}).

We define c : S → Z+ to be the function that maps each
j ∈ S to the total cost of the incoming and outgoing edges
to q1,j and q2,j (not including the edge between them).

Now, for some pair of partitions of S P1 = (P 1
1 , . . . , P w

1 ) and
P2 = (P 1

2 , . . . , P w
2 ),

∑

j∈S

c(j) = 2kvmax −
w∑

r=1

vr
1(P r

1 )−
w∑

r=1

vr
2(P r

2 )

≥ 2kvmax − max
P=(P1,...P w)

w∑

r=1

vr
1(P r)

− max
P=(P1,...,P w)

w∑

r=1

vr
2(P r)

= 2kvmax − v1(S)− v2(S),

where the maxima in the above equations are taken over
w-partitions of S.

Therefore, the total cost of flow f (including the edges leav-
ing s, the edges entering t and the edges leading from the
q1,j ’s to the q2,j ’s) is at least 2kvmax + 3k minus the social
welfare of the set S. This lower bound is tight, as choosing
the set maximizing the social welfare and the incoming and
outgoing flows that correspond to the unit-demand valua-
tions that maximize each vi guarantees a total cost of exactly
2kvmax +3k minus the maximum social welfare. Hence, the
computation of the k-flow of minimum cost determines the
value of the social-welfare maximizing outcome, and the set
S produced achieves this maximum.

Note that we can use this mechanism in a randomized fash-
ion with 3 or more agents by selecting 2 of the agents uni-
formly at random, then running the mechanism on them.
This gives a decent approximation ratio for 3 agents.

Corollary 3.5. There is a randomized universally truth-
ful mechanism for CPPP with 3 multi-unit-demand agent
that achieves a 2/3 approximation of the social welfare in
expectation.

VCG-based mechanisms. Theorem 3.3 shows that there
is a computationally efficient VCG mechanism for CPPP
with 2 multi-unit-demand valuations. In contrast, we prove
the following hardness of approximation result for CPPP
with 3 or more multi-unit-demand valuations.

Theorem 3.6. No computationally efficient MIR mech-
anism can approximate CPPP with 3 multi-unit-demand

valuations within m−( 1
2−ε) (for any constant ε > 0) unless

NP ⊂ P/poly.

Proof. The proof here is essentially the same as that
of Theorem 2.2, in that the proof of NP-hardness can be
modified to make use of the smaller range by setting each
of the resources outside of [mα] to add 1/2 to the social
welfare. In this case, we can fold this value in to the multi-
unit-demand valuation of one of the agents without affecting
the social welfare gain from the resources in [mα]. Running
M in this case yields a social welfare of 3q + (k − q)/2 iff
there is a set of q resources from [mα] with social welfare 3q,
corresponding to a 3-dimensional matching. So M cannot
run in polynomial time unless NP ⊂ P/poly.

4. FPTAS FOR CPPP WITH CAPPED AD-
DITIVE VALUATIONS

Capped additive valuations. Intuitively, a capped addi-
tive valuation is a valuation function that is additive (the
value for each bundle of resources is the additive sum of the
per-resource values) but cannot exceed some threshold.

Definition 4.1 (additive valuations). We call the
valuation function v additive (linear) if v(S) = Σj∈S v({j}
for every S ⊆ [m].



Definition 4.2 (capped additive valuations). v is
a capped additive valuation if there exists an additive valu-
ation a, and a real value B > 0, such that, for each S ⊆ [m],
v(S) = min{a(S), B}.

NP-hardness and an FPTAS. 2-{0,1}-unit-demand val-
uations are a subclass of capped additive valuations (where
B = 1), and so our negative results in Sec. 2 for CPPP with
n agents extend to capped additive valuations. What about
a constant number of agents? Observe that finding the opti-
mal outcome for a single agent is trivially in P (simply take
the k most valued resources). It turns out, by reduction
from Subset Sum, that even with 2 agents, this is no longer
the case.

Theorem 4.1. CPPP with 2 capped additive valuations
is NP-hard.

Proof. We reduce from Subset Sum, where we are given
a set of positive integers v1, . . . , v! and a target t, and the
goal is to find a subset of v1, . . . , v! that sums to t. Given
an instance of Subset Sum, we construct an instance to
our problem with m = 2# resources, k = #, and 2 agents
with valuations v1(S) = min{

∑
j∈S 2v̄1j , 2t} and v2(S) =

min{
∑

j∈S v2j , B}, where B = k ·maxj vj and v̄1j , v̄2j are:

v̄1j =

{
2vj , j ≤ #
0, otherwise

v̄2j =

{
B/k − vi, j ≤ #
B/k, otherwise

.

Observe that if there exists a subset S s.t.
∑

i∈S ai = t, by
choosing the set of resources S′ = S ∪ {# + 1 . . . 2#− |S|} we
have v1(S

′) + v2(S
′) = B + t.

Conversely, consider a subset of resources in our problem of
size m with social welfare of at least B + t. Consider the
set of resources with index at most #. If the corresponding
resources summed to more than t, then agent 2 would have
total value less than B − t, while agent 1 would have value
of only 2t, for a total value of less than B + t. If the cor-
responding resources summed to less than t, then the social
welfare would be B, plus the sum of the corresponding set,
which is less than B + t. So the subset must have a sum of
exactly t.

However, using dynamic programming we obtain an FPTAS
for any constant number of agents.

Theorem 4.2. There exists an FPTAS for CPPP with a
constant number of capped additive valuations.

Proof. We will use a dynamic programming procedure.
For b = maxi∈n bi, we divide the interval [0, b] into n·m

ε

segments, each of length εb
n·m , and denote p(x) = ,x·mn/εb-.

We will maintain an n dimensional table with (n·m
ε )n entries,

denoted A, where in each entry aij...k we will store a subset
S for which p(vn(S)) = k, p(v2(S)) = j, . . . p(vn(S)) = k, if
such a subset exists. For every subset S, A(S) shall denote
its corresponding entry in the table.

Assume some arbitrary ordering {1 . . . m} over the set of re-
sources, and consider the following procedure. We initialize
the table with the empty set in all entries. At stage j, for
each subset S ∈ A, s.t. |S| < k, let T = A(S ∪ {j}). If
|S ∪ {j}| ≤ |T | or T = ∅, we set A(S ∪ {j}) = S ∪ {j}.
After the mth stage we iterate over al entries in the table,
and choose the subset with highest social welfare. The pro-
cedure runs in O(m · (mn

ε )n) steps, which is polynomial in
m and 1/ε as required.

Let O denote the optimal solution, Oj = {i ≤ j|i ∈ O}. By
induction on the stage of the algorithm, we can show that
at stage # there is a subset S! s.t. S! ∈ A(O!), |S| ≤| O!|
and for every agent i we have that vi(O!) − vi(S!) ≤ # ·

εb
m·n . For # = 1 the claim is trivial. For a # ≤ m, if # /∈
O!, the claim trivially holds from the inductive hypothesis.
Otherwise, there is a subset S!−1, s.t. |vi(O!) − vi(S!−1 ∪
{#})| = |vi(O!−1 ∪ {#})− vi(S!−1 ∪ {#})| ≤ (#− 1) · εb

m·n for
every i, and |S!−1| ≤| O!−1|. If another subset S′ /= S ∪ {#}
is stored in A(O!) then |vi(S ∪ {#})− vi(S

′)| ≤ εb
m·n , |S′| ≤

|S ∪ {#}|, and the claim holds.

VCG-based mechanisms. In a similar fashion to the
above lower bounds, we can show that there is no hope in
VCG-based mechanisms for this class of valuations either.

Theorem 4.3. No computationally-efficient MIR mech-
anism can approximate CPPP with 2 capped additive val-

uations within m−( 1
2−ε) (for any constant ε > 0) unless

NP ⊂ P/poly.

Proof. Since the reduction for budget additive agents
did not rely on minimizing the number of resources required
to match the social welfare of the set of all resources, we
cannot rely on the same trick here as in the above two the-
orems. Instead, we rely on the structure of the reduction.
The number of resources which are valued by agent 1 at 0
and agent 2 at B/k doesn’t affect the proof (as long as it’s
larger than # and at least k), so we just add m −mα more
of these. The particular value of k also doesn’t matter, as
long as it’s at least #, so losing control of how k relates to
mα isn’t an issue. Thus, using the same reduction after this
modification, we see that M can be used to solve subset
sum instances of size mα, and is therefore does not run in
polynomial time unless NP ⊂ P/poly.

5. TRUTHFULNESS IS HARD EVEN WITH
A SINGLE AGENT

Coverage valuations. Intuitively, in a coverage valuation
each resource represents a set of elements in some universe
U , and the value of each set of resources S ⊆ [m] equals the
cardinality of the subset of U that is covered by its resources
(that is, by the subsets of U represented by the resources in
S).



Definition 5.1 (coverage valuations). We call the
valuation function v a coverage valuation if there exists a
universe of elements U , subsets S1, . . . , Sm ⊆ U , and a real
number α > 0 such that v(S) = α|

⋃
j∈S Sj |, for every S ⊆

[m]. Such a valuation is represented by a list of the m sets
S1, . . . , Sm.

The hardness of being truthful with a single agent.
[13] shows that no computationally-efficient and truthful
mechanism for CPPP with 2 submodular valuations can
obtain an approximation ratio better than 1√

m
(while a

constant non-truthful approximation exists). [16] proves the
tightness of this result in [13] by presenting a truthful, com-
putationally efficient mechanism with an approximation ra-
tio of 1√

m
.

One might suspect that the hardness of truthful computa-
tion in [13] stems from the conflict of interests between the
two agents. When there is only one agent, the interests of
the mechanism designer and the single agent are trivially
aligned; both strive to better the agent’s outcome (that is
also the total social welfare). We now give the first evi-
dence that, surprisingly, algorithmic mechanism design can
be non-trivial even in single-player environments. We be-
lieve that this result raises intriguing questions in algorith-
mic mechanism design regarding the “right” solution con-
cept/framework for analyzing incentives.

Inapproximability result. We strengthen the result in
[13] (which we prove for n = 1 and for coverage valuations).
Our proof greatly simplifies the long and complicated proof
in [13].

Theorem 5.1. No computationally-efficient and truthful
mechanism for CPPP with one coverage valuation obtains

an approximation ratio within m−( 1
2−ε) (for any constant

ε > 0) unless NP ⊂ P/poly.

Proof. We begin by presenting a simple characterization
of truthful mechanisms for CPPP with a single agent, that
can easily be generalized to hold for all 1-player mechanism
design environments. Our characterization shows that every
truthful mechanism is an affine maximizer (see [15, 13]).

Lemma 5.2. If M is a truthful mechanism for CPPP with
a single agent 1, then there exists a collection O of sub-
sets of resources of size k, and a real number wo ∈ R for
each o ∈ O such that, for each valuation function v1 of
agent 1, the outcome o(v1) ∈ O that M outputs for v1 is
in argmaxo∈O(v1(o)− wo).

Proof. Let O be the collection of outcomes (subsets of
[m] of size k) that agent 1 can achieve (i.e., outcomes that
the mechanism outputs for some valuation of 1). In truthful
mechanisms, the payment of a player is independent of his
own valuation function, and can only depend on the outcome
and on the valuations of the other players. Because we are
dealing with a single-player environment, we can associate
each outcome o ∈ O with the payment that M outputs for
that outcome wo. Now, M ’s truthfulness implies that, if M

outputs the outcome o ∈ O for the valuation v1, then it must
hold v1(o) − wo ≥ v1(o

′) − wo′ for each o′ ∈ O (otherwise,
1 is better off lying and announcing the valuation for which
M outputs o′). The lemma follows.

We now prove an inapproximability result for truthful mech-
anisms. Let M be a truthful mechanism. We now know that
there exists a collection O of subsets of resources of size k,
and per-outcome “weights” (the wo’s), such that M exactly
optimizes 1’s value over O, given the outcome weights. Let
α = maxo∈O 2|wo|+1. Observe that for every S, T ∈ O such
that v1(S) /= v1(T ) it holds that |v1(S)−v1(T )| > |wS−wT |.
So we can safely ignore the outcome weight, as maximizing
v1(S) − wS also maximizes v1(S). Hence, from now on, we
need only consider MIR mechanisms (that for each possible
v1 output an outcome o(v1) ∈ O that is in argmaxo∈Ov1(o)).
The following lemma concludes the proof of the theorem.

Lemma 5.3. No MIR mechanism for CPPP with with
one coverage valuation achieves an approximation ratio of

at least m−( 1
2−ε) unless NP ⊆ P/poly.

Proof. Let M be a MIR mechanism that obtains an ap-

proximation ratio better than m−( 1
2−ε). [13] shows that the

VC dimension of M ’s range (that is, O) must be at least mα

for some constant α > 0 (using essentially the arguments
used in the proof of Theorem 2.2).

We now show a reduction from the NP-hard t-COVER [4]
with mα sets. In t-COVER, the input is mα subsets of a
universe E, T1, . . . , Tmα , and an integer t, and the objective
is to determine whether there are t sets that cover E. We
now construct the valuation function of agent 1. We create
a universe U that consists of two disjoint copies of E, E1

and E2, plus a set of m − t additional elements, E3. To
define the coverage valuation v1 we need to define the sets
S1, . . . , Sm ⊆ U (see Def. 5.1). Re-order the resources such
that the mα resources corresponding to this VC-dimension
are the set [mα]. For each j ∈ mα let the set Sj be the
subset of U that covers all elements in E1 and E2 that are
covered by Tj . For each j ∈ {mα + 1, . . . , m} let Sj be a set
that covers a single unique element in E3.

Observe that if the minimal number of sets needed to cover
E in t-COVER is r, then any optimal outcome in our CPPP
instance is one that contains r resources corresponding to r
covering sets in t-COVER, and k − r additional resources
from E3 (chosen arbitrarily). The output of M thus de-
termines the value of r. If r ≤ t then there exist t sets in
MAX-t-COVER that cover E, otherwise no such t sets exist.
Observe that the reduction is polynomial, yet is not uniform
(because of the non-constructiveness of the Sauer-Shelah
Lemma), and hence our result is dependent on the computa-
tional assumption that NP is not contained in P/poly.

6. INAPPROXIMABILITY OF FRACTION-
ALLY-SUBADDITIVE VALUATIONS

Fractionally-subadditive valuations. Intuitively, a val-
uation is fractionally-subadditive (termed “XOS” in [9, 11])
if it is the maximum of a collection of additive (linear) valu-
ations (valuations where the value of each set is simply the
additive sum of the per-resource values).



Definition 6.1 (fractionally subadditive). A val-
uation function v is fractionally subadditive) if there exist
additive valuations {a1, . . . , at} s.t. v(S) = maxj∈t aj(S).
Such a valuation is represented by a list of the t valuations
aj , j ∈ [t].

Remark: constant number of agents. Although multi-
unit demand agents are a special case of fractionally subad-
ditive agents in general, this leads to an exponential blowup
in description size with our choice of representation. So
while 3 multi-unit demand agents creates an NP-hard prob-
lem, a constant number of fractionally subadditive agents
allow a polynomial time algorithm.

Theorem 6.1. CPPP with a constant number of agents
with fractionally-subadditive valuations can be solved in poly-
nomial time.

Proof. Each fractionally-subadditive valuation takes the
maximum over linearly many additive valuations. If one of
these additive valuations is chosen for each agent, the result-
ing auction can be trivially solved in polynomial time. This
solution gives a lower bound on the maximum social welfare.
If the additive valuations chosen happen to be the ones that
exhibit the maximum in an optimal allocation, the solution
found will also be optimal. Thus, by enumerating over all
possible choices, an optimal allocation can be found. If there
are c agents with at most # additive valuations each, there
are O(#c) ⊆ poly(#) choices to enumerate over. Thus, the
solution to the auction can be found in polynomial time.

Inapproximability result. We now present a reduction
from LABEL-COVERmax to CPPP with n fractionally-sub-
additive valuations that preserves an approximation gap.
First, we define LABEL-COVERmax and discuss the com-
plexity of its approximation. A LABEL-COVERmax in-
stance consists of a regular bipartite graph G = (V1, V2, E),
a set of n labels N = {1, . . . , n} and for each edge e ∈ E
a partial function Πe : N → N . We say that the edge
e = {x, y} for x ∈ V1, y ∈ V2 is satisfied if x is labeled with
l1 and y with l2 such that Πe(l1) = l2. The goal of LABEL-
COVERmax is to find an assignment of labels to the nodes
in V1 and V2 such that each node has exactly one label and
as many edges as possible are satisfied. It was shown in [1]
that LABEL-COVERmax is quasi-NP-hard to approximate.

Theorem 6.2 ([1]). For any sufficiently small constant
γ > 0, it is quasi-NP-hard to distinguish between the follow-
ing two cases in LABEL-COVERmax: (1) YES case: all

edges are covered, and (2) NO case: at most a 2− log1−γ n

fraction of the edges are covered, where n is the size of the
LABEL-COVERmax instance.

We make use of Theorem 6.2 to show a similar hardness
result for CPPP with fractionally-subadditive valuations.

Theorem 6.3. It is quasi-NP-hard to obtain an approx-

imation ratio of 2
log1−γ b

6 for CPPP with fractionally-sub-
additive valuations where b is the size of the CPPP instance.

Proof. We prove this using a gap-preserving reduction
from LABEL-COVERmax: We are given as input an in-
stance of LABEL-COVERmax consisting of a graph G =
(V1, V2, E), a set of labels N and a set of partial functions
Πe for each e ∈ E. We create a CPPP instance with |V1|
agents, one corresponding to each node in V1. The resource
set is V2 × N . We now define the fractionally-subadditive
valuation vi of each agent i. For every label l ∈ N , we define
the additive valuation function ai,l.

ai,l({(j, l′)}) =

{
1, {i, j} ∈ E and Π{i,j}(l) = l′

0, otherwise
.

So ai,l(S) represents how many edges incident with i are
covered if we choose label l for vertex i ∈ V1 and the best
label from the set {l′ : (j, l′) ∈ S} for vertex j ∈ V2.

The fractionally-subadditive valuation of agent i is defined
by

vi(S) = max
l∈N

{ai,l(S)}.

So agent i gets the value for the best possible choice of a
single label for vertex i given the label choices for V2 implied
by S. We set the size of the set of resources to be chosen in
our CPPP instance to be |V2|.

If the LABEL-COVERmax instance is a YES case, we can
find a set of resources with social welfare |E|. Simply take
any labeling that covers every edge and for every j ∈ V2,
choose the resource (j, l′), where j is labeled by l′ in the
labeling. Call this set S. Clearly, vi(S) equals the degree of
node i, as if we choose l such that i is labeled by l, Π{i,j}(l) =
l′ for each (j, l′) ∈ S. So the social welfare given these
resources is |E|.

We now show that if the LABEL-COVERmax instance is a
NO case, then the maximum social welfare is bounded by

2−
log1−γ n

6 |E| for sufficiently large n. Note that if n′ is the
size of the LABEL-COVERmax instance, our construction
guarantees n ≤ (n′)2. So our bound is at least

2−
log1−γ [(n′)2]

6 |E| ≥ 4 · 2−
log1−γ n′

3 |E|

for sufficiently large n′. In order to simplify our expressions

in the rest of the proof, let α = 2−
log1−γ n

6 . Using the above
bound, we see

α ≥ 4 · 2−
log1−γ n′

3 . (1)

Suppose by way of contradiction that we reduced from a NO
case, but the maximum social welfare is at least α|E|.

Let S be a set of resources in the CPPP instance with a so-
cial welfare of at least α|E|. Recall also that each agent i’s
fractionally-subadditive valuation vi is defined as the point-
wise maximum over a set of additive valuations. Let ai,l be
the additive valuation in the set of valuations making up vi

for which ai,l(S) is maximized (and so vi(S) = ai,l(S)). If
we fix a choice of j, ai,l assigns a value of 1 to at most one
of the resources (j, l′) for l′ ∈ N . Moreover, ai,l can only
assign value to a resource (j, l′) if {i, j} ∈ E. We say that an
edge between vertex i ∈ V1 and vertex j ∈ V2 is satisfied by



the set S if (j, Π{i,j}(l)) ∈ S. Observe that the total social
welfare value of S equals the number of edges satisfied by S.

Let d be the number of incoming edges of a vertex in V2.
Since G is a regular bipartite graph, d = |E|

|V2|
. Let V ′

2 denote
all vertices v ∈ V2 in which the number of edges incident on
v satisfied by S is at least α

2 d. A counting argument shows
that |V ′

2 | ≥ α
2 |V2|. If |V ′

2 | were less than α
2 |V2|, the number

of satisfied edges incident upon vertices in V ′
2 is at most

|V ′
2 |d < α

2 |E|, and the number of satisfied edges incident
upon vertices outside of V2 would be less than |V2|α2 d =
α
2 |E|. So summing these, we would see that the number of
satisfied edges is less than α|E|, a contradiction. So |V ′

2 | ≥
α
2 |V2|.

If S contains # resources of the form (j, l) for a fixed j and
# different values l ∈ N , we say that j is labeled # times by
S. Since there are |S| = |V2| resources, at most α

4 |V2| of the
nodes j ∈ V2 are labeled more than 4

α times by S. So letting
V ′′

2 be the subset of V ′
2 which is labeled at most 4

α times by
S, |V ′′

2 | ≥ α
4 |V2|.

Since S labels each j ∈ V ′′
2 at most 4

α times, and S satisfies
at least α

2 d edges incident upon each vertex in V ′′
2 , we can

find a single sj ∈ S that satisfies at least α/2
4/αd = α2

8 d of the

edges incident upon j. So if we label each j ∈ V ′′
2 according

to Sj and label each i ∈ V1 by the l such that vi(S) = ai,l(S),

we have a labeling that satisfies at least |V ′′
2 |α

2

8 d = α3

32 |E|
edges, regardless of how the vertices in V2− V ′′

2 are labeled.
This contradicts that we had a NO case, as we can see by

(1) that α3

32 |E| > 2− log1−γ n′ |E|.

Thus, we see that the maximum social welfare of our CPPP
is at least |E| if we reduced from a YES case and at most
α|E| if we reduced from the NO case. Therefore, it is quasi-

NP-hard to achieve an approximation ratio of 2−
log1−γ n

6 ,
proving the theorem.

7. DISCUSSION AND OPEN QUESTIONS
In our exploration of CPPP we have presented positive and
negative results for truthful and unrestricted computation.
Our results highlight interesting phenomena in algorithmic
mechanism design, and improve our understanding of the
tractability-intractability boundary for this natural compu-
tational and economic environment.

The focus in algorithmic mechanism design is on the ten-
sion between computation and truthfulness. Our results
for CPPP identify extremely simple combinatorial environ-
ments where the two desiderata clash, and that are therefore
a natural arena for the investigation of the complex interplay
between computational efficiency and incentive compatibil-
ity.

We leave many important questions wide open. We still
lack a good understanding of the power of computationally-
efficient and truthful mechanisms for CPPP (see Fig. 1.3),
and leave bridging the approximability gaps between the
upper and lower bounds in Fig. 1.2 as an open question.
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