Harvard School of Engineering **ICE: Iterative Combinatorial Exchanges** Benjamin Lubin In Collaboration with David Parkes and Adam Juda

Early work Giro Cavallo, Jeff Shneidman, Hassan Sultan, CS286r Spring 2004

Harvard School of Engineering and Applied Sciences

Combinatorial Exchanges

- Extension of Combinatorial Auctions - Multiple competitive buyers, sellers (or mixed)
- Expressive bids: - (sell [A,B] -\$8) xor (sell[C,D] -\$20)
- (buy A) and (sell B) \$5 [swap]
- Winner Determination is a combinatorial optimization problem
 - capture logical constraints in bids - maximize "gains from trade"
- Payments: at final allocation what do you pay?
 - VCG fails Budget Balance → Use Threshold Payments
 - Not strategyproof but mitigates incentives to manipulate

 - Core Constraints?

Arvard School of Engineering and Applied Sciences Excl

Exchange Properties

- First incremental and fully expressive two sided combinatorial exchange.
- "Hybrid" Design
 - Incremental direct revelation of upper and lower bounds on trade values via expressive language.
 - "Last and Final" stage where the exchange clears and (Threshold) payments are determined.
 - Shares stylistic features with other "hybrid" designs
 - such as clock-proxy for CAs (Ausubel et al.)
- Theoretical interest: efficiency results with linear prices used for preference elicitation

Harvard School of Engineering and Applied Sciences

Why Iterative?

- Agents find it difficult to determine their preferences
 - Want to allow approximate information about the complete valuation function
- Iteration allows for price feedback to focus agents on the right part of their value space

Harvard School of Engineering and Applied Sciences

From CE to ICE

- A TBBL bid is now annotated with lower and upper bounds on value
- Key idea: clear based on "optimistic" values in early rounds, ... "pessimistic values" in later rounds
 - provides early price discovery
- Bidders tighten bounds across rounds
- Linear prices drive activity, elicitation

Harvard School of Engineering and Applied Sciences Rule Properties

- Guaranteed progress in a given round
- Can lower bound $\text{EFF}(\underline{\lambda})$

$$\mathrm{EFF}(\underline{\lambda}) = rac{\sum_{i} v_i(\underline{\lambda}_i)}{\sum_{i} v_i(\lambda_i^*)} = rac{v(\underline{\lambda})}{v(\lambda^*)} \ge \Delta^*$$

- via *linear* prices (when sufficiently accurate)otherwise directly via bounds on TBBL trees
- Thus despite linear prices:
 - **Theorem**. For straightforward bidders MRPAR and ϵ -DIAR cause the exchange to terminate with a trade that is within a target efficiency error Δ^* as $\epsilon \rightarrow 0$

Harvard School of Engineering and Applied Sciences Implementation		
 Thousands of distinct but related MIPs Massive multi-threading/parallelization Modular and hierarchical MIP "code generator" Concise & parallel CPLEX/LPSolve wrapper Numerical precision a big practical issue 		
Component	Ригрозе	Lánes
Agent	Strategic behavior and information revelation decisions	2001
Model	XML support to load goods and true valuations	1358
Bidding Language	Implements TBEL	2497
Excinage Driver & Communication	Controls exchange, and excerdinates agent behavior	1322
Activity Rule Engine	MRPAR, DIAR and TPAR	1280
Closing Rule Engine	Checks for termination condition	550
WD Engine	Logic for WD	685
Prising Engine	Logic for times pricing stages	1317
MIP Builders	Translates from engines into our optimization APIs	782
Pricing Builders	Used by the pricing stages	564
WD Builders	Used by WD, activity & closing rules, pricing	840
Francescerk	Wire above comprenents together	891
Instrumentation	Gather data for analysis	1751
JOpt	Our Optimization API wrapping CPLEX	2178
Instance Generator	Random Problem Convector	497

Harvard School of Engineering and Applied Sciences Generator • Create d copies of each good type • Assign these to the agents • Recursively Build a tree for agents

- 1st phase: exponential growth
 - 2nd phase: triangle distribution of width over depth
 - Internal nodes: Draw Y between 1 and |children|, X between 1 and Y
 - Leaf nodes: assign buy or sell and then choose a good accordingly
- Draw value for each node from a internal, buy, or sell distribution respectively

Harvard School of Engineering and Applied Sciences

Results Summary

- **Fast**: 100 goods in 20 types, 8 bidders each with ~112 TBBL nodes, converges to efficient trade in ~7 rounds
- Elicitation efficient: Around 62% "value uncertainty" retained in final bid-trees.
- **Informative**: The best trade for a bidder at intermediate prices within 11% of the profit it would get from its best trade at final prices.
- **Scalable**: 8.5 minutes on 3.2GHz, dualprocessor, dual-core, 8GB memory (including agent simulation)

Harvard School of Engineering and Applied Sciences

Conclusion

- ICE showcases a "hybrid" design in which linear prices guide elicitation but exchange clears based on expressive bids.
- Linear prices can be generated for expressive languages (e.g. TBBL) and coupled to any (e.g. Threshold) payment rule
- Threshold payment scheme is "maximally" truthful when participants guaranteed non-negative profit at reported values and the budget is balanced.
- Experiments show that ICE converges quickly, and that it is efficient, informative and scalable

