
On Characterizations of Truthful Mechanisms for
Combinatorial Auctions and Scheduling

Shahar Dobzinski
School of Computer Science and Engineering

The Hebrew University of Jerusalem
Jerusalem, Israel

shahard@cs.huji.ac.il

Mukund Sundararajan
Department of Computer Science

Stanford University
470 Gates Building, 353 Serra Mall, Stanford,

CA 94305.
mukunds@cs.stanford.edu

ABSTRACT
We characterize truthful mechanisms in two multi-parameter
domains. The first characterization shows that every mech-
anism for combinatorial auctions with two subadditive bid-
ders that always allocates all items is an affine maximizer.
The second result shows that every truthful machine schedul-
ing mechanism for 2 unrelated machines that yields a finite
approximation of the minimum makespan, must be task in-
dependent. That is, the mechanism must determine the al-
location of each job separately.

The characterizations improve our understanding of these
multi-parameter settings and have new implications regard-
ing the approximability of central problems in algorithmic
mechanism design.

Categories and Subject Descriptors
F.2.8 [Analysis of Algorithms and Problem complex-
ity]: Miscellaneous

General Terms
Theory

Keywords
Characterizations, Combinatorial Auctions, Scheduling, In-
centive Compatibility

1. INTRODUCTION

1.1 Background
Mechanism design discusses the design of protocols that

achieve specific outcomes even when players are self-interested
and have private information. The central positive result in
mechanism design is the widely applicable VCG mechanism.
However, VCG mechanisms do have significant limitations.
Though they can be used to maximize the welfare of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08, July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

players (or minor variants of this objective), often we are
interested in other objectives; for instance, in scheduling
domains we may be interested in minimizing the makespan.
Furthermore, even in settings in which welfare maximization
is our desired goal, implementing VCG may not be compu-
tationally feasible. The obvious question is: Are there other
types of truthful mechanisms that do not suffer from these
limitations?

1.2 Implementability in Multi-Parameter
Domains

Consider a setting with n selfish players. We also have a
set of alternatives (outcomes) A. Each player has a differ-
ent value for each alternative. In other words, each player
i has some valuation function vi : A → R (this informa-
tion is private to the player i), that gives a value for each
possible alternative. These valuations may also have addi-
tional structure, for instance in combinatorial auctions play-
ers never prefer an allocation in which they receive some
bundle S over an allocation in which they get some superset
of S. One of the central questions in mechanism design is
whether a given social choice function f : Πn

i=1Vi → A can
be implemented truthfully; that is can we design a payment
rule that will incentivize selfish players to always report their
true values.

For single-parameter domains, when players values are de-
scribed by a single number, the characterization of Myer-
son [15] tells us that a social choice function is implementable
if and only if it is monotone; for a monotone social choice
function, a player’s winnings can only increase when his bid
increases (for a fixed set of bids of the other players).

Unfortunately, much less is understood about exactly which
social choice functions are implementable in multi-parameter
domains, where a player’s private information is no longer
describable by a single real number. The main characteriza-
tion result in such domains is Roberts’ Theorem. Roughly,
it says that if the vi’s can be arbitrary with no structure
(unrestricted valuations), only a very small subset of func-
tions are implementable. These functions are called affine
maximizers. An affine maximizer has the following form:
arg maxa∈A wivi(a) + ca. Notice that the ca’s and the wi’s
are predetermined constants and do not depend on the val-
uations of the players. Interestingly, this is precisely the set
of functions that can be implemented by (weighted) VCG.

Unfortunately, unrestricted valuations are not applicable
in most settings (for instance in combinatorial auctions bid-
ders have no externalities and only care about the items they

38

get) and Roberts’ theorem does not apply; Indeed, several
non VCG mechanisms are known [2, 8]. Further, VCG is
known to have severe limitations. We discuss these limita-
tions for two settings that we consider in this paper:

• Combinatorial Auctions: In a combinatorial auc-
tion n bidders are competing on a set M , |M | = m,
of heterogeneous items. Each bidder i has a valua-
tion function vi assigns a non-negative value to every
possible bundle of items. The valuations are mono-
tone and normalized (vi(∅) = 0). The goal is to find
an allocation (S1, . . . , Sn) that maximizes the welfare:
Σivi(Si). Using VCG to achieve an approximation ra-
tio better than O(

√
m) requires exponential communi-

cation, thus the VCG mechanism is not computation-
ally feasible. Can a truthful, polynomial time mecha-
nism achieve this ratio1?

• Scheduling Unrelated Machines: Here we have n
machines and m jobs. The time it takes for machine i
to process job j is vi({j}), which is also the processing
cost. The goal is to minimize the makespan, the time
it takes for all the jobs to be processed (the comple-
tion time of the last machine). The VCG mechanisms
provides an easy upper bound of n for this problem.
Nisan and Ronen [17] prove a lower bound of 2, for
all truthful mechanisms, even for computationally un-
bounded ones. Recently, [4, 3] improves this ratio to
to 2.61.

1.2.1 The Role of Characterizations
Characterizations identify precisely which social choice

functions can be implemented truthfully; they often yield
intuitive goals for a mechanism designer to achieve. For ex-
ample, in a single-parameter setting checking for monotonic-
ity is often simpler than proving truthfulness from scratch.
Characterizations also help us prove lower bounds on ap-
proximation ratios of truthful mechanisms. For instance, in
combinatorial auctions we want to understand the best ap-
proximation ratio that can be achieved by polynomial-time
mechanisms; [13, 6] suggest we first prove that all mecha-
nisms that provide a good approximation ratio must use the
VCG payment scheme (i.e., the algorithms are maximal-in-
range. See [16, 6]), and then to prove that this class of algo-
rithms cannot provide a good approximation to the welfare
in polynomial time.

Some partial success of proving lower bounds using char-
acterizations was already achieved. The most notable ex-
ample is in the setting of multi-unit auctions (see [7] for
a definition). In this setting Lavi, Mu’alem, and Nisan [13]
prove that every (2−ε)-approximation mechanism for 2 play-
ers that always allocates all items must be an affine max-
imizer; [7] proves that affine maximizers cannot provide a
better than 2 approximation in polynomial time. On the
other hand, ignoring incentives issues, an FPTAS exists.

1.3 Our Results
Combinatorial auctions with subadditive and XOS bid-

ders have received substantial amount of attention, both
from an algorithmic point of view and a mechanism de-
sign standpoint (e.g., [9, 10, 6, 5]). A valuation v is called

1We limit this discussion to deterministic algorithms. See
[5, 8, 14] for randomized ones.

subadditive if for each two bundles S and T we have that
v(S) + v(T) ≥ V (S ∪ T). The definition of XOS valuations
(every XOS valuation is also subadditive) is more involved,
and we postpone it to the appendix. Our first result char-
acterizes the class of truthful mechanisms for combinatorial
auctions with subadditive bidders:

Theorem: Let f be a deterministic mechanism for combi-
natorial auctions for 2 subadditive (or XOS) bidders with
range of size at least m + 2, that always allocates all items.
Then, f is an affine maximizer.

It is known that the range of any approximation algorithm
that provides an approximation ratio better than 2 is larger
than m+2 [6]. We can thus use the above theorem and [6] to
conclude that any mechanism for 2 subadditive bidders that
always allocates all items and achieves an approximation ra-
tio better than 2 must run in exponential time. We prove
similar results for the class of XOS bidders. Hence, we get
another separation between the power of polynomial time al-
gorithms and the power of truthful polynomial time approxi-
mation mechanisms: ignoring incentives, a 4

3
-approximation

algorithm for 2 XOS bidders exists (for n players the approx-
imation ratio of the algorithm approaches e

e−1
≈ 1.58).

Unlike LMN [13], who prove a similar (but not identical)
result for multi-unit auctions using new machinery, we ex-
tend and modify Roberts’ original proof [18, 12]. The LMN
approach relies on the assumption that if a bidder bids high
enough then he receives all the items. This property is not
necessarily true for approximation algorithms for combina-
torial auctions with subadditive bidders; It looks that the
LMN approach does not suffice to prove our result. Further-
more, we have found Roberts’ approach easier to understand
and work with than the LMN approach.

We then switch gears to scheduling unrelated machines.
All previously known truthful mechanisms for machine schedul-
ing that yield a finite approximation to the minimum makespan
objective are task-independent; i.e they decide the allocation
for each job separately. Our second main result claims that
this is all we can do, at least for 2 machines:

Theorem: Let f be a mechanism for the scheduling prob-
lem for 2 machines that provides a finite approximation ra-
tio. Then, f is task independent.

We believe that the characterization is of interest from a
technical point of view: we are not aware of any previous
characterization for multi-parameter domain that results in
non affine maximizers. Our characterization also holds for
randomized mechanisms that are truthful in the universal
sense; if such a mechanism provides a finite approximation
ratio, then every mechanism in its support must be task-
independent. Thus, we can optimize over this class of ran-
domized mechanisms in order to determine the correct ap-
proximation ratio.

Is there any hope of extending our characterization to
more than 2 machines? Unfortunately, we show that there
exists a non-local mechanism for n > 2 machines that pro-
vides a finite approximation ratio (slightly worse than n).
Our 2-machine characterization may, however, serve as a
starting point for characterizations in settings with 3 ma-
chines or more.

Finally, in Section 5, we find that our characterizations
carry over to settings with more than two players under an

39

additional condition on the social choice function called sta-
bility ; Informally, stability says that if we change the value
of one player and its allocation remains the same, then all
the other players’ allocations must also remain the same.
The condition clarifies the role of the “two players, all items
are always allocated” assumption in essentially all success-
ful characterizations, including [13] and ours. Our results
highlight the need for mechanism design techniques that ex-
plicitly break this condition.

1.3.1 Open Questions
One open question is to characterize combinatorial auc-

tions without the assumption that all items are always allo-
cated, and to characterize truthful mechanisms for schedul-
ing for more than 2 machines. The assumption that all
items are always allocated looks technical from an algorith-
mic standpoint; without loss of generality every approxima-
tion algorithm always allocates all items. However, when
incentives issues are taken into consideration, this assump-
tion implies the implicit existence of externalities: if one
bidder does not get an item then the other does. Obtaining
characterizations without this kind of assumptions seems to
be a major obstacle.

Organization of the Paper
After a short preliminaries section, in Section 3 we prove our
characterization of combinatorial auctions with subadditive
(and XOS) bidders. In Section 4 we characterize scheduling
domains. Finally, Section 5 discusses extensions of our work
to settings with more than two players.

2. PRELIMINARIES
As we focus on settings with two bidders (machines or

bidders), it is convenient to let the letters v and u denote the
two bidders valuations. The notation f(v, u) = (S, S′), says
that for the valuation v, u, bidder (machine) 1 is allocated
the bundle S, and bidder (machine) 2 is allocated the bundle
S′.

Let v, v′ and u be valuations. A mechanism f is weakly
monotone if for all valuations v, v′ and u, if f(v, u) = a,
and f(v′, u) = b, then v(a)− v(b) ≤ v′(a)− v′(b). A mecha-
nism is called strongly monotone if for all valuations it holds
that v(a) − v(b) < v′(a) − v′(b), if a 6= b. In a domains
when a player is interested in minimizing his cost rather
than maximizing his value (like scheduling) the direction of
the inequalities is reversed.

It is well known that truthful mechanisms must guaran-
tee the following for any fixed player. For a fixed allocation,
the payment of a player does not depend on the player’s
own valuation (though it may depend on other players’ val-
uations). Further, the selected allocation must maximize
the player’s utility (as a function of the payments and the
player’s valuation). For instance, the payment of player 1
does not depend on its valuation v, but only on the bundle
assigned to it and the other player’s valuation, u; for every
bundle T and every u there exist payments p1

T (u) such that
if the mechanism allocates the bundle S to player 1 then it
pays p1

S(u). Moreover if the mechanism allocates S to player
1, then S ∈ arg maxT (v(T)− p1

T (u)).

3. COMBINATORIAL AUCTIONS WITH
SUBADDITIVE BIDDERS

3.1 The Characterization

Theorem 3.1. Let f be a truthful combinatorial auction
for 2 bidders with subadditive valuations, which always allo-
cates all items. If the range of f is of size at least m+2 then
f must be an affine maximizer. The same characterization
holds if the bidders have XOS valuations instead.

We note that if f provides an approximation ratio better
than 2 then f must select from at least m + 2 distinct out-
comes (in fact exponential in m) [6]. In the appendix we
deal with the necessary changes to the prove the result for
XOS valuations.

In this extended abstract we prove the theorem only for
the case where f is scalable; as a consequence, we essen-
tially prove that f is a weighted welfare maximizer (i.e., the
constants ca in the definition of affine maximizers are 0). A
social choice function f is called scalable if for every α > 0,
and valuations v, u we have that f(v, u) = f(α · v, α · u).
Adding this assumption does not change the basic logic of
the proof, but rather allows us to simplify some arguments.
We defer the proof without this assumption to the full ver-
sion of the paper. To simplify our proof even more, we
assume that the domain is open in the sense defined in the
appendix (such a domain suffices for proving lower bounds).
In the appendix we show that for such domains, we can as-
sume that f satisfies strong monotonicity without loss of
generality.

The reader is encouraged to read the examples in Subsec-
tion 3.2 in parallel to the proof. We discuss there how remov-
ing various conditions breaks our characterizations. These
examples also clarify the steps of the proof.

Basic Definitions and Proof Structure
Definition 3.2. Let (S, M \ S) and (T, M \ T) be two

allocations in the range of f . α = (α1, α2) ∈ R2 is in P (S, T)
if there exist two valuations v and u such that f(v, u) =
(S, M \ S), and α1 = v(S) − v(T) and α2 = u(M \ S) −
u(M \ T).

The sets P (S, T) have a geometric interpretation and our
proof asserts that these sets have a specific shape. Suppose
we plot P (S, T) on the cartesian plane. We can partition the
plane into three regions. P (S, T), P (S, T), and an invalid
region. We say that a point α = (α1, α2) is invalid if there
are no two valuations v and u such that α1 = v(S) − v(T)
and α2 = u(M \ S)− u(M \ T). As an example for a point
that is invalid, consider two bundles S, T , S ⊆ T : bidder 1
prefers T over S and bidder 2 prefers M \ S over M \ T ,
because of the monotonicity of the valuations; thus in this
case the only valid points are in the north-west quadrant.
For S and T where the symmetric difference is not empty,
all points in P (S, T) are valid. Finally, a point belongs to
P (x, y) if it is valid and not in P (x, y).

We now discuss the connection between the structure of
P ’s and affine maximizers. Suppose f is a weighted welfare
maximizer. Then, there exist constants w1, w2 for the two
bidders such that for any two valuations v, u and f(v) =
(S, M \ S), and for any other outcome (T, M \ T),

w1 · v(S) + w2 · u(M \ S) ≥ w1 · v(T) + w2 · u(M \ T)

40

A rearrangement of the above expression will give us the
following:

w1 · (v(S)− v(T)) ≥ w2 · (u(M \ T)− u(M \ S))

The form of the above inequality implies that the following
conditions must necessarily hold for any affine maximizer.
Next to each condition we list the lemma that establishes the
condition for any mechanism that satisfies the requirements
of our characterization.

1. We must be able to arrive at the allocation f(v, u), for
any valuations v, u, by using the following process of
“pairwise elections” between the allocations. Initially,
all allocations are available. At every step, we consider
an arbitrary pair of available allocations, (S, M \ S)
and (T, M \T) and rule out one of the two possibilities
f(v, u) = (S, M \ S), or f(v, u) = (T, M \ T) by a de-
terministic rule that considers only the vector (indexed
by machines) of differences (v(S) − v(T), u(M \ S) −
u(M \ T)) (For an affine maximizer, this rule is given
by the inequality above). We stop when one alloca-
tion remains. Lemma 3.3 establishes this condition; in
essence, P (S, T) is precisely the set of differences for
which the allocation (S, M \ S) ’beats’ the allocation
(T, M \ T).

2. The slopes of the line must be identical for all choices
of S and T . Lemma 3.5 proves that all the P ’s are
identical, up to their invalid regions.

3. Further, if we plot the sets P (S, T) and P (S, T) on
the cartesian plane, they must be separated by a line
(through the origin for weighted welfare maximizers).
Lemma 3.8 establishes this.

Finally, taken together, the above conditions imply that
the social choice function must be an affine maximizer: As
all the P ’s are identical, the line that separates P from P
must be identical. The slope of this line determines the
weights w1 and w2 for the two players.

A technical note about the proof: When we have to define
a new valuation, we sometimes explicitly define the values of
only some of the bundles. The value of the rest of the bun-
dles is the minimal value possible to ensure the monotonicity
of the valuation2.

The Consistency of P (S, T)

Lemma 3.3. Let S, T be two different bundles. Suppose
v and u are two valuations such that f(v, u) = (S, M \ S).
Let α = (v(S) − v(T), u(M \ S) − u(M \ T)). Let v′ and
u′ be two valuations where v′(S)− v′(T) = v(S)− v(T) and
u′(M \ S) − u′(M \ T) = u(M \ S) − u(M \ T). Then,
f(v′, u′) 6= (T, M \ T).

Proof. (of Lemma 3.3) Assume S 6= ∅, otherwise inter-
change the roles of the players. The proof is by contradic-
tion. Suppose f(v′, u′) = (T, M \ T). Define v′′ as follows,

2Our characterization requires that in all valuations each
two different bundles get different values. Hence,“noise”
should be added to the valuations below, and to some of
the valuations used in the sequel. We omit this noise from
the description of the valuations to enhance readability.

where c > 0 is large enough to enforce subadditivity con-
straints:

v′′(U) =

8>><
>>:

0, U = ∅,
v(S) + c, U = S
v(T) + c, U = T
c, U 6= ∅, U * S, T , S, T * U.

By strong monotonicity and as all items are allocated, f(v, u) =
f(v′′, u) = (S, M \S), because v′′(S)−v(S) ≥ v′′(U)−v(U),
for all bundles U . (Notice the use of the assumption that all
items are allocated. If bidder 1 is allocated S then bidder 2
must be allocated M \ S). Similarly, f(v′, u′) = f(v′′, u′) =
(T, M \ T).

As f(v′′, u) = (S, M \ S) and f(v′′, u′) = (T, M \ T), by
strong-montonicity, u(M\S)−u(M\T) > u′(M\S)−u′(M\
T). But this contradicts the antecedent of the lemma.

The Closure Lemma
Lemma 3.4 (Closure). Let α ∈ P (S, T). Let ε = (ε1, ε2),

where ε1 ≥ 0, ε2 ≥ 0. If α + ε is valid for (S, T) then
α + ε ∈ P (S, T). As a corollary, if α ∈ P (S, T) and α− ε is
valid for (S, T) then α− ε ∈ P (S, T).

Proof. Let v and u be two valuations where α = (v(S)−
v(T), u(M \S)−u(M \T)), and f(v, u) = (S, M \S). Define
v′′ and u′′, for large enough c:

v′(U) =

8>><
>>:

0, U = ∅,
c + v(U) + ε1, U = S
c + v(T), U = T
c, U 6= ∅, U * S, T S, T * U.

u′(U) =

8>>><
>>>:

0, U = ∅,
c + u(U) + ε2, U = M \ S
c + u(T), U = M \ T
c, U 6= ∅, U * M \ S, M \ T ,

M \ S, M \ T * U.

By strong monotonicity and since all items are allocated,
f(v, u) = f(v′, u) = f(v′, u′) = (S, M \ S). Thus, α + ε ∈
P (S, T). Finally, we note that if S is the empty set, then
a small technicality arises, as the above transformation is
not allowed, since we assume that the valuations are nor-
malized and the value of the empty set cannot be larger
than 0. In this case we set each bundle U to be v′(U) =
min(v(U), v(M) − ε1). If S = M , then u′ is defined simi-
larly: u′(U) = min(u(U), u(M)− ε2).

The P ’s are Identical
We now prove that that all the P ’s are identical, up to invalid
points. Formally speaking, we only prove that the interiors
of the P ’s are identical, where the interior is defined in the
usual topological sense. We denote the interior of P (S, T)

by Ṗ (S, T).

Lemma 3.5. Suppose that for each P (S, T), and for every
ε > 0 there exists β ∈ P (S, T), |β| < ε. Let S, T, R, W be

different bundles. Then, Ṗ (S, T) ∩ P (R, W) = ∅.

Notice that scalability implies that we indeed have that for
each P (S, T), and for every ε > 0 there exists β ∈ P (S, T),
|β| < ε.

Proof. (of Lemma 3.5) It is enough to prove the follow-
ing two claims:

41

Claim 3.6. Let S, T and W be different bundles. Ṗ (S, T)∩
P (S, W) = ∅.

Proof. Let α ∈ Ṗ (S, T). If α is not valid for (S, W) then
the claim is trivially true for this α. Therefore, we assume
that α is valid for (S, W) and prove that α ∈ Ṗ (S, W). Let
v, u be two valuations such that f(v, u) = (S, M \ S), and
(v(S)− v(T), u(M \ S)− u(M \ T)) = α.

We prove the claim by considering several different cases,
depending on the value of α. There are 4 possible cases,
and we omit the description of one case that is symmetric
to case 3.

Finally, before turning to the case analysis, let us note
that we assume that neither S, T , nor W are the empty set
(or that they equal the bundles of all items). We explain
the technical difficulty in this case and how to overcome it
at the end of the proof.

Case 1: α1 ≥ 0, α2 ≥ 0

Let v, u be two valuations such that f(v, u) = (S, M \ S)
which are“small enough”, v(M), u(M) << ε, for some ε > 0.
Define the following valuations, where c is chosen to be large
enough to enforce subadditivity constraints (notice that in
this case due to the value of α, we have, for example, that
W is not a subset of S):

v′(U) =

8<
:

0, U = ∅,
v(U) + c + α1, U ⊆ S
v(U) + c, S * U.

u′(U) =

8<
:

0, U = ∅,
u(U) + c + α2, U ⊆ M \ S
u(U) + c, M \ S * U.

We now prove that f(v, u) = f(v′, u) = f(v′, u′) = (S, M \
S). First f(v, u) = f(v′, u) = (S, M \ S) by strong mono-
tonicity and since for each U we have that v′(S)− v′(U) ≥
v(S) − v(U). A similar argument shows that f(v′, u) =
f(v′, u′) = (S, M \ S).

In particular, we proved that α ∈ P (S, W), since (v′(S)−
v′(W), u′(M \ S) − u′(M \ W)) is of distance of less than
ε > 0 from α, for any ε > 0, and since the process can be
repeated for any ε > 0.

Case 2: α1 < 0, α2 < 0

Roughly speaking, we will define v′′, u′′ where (S, M \ S)
“beats” (T, M \ T), and (T, M \ T) “beats” (W, M \ W).
Hence f(v′′, u′′) = (S, M \ S). Of course, we will make sure
that (v′′(S)− v′′(W), u′′(M \ S)− u′′(M \W)) = α.

Let v′, u′ be two valuations such f(v′, u′) = (T, M \ T),
and |v′|, |u′| < ε, for some ε > 0.

We now define v′′. We start with v′′ = v, and alter v′′.
Set v′′(W) = v(T) − (v′(T) − v′(W)). Set the value of any
bundle U 6= S, T, W to the minimum value possible by the
monotonicity constraints of the valuations. Finally, for all
U 6= ∅ raise v′′(U) by some large enough constant c, to
enforce subadditivity constraints. Define u′′ similarly, by
starting with u′′ = u, and setting u′′(M \W) = u(M \ T)−
(u′(M \ T)− u′(M \W)).

We now prove that f(v′′, u′′) = (S, M \S). We first claim
that the resulting output is not (U, M \ U), for any U ⊆ S.
To see this let β = (v(S)− v(U), u(M \S)−u(M \U)), and
thus β ∈ P (S, U). However (v′′(S) − v′′(U), u′′(M \ S) −

u′′(M \U)) = β + ε′, for some ε′ > 0. Thus, by Lemmas 3.3
and 3.4, f(v′′, u′′) 6= (S, M \ S).

A similar argument shows that f(v′′, u′′) 6= (U, M \U), for
U 6= S, T , U * S. For this we let β = (v′(T)−v′(U), u′(M \
T)− u′(M \ U)), and recall that f(v′, u′) = (T, M \ T).

Thus, the only two alternatives that we have to consider
are f(v′′, u′′) = (S, M \S), or f(v′′, u′′) = (T, M \T). How-
ever, since α ∈ P (S, T), it must be the case that f(v′′, u′′) =
(S, M \ S) (by Lemma 3.3).

As in the previous case, we proved that α ∈ P (S, W),
since (v′(S)− v′(W), u′(M \ S)− u′(M \W)) is of distance
of less than ε > 0 from α, for any ε > 0.

Case 3: α1 ≥ 0, α2 < 0

Let v′, u′ be two valuations such f(v′, u′) = (T, M \ T), and
|v′|, |u′| < ε, for some ε > 0. We start by defining v′′ and
u′′. v′′ is defined as in case 1, and u′′ is defined as in case
2. Using arguments similar to the previous cases, we have
that (T, M \T) “beats” every alternative (U, M \U), U * S,
because f(v′, u′) = (T, M \ T). (S, M \ S) “beats” every
alternative (U, M \U), S ⊂ U , because f(v, u) = (S, M \S).
Finally, (S, M \ S) beats (T, M \ T) because α ∈ P (S, T).

Let us note how to handle the case where either S, T , nor
W are the empty set (or that they equal the bundles of all
items). The difficulty is that in this case we cannot raise
the appropriate bundle by c, to make it subadditive. First,
consider the case where T = ∅ (or M \ T = ∅). The proof
is similar to the proof in case 2, with some minor changes.
The first change is that we build the valuations in a way
such that the alternative S “beats” every alternative that
contains S \W . The second change is that instead of raising
all bundles by some large enough constant c, it is enough to
raise only bundles U ⊇ S \W (for v), and U ⊆ (M \S)∪W
(for u).

If T = ∅ then the treatment is similar. Finally, if S = ∅
then we define the valuations similarly to this case in Lemma
3.4.

Claim 3.7. Let S, T and U be different bundles. Ṗ (S, T)∩
P (U, T) = ∅.

Proof. The proof is similar to the proof of the previous
claim and is omitted from this extended abstract.

Let S, T be some bundles where S is not contained in T
and T is not contained in S such that the outcomes (S, M \
S) and (T, M \ T) are in the range of f ; by assumptions,
the range of f has size at least m + 2, and such outcomes
must exist. Notice that all points in the plane are valid for
(S, T). Thus we have that P (S, T) and each P (U, W) are
identical, up to invalid points. The same holds for P (S, T)
and P (U, W). We now have that all the P ’s are the same,
up to invalid points.

The P ’s are Separated by a Line
Lemma 3.8. Suppose there exist two bundles S and T be

such that (S, M \S) and (T, M \T) are in the range and nei-
ther of the bundles is contained in the other. Then, P (S, T)
is separated by a line from P (S, T).

Proof. First, observe that if neither of the bundles is
contained in the other, then the whole plane is valid for
(S, T). Let α be some point that is on the border of P (S, T)
and P (S, T) (notice that such point must exist, otherwise

42

either (S, M \S) or (T, M \T) are not in the range). Notice
that by scalability x · α is also on the border, for all x.
Finally, observe that the closure lemma separates the plane
into two separate regions: if β is above the x · α line then it
is in P (S, T), if it is below the line, then it is in P (S, T).

As we observed before, all the P ’s are equal, up to invalid
points. By this and the previous lemma, all the P ’s are
separated by the same line, up to invalid points. This is
enough to prove affine maximization.

3.2 Some Non-Affine Maximizers Mechanisms
In this section, we discuss the tightness of our character-

ization. That is, we mention examples of mechanisms that
do not obey the conditions of the characterization, and thus
break it. The examples serve to clarify the intermediate
steps in the proof of Theorem 3.1.

Example 3.9 (Indifferent Dictator). Consider the
following mechanism for combinatorial auctions with two
bidders, which does not always allocate all the items. Fix
two items a, b. The mechanism always allocates all the items
other than b to the second bidder. If the first bidder’s value
for item a is an even integer, then item b is allocated to the
second bidder. Otherwise b is not allocated at all. Note that
the first bidder is never allocated any items and the second
bidder cannot determine its allocation; we may term the first
bidder as an Indifferent Dictator. It is easy to see that the
mechanism is truthful but not an affine maximizer.

Recall that the characterization in Lemma 3.3 says that
we can decide the “winning” outcome by a process of pair-
wise winner determination; in each step, we look only at
the vector of relative preferences (indexed by the bidders)
between the two allocations under consideration. The mech-
anism breaks this property. There exist pairs of valuation
profiles, where the relative preferences of the two bidders be-
tween the two allocations are identical, but the allocations
chosen differ.

We now describe a mechanism, called Serial, that satis-
fies Lemma 3.3, but breaks Lemma 3.5. Informally, Serial
is closer to being an affine maximizer than the Indifferent
Dictator.

Example 3.10 (Serial). The mechanism works as fol-
lows: Bidder 1 selects its most profitable bundle, where each
item has a fixed price of p; Bidder 2 then does the same
with the left-over items. Note that the mechanism does not
allocate all items and is obviously truthful.

Unlike the Indifferent Dictator mechanism, Serial satis-
fies Lemma 3.3. Recall that Lemma 3.3 says that we can
decide the “winning” allocation pair-wise, focussing only at
the vector of relative preferences (indexed by the bidders) be-
tween the two allocations. However Serial is not an affine
maximizer as it does not satisfy Lemma 3.5.

4. SCHEDULING MECHANISMS
We now prove that every mechanism that provides a finite

approximation ratio for minimizing the makespan with two
machines is a task independent mechanism. The character-
ization only requires the mechanisms to have finite approxi-
mation ratio. We prove this by first characterizing machine
scheduling mechanisms that satisfy a property called deci-
siveness. We conclude the section with other applications of
our characterization.

4.1 The Characterization
We say that an allocation (S, M \S) is in the range of v if

there exists some u such that f(v, u) = (S, M \S). A mecha-
nism is called decisive if for every valuation v of one machine
all allocations are in the range of v. Unlike the characteri-
zation from the previous section, the characterization from
this section is stated as a property of the payments offered
by the mechanism. Recall (see the preliminaries) that for
any truthful mechanism payments to machine i for a spe-
cific allocation do not vary with machine i’s value, and that
the allocation chosen maximizes the machine’s utility sub-
ject to its bid. Also, note that the utility of a machine is the
payment it receives minus the time it spends executing the
jobs it is allocated.

Let T1 = {v1, . . . vt}, T2 = {v′1, . . . v′2}, |T1| = |T2| = t, be
two sets of valuations. We say that T1 and T2 agree on j if for
each k we have that vk({j}) = v′k({j}). Also, we denote by
pi

j|S(v) = pi
S∪{j}(v)− pi

S(v) the marginal payment for job j
given bundle S (and v). We sometimes omit the superscript
from the expression p1

S(u) if it is clear from the context.
The main result of this section is that decisive mechanisms
induce a pricing scheme with a special additive structure:

Definition 4.1. A scheduling mechanism f is called lo-
cal if the following holds for any machine i. For every bundle
S there exists a constant Ci

S such that for any valuation v−i

of the other machines, pi
S(v−i) = Ci

S +
P

j∈S pi
j|∅(v−i).

A mechanism is called task independent [3] if we have
that Ci

S = 0, for all bundles S.

Note that for any task-independent mechanism, the allo-
cation can be determined on a job-by-job basis: there is a
payment for each job j, and the payment for bundle S is
simply the sum of payments for items in S. As an example
for a truthful mechanism that is local but not task inde-
pendent, consider an affine maximizer where the additive
weights for some allocations are non-zero. The main result
of this section shows that every decisive mechanism is local.
In the next subsection we show that every mechanism that
provides a finite approximation ratio is task independent.

We restrict our attention to valuations that are strictly
positive; note that this does not affect our ability to reason
about properties of mechanisms such as approximation ra-
tios. We assume that f satisfies strong monotonicity, the
appendix shows that this is essentially without loss of gen-
erality.

Theorem 4.2. Let f be a decisive mechanism for schedul-
ing 2 machines. Then, f is local.

We first show that marginal payments, to a machine, for
adding job j to a set S depends only on the valuation of the
other machine for the job j. W.l.o.g, the lemma is from the
perspective of the second machine.

Lemma 4.3. Let S be a bundle and j /∈ S a job. Let v
and v′ be two valuations that agree on j. Then, for every
bundle S and job j, j /∈ S: pj|S(v) = pj|S(v′).

Proof. Assume to the contrary that there exist valua-
tions v and v′ with that agree on j and pj|S(v) 6= pj|S(v′),
w.l.o.g. pj|S(v) > pj|S(v′).

We now show that there exist valuations u and u′ such
that u({j}) > u′({j}) and f(v, u) = (S, M \ S), f(v′, u′) =
(S ∪ {j}, M \ S \ {j}).

43

We define the valuation u, for positive c, δ and ε1, in the
following way:

u({t}) =

8<
:

c, t ∈ S
δ, t ∈ M \ S
pj|S(v)− ε1 t = j.

By decisiveness of f , M \S is in the range of v; hence, for
any positive ε1 there exist large enough c and small enough
δ such that the allocation M \ S maximizes the machine’s
utility and hence f(v, u) = (S, M \ S).

Similarly we can show that there exists u′ with u′({j}) =
pj|S(v′) + ε2, for any small positive ε2 such that f(v, u′) =
(S ∪ {j}, M \ S \ j). Note that for small enough ε1, ε2,
u({j}) > u′({j}).

Now define v′′, u′′ as follows:

v′′({t}) =

8<
:

min(v({t}), v′({t})), t ∈ S
max(v({t}), v′({t})), t /∈ S, t 6= j
v′({j}), t = j.

u′′({t}) =

8<
:

min(u({t}), u′({t})), t /∈ S
max(u({t}), u′({t})), t ∈ S, t 6= j
u′({j})+u({j})

2
, t = j.

By strong monotonicity and since all jobs are allocated:
f(v, u) = f(v′′, u) = f(v′′, u′′). For instance, using strong
monotonicity, the allocation to the first machine must re-
main the same when its bid from v to v′′; further, as all
jobs must be allocated, the allocation to the other machine
cannot change either. Similarly, f(v′, u′) = f(v′′, u′) =
f(v′′, u′′). This completes the contradiction as f(u, v) 6=
f(u′, v′).

The following lemma almost finishes the characterization:

Lemma 4.4. For any job j and set S such that j /∈ S,
Cj,i

S = pj|S(v)− pj|∅(v) is constant.

Proof. If S = ∅ then the lemma is trivial. Let j′ be
some item in S. Observe that by definition:

pS(v) = pS\{j}\{j′}(v) +

pj|S\{j}(v) + pj′|S\{j′}\{j}(v)

= pS\{j}\{j′}(v) + pj′|S\{j}′(v) +

pj|S\{j′}\{j}(v)

Thus we have that

pj|S\{j}(v)−pj|S\{j′}\{j}(v) = pj′|S\{j′}(v)−pj′|S\{j′}\{j}(v)

By Lemma 4.3 and the decisiveness of f , (pj′|S\{j}′(v) −
pj′|S\{j′}\{j}(v)) does not depend on v({j}). In particular,
it is equal in every two valuations that agree on j. To com-
plete the proof, notice that we can express pj|S′(v)− pj|∅(v)
as a telescoping sum of differences of the type pj|S(v) −
pj|S\j(v).

To see that for every bundle S there exists a constant
CS such that pi

S(v−i) = Ci
S +

P
j∈S pi

j|∅(v−i), we start by
arbitrarily ordering the items in S: j1, j2, . . . , j|S|. Let Sk

denote the set of the first k items. By definition we have

that pi
S(v−i) =

P|S|
k=1 pi

j|Sk
(v−i). By the last lemma we can

rewrite pi
S(v−i) =

P|S|
k=1(p

i
j|∅(v−i) + Ci,k

Sk
). Now let Ci

S =P|S|
k=1 Ci

Sk
.

4.2 Applications

4.2.1 Makespan Minimization
We first prove that if f is a mechanism for 2 machines that

provides a finite approximation ratio to the makespan, then
f must be decisive. By our characterization we have that f
must be local. We then use this to show that f must be task
independent. Finally, we characterize all universally truth-
ful mechanisms that provide a finite approximation ratio by
observing that all mechanisms in the support of a universally
truthful mechanism (that provides a finite approximation ra-
tio) must provide a finite approximation ratio alone. Hence,
each such mechanism must be task independent.

Theorem 4.5. Let f be a mechanism for minimizing the
makespan for 2 machines that provides a finite approxima-
tion ratio. Then, f is task independent.

Proof. To prove the theorem we first prove that f is
decisive, hence by our characterization it is local. We then
show that f is task independent.

Lemma 4.6. Let f be a mechanism for minimizing the
makespan for 2 machines that provides a finite approxima-
tion ratio. Then, f is decisive.

Proof. Let v be a valuation such that S is not in its
range. Define the following valuation (where ε > 0 is some
small constant):

u′({t}) =

�
ε, t ∈ S
∞, t /∈ S.

Let f(v, u) = (M \ T, T). Notice that in order to obtain a
finite approximation ratio and because S is not in the range
T is strictly contained in S. Thus S cannot be the empty
set. Define v′ as follows:

v′({t}) =

�
ε, t ∈ M \ S
v′(t), t ∈ S.

Strong monotonicity guarantees that f(v′, u) = (M\T, T).
Notice that the allocation (M \S, S) provides a makespan of
m ·ε, while in (M \T, T) machine 1 gets at least one job that
is not in M \S and thus have a processing time much larger
than ε. Thus, f does not provide a finite approximation
ratio for the instance (v′, u).

We complete the proof of Theorem 4.5. It suffices to show
that for each machine i and bundle S, Ci

S = 0.
Normalize pi

∅(v) to 0, and Ci
∅ = 0. First, we argue that for

all bundles S, pS(v) tends to 0 as v(S) tends to 0; If not there
exists some bundle S for which this is not true. In particu-
lar, by decisiveness it must be the case that pM (v) ≥ pS(v)
for all v (otherwise, M will never be selected since the val-
uations are strictly positive and this implies u(S) < u(M)).
Set v({k}) = ε for each job j. Also set u(k) = pM (v)/2m.
To get a finite approximation, all jobs must be allocated to
the first machine. However, this is not the utility maximiz-
ing allocation for the second machine (allocating all items to
u gives it a strictly positive profit), contradicting the truth-
fulness of f .

Suppose that for some S it holds that Ci
S < 0. In this case

the mechanism is not decisive as the allocation (S, M \ S)
will never be the output if v({k}) = ε for all jobs k, and
sufficiently small ε > 0, similarly to before.

44

Finally, suppose there exists some Ci
S > 0. Define val-

uation u where for each j ∈ S, u({j}) = Ci
S/|S| − ε, and

u({j}) = ε for j /∈ S. Choose some v({j}) = ε for each job
j. Observe, that second machine 2 is assigned at least one
job j ∈ S in f(v, u). Hence, f provides a makespan of at
least Ci

S/|S| − ε, while the optimal makespan is m · ε. The
theorem follows for sufficiently small ε.

We now take advantage of the above characterization to
study randomized mechanisms.

Proposition 4.7. Let A be a universally truthful mecha-
nism for some minimization problem that provides in expec-
tation a finite approximation ratio. Then, every mechanism
in A’s support must provide a finite approximation ratio.

Proof. Let f be a mechanism in A’s support that does
not provide a finite approximation ratio. There exists some
instance I where the approximation ratio A provides on I is
∞. In particular, observe that A(I) = ∞, as there is a non-
zero probability that f will be selected as the realization of
A.

We therefore have that each mechanism in the support of
a universally truthful mechanism (that provides a finite ap-
proximation ratio) must be task independent. Thus, in order
to determine the exact approximation ratio of universally
truthful randomized mechanisms for 2 machines, all that re-
mains is to optimize over the class of mechanisms that are
distribution over task independent mechanisms, which we
defer to future work.

4.2.2 Weighted Sum of Completion Times
In this scheduling problem we are also given a weight wj

for each job j. Fix some schedule, and let Tj denote the
time job j is completed in this schedule. The goal is to
find the schedule that minimizes ΣjwjTj . A lower bound of
1.17 is known for this problem [1], even if the machines are
uniformly related.

A proof identical to the proof of Lemma 4.6 shows that
every truthful mechanism for minimizing the weighted sum
of completion times must be decisive. The characterization
proceeds similarly and we have that every truthful approx-
imation mechanism must be local, and even task indepen-
dent.

Now it is easy to show that every deterministic mechanism
for minimizing the weighted sum of completion times cannot
achieve an approximation ratio better than 2, even for 2
machines.

4.3 A Non-local Mechanism for more than 2
Machines

Unfortunately, the above characterization cannot be ex-
tended to more than 2 machines: there exists a truthful
mechanisms for n > 2 machines with an approximation ra-
tio of Θ(n), and is neither local nor task independent.

Consider the following mechanism: for each job j let ij be
the machine with the highest cost for j. Let a be a different,
arbitrary job. If vij (a) ≥ 10 or ij = 1, then allocate job
j to the machine with the lowest cost. Otherwise, allocate
job j to the machine with the lowest cost among the other
n − 1 machines, where machine 1 cost for this purpose is
v1({j})/1.001. This is a truthful, non-local mechanism, with
a finite approximation ratio (of Θ(n)).

5. STABLE MECHANISMS
In this section we extend our characterizations to settings

where there are more than two players/machines and not all
items are allocated (in the case of combinatorial auctions).
The characterizations instead use a condition called stabil-
ity; the conditions clarifies the role of the condition that
there are two players and all items are allocated.

Definition 5.1. Let f be a mechanism for a schedul-
ing or a combinatorial auctions domain. The mechanism
f is stable if for each bidder i, and each two of his pos-
sible valuations v, v′ the following holds: let f(v, v−i) =
(S1, Sn . . . , Sn) and f(v′, v−i) = (S′

1, . . . S
′
n). If Si = S′

i,
then Sk = S′

k, for all k 6= i.

Thus, for any stable mechanism, if we change the valua-
tion of one of the players and that player’s allocation does
not change, then no other player’s allocation changes. The
assumption that there are two players and all items are allo-
cated implies stability; if we always allocate all items then an
outcome is uniquely identified by the allocation to one of the
two players, and, if one player’s allocation does not change
with a change in its report, the other player’s allocation does
not change either. We now state the two characterizations.
The second characterization additionally requires that the
social choice function is scalable, without which there exist
truthful mechanisms that are not affine maximizers (see the
serial mechanism from Section 3.2). A social choice function
satisfies scalability if the outcome does not change when all
valuations are scaled uniformly. The proofs of the theorems
are straightforward extensions of the proofs of Theorems 3.1
and 4.2.

Theorem 5.2. Every stable and scalable mechanism with
a large enough range for combinatorial auctions where bid-
ders have subadditive valuations is an affine maximizer.

Theorem 5.3. Every stable mechanism for the machine
scheduling problem that yields a finite approximation for the
minimum makespan objective is task independent.

Finally we note that stability is implied by a (stronger)
condition called Independence of Irrelevant Alternatives (IIA)
used in characterizations by [13]. Stability is arguable more
illuminating than IIA from the perspective of designing so-
cial choice rules. Note that stability is satisfied, upto tie-
breaking, by all social choice functions that optimize some
function of the players’ realized valuations. We cannot make
a similar claim for IIA.

These characterizations constrain the types of objective
functions we may optimize. Further, as discussed in the
introduction, optimizing over affine maximizers might be
computationally hard. For scheduling, local mechanisms are
Ω(n)-approximate. Thus it is important to understand the
capabilities of techniques that are not based on optimizing
some objective and explicitly break the stability condition;
e.g., the random sampling techniques of [11, 8].

Acknowledgements
We thank Aleksandra Korolova, Ron Lavi, and Tim Rough-
garden for helpful discussions.

This work was done while the first author was visiting
Stanford University. The first author was supported by
the Adams Fellowship Program of the Israel Academy of

45

Sciences and Humanities, and by a grant from the Israeli
Academy of Sciences. The second author is supported by
NSF Award CCF-0448664 and a Stanford Graduate Fellow-
ship.

6. REFERENCES
[1] Aaron Archer and Eva Tardos. Truthful mechanisms

for one-parameter agents. In FOCS’01.

[2] Yair Bartal, Rica Gonen, and Noam Nisan. Incentive
compatible multi unit combinatorial auctions. In
TARK 03.

[3] George Christodoulou, Elias Koutsoupias, and
Annamária Kovács. Mechanism design for fractional
scheduling on unrelated machines. In ICALP’07.

[4] George Christodoulou, Elias Koutsoupias, and
Angelina Vidali. A lower bound for scheduling
mechanisms. In SODA ’07.

[5] Shahar Dobzinski. Two randomized mechanisms for
combinatorial auctions. In APPROX-RANDOM, 2007.

[6] Shahar Dobzinski and Noam Nisan. Limitations of
vcg-based mechanisms. In STOC’07.

[7] Shahar Dobzinski and Noam Nisan. Mechanisms for
multi-unit auctions. In EC’07.

[8] Shahar Dobzinski, Noam Nisan, and Michael Schapira.
Truthful randomized mechanisms for combinatorial
auctions. In STOC’06.

[9] Uriel Feige. On maximizing welfare where the utility
functions are subadditive. In STOC’06.

[10] Uriel Feige and Jan Vondrak. Approximation
algorithms for allocation problems: Improving the
factor of 1-1/e. In FOCS’06.

[11] Andrew Goldberg, Jason Hartline, Anna Karlin, Mike
Saks, and Andrew Wright. Competitive auctions.
Games and Economic Behaviour, 2006.

[12] Ron Lavi. Computationally efficient approximation
mechanisms. In Algorithmic Game Theory, edited by
Noam Nisan and Tim Roughgarden and Eva Tardos
and Vijay Vazirani.

[13] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards
a characterization of truthful combinatorial auctions.
In FOCS’03.

[14] Ron Lavi and Chaitanya Swamy. Truthful and
near-optimal mechanism design via linear
programming. In FOCS 2005.

[15] R. B. Myerson. Optimal auction design. Mathematics
of Operations Research, 6(1):58–73, 1981.

[16] Noam Nisan and Amir Ronen. Computationally
feasible vcg-based mechanisms. In EC’00.

[17] Noam Nisan and Amir Ronen. Algorithmic mechanism
design. In STOC, 1999.

[18] Kevin Roberts. The characterization of implementable
choise rules. In Jean-Jacques Laffont, editor,
Aggregation and Revelation of Preferences. Papers
presented at the first European Summer Workshop of
the Economic Society, pages 321–349. North-Holland,
1979.

APPENDIX
A. STRONG MONOTONICITY

We justify why it suffices to focus on social choice func-
tions that are strongly monotone. We start with combina-
torial auctions with subadditive valuations.

A.1 Combinatorial Auctions
We focus on domains that are open in the following sense

(this is a slight change from the definition of [13].)

Definition A.1. A domain V of valuations for combina-
torial auctions is open if for each v ∈ V the value of each
bundle S can be decreased or increased by ε, while the value
of the other bundles does not increase by ε or more, for some
ε > 0, and the altered valuation is still in V .

Intuitively, a domain is open if both the monotonicity
and the subadditivity constraints hold with strict inequal-
ity. The next lemma shows that if the domain is open
and all the implementable social choice functions that sat-
isfy strong monotonicity are affine maximizers, then all the
implementable social choice functions are affine maximizers
(since every implementable social choice function satisfies
weak monotonicity).

Lemma A.2 (essentially from [13]). Let f be an an
implementable social choice function that satisfies weak mono-
tonicity that is not an affine maximizer that is defined on an
open domain. Then, there exists a strongly monotone social
choice function that is also not an affine maximizer that is
defined on the same domain.

Arguably, our main interest in characterizations follow
from our desire to prove lower bound on approximation ra-
tios. We now show to transform every set of subadditive
or XOS valuations to an open set of valuations, with “min-
imal” changes. We note that all known lower bounds goes
through after this transformation. For subadditive valua-
tions, we change the valuation so that no two bundles have
the same value (by increasing the value of the bundles by a
different, small enough ε for each bundle). To ensure that
the subadditivity constraints are strict, we then raise the
value of each bundle (except for the empty set) by the same
ε, for some small ε > 0.

For XOS valuations the transformation is essentially the
same. Here we raise the value of each bundle by raising the
value of each item in the corresponding clause.

A.2 Machine Scheduling
We now justify why it suffices to focus on strongly mono-

tone social choice functions for machines scheduling. Fix an
implementable allocation rule f . Recall that any such allo-
cation rule satisfies weak monotonicity and vice-versa. Now
consider a valuation profile v, u for which we do not have
strong monotonicity, we show that there is an almost equiv-
alent valuation profile for which we definitely have strong
monotonicity.

Consider a valuation profile v, u for which we possibly
not have strong monotonicity. Let f(v, u) = (S, M \ S).
Define, for small positive ε, the valuation profile v′, u′, with
v′(j) = v(j)−ε, for j ∈ S and v′(j) = v(j)+ε for j /∈ S; also
u′(j) = u(j) + ε, for j ∈ S and v′(j) = v(j) − ε for j /∈ S.
First, note that for sufficiently small ε, the profile v′, u′ is

46

strictly positive because the valuation profile v, u is strictly
positive. Second, by weak monotonicity and as all jobs are
allocated, we can prove that f(v′, u′) = (S, M \ S).

It is easy to check that if strong monotonicity does not
hold for the valuation profile v′, u′, then weak mendicity
is broken for the profile v′, u′, contradicting the truthful-
ness of f . For instance, suppose there exists a v′′ such that
f(v′′, u) = (S′′, M \S′′) and v′′(S′′)+ v(S) = v(S′′)+ v′′(S)
(the inequality ’>’ is ruled out because f is weakly mono-
tone) and S′′ 6= S; then it is easy to see that v′′(S′′)+v′(S) <
v′(S′′) + v′′(S).

B. COMBINATORIAL AUCTIONS WITH XOS
VALUATIONS

B.1 Definition and Representation of XOS

Let us start with formally defining the XOS class. First,
recall that a valuation is called additive if for all S ⊆ M ,
v(S) = Σj∈Sv({j}). Since an additive valuation is com-
pletely defined by the values b1, ..., bm it assigns to items
1, ..., m respectively, it can be represented by the following
clause:

(x1 : b1 ∨ x2 : b2 ∨ ... ∨ xm : bm)

We can now define XOS valuations:

Definition B.1. A valuation v is said to be XOS if there
is a set of additive valuations {a1, ..., at}, such that v(S) =
maxk{ak(S)} for all S ⊆ M . We denote XOS valuations
by

(x1 : a1({1}) ∨ ... ∨ xm : a1({m}))
⊕ · · · ⊕ (x1 : at({1}) ∨ ... ∨ xm : at({m}))

where each of the clauses connected by the ⊕ sign represents
an additive valuation.

We call the clause of an additive valuation a, for which
a(S) = maxk{ak(S)}, the maximizing clause for S in v (if
there are several such clauses we arbitrarily choose one).

B.2 The Characterization
In this subsection we remark how the valuations should

be altered in the proof of Section 3 in order for the charac-
terization to hold also for XOS valuations.

The only change that is required is in the definition of the
valuations. Whenever the value of the bundle S is set to
t (in v we add the clause (∨j∈Sj : ((v(S) + c)/|S|)) to v,
where c is sufficiently large constant that is the same for all
clauses in v. Two problems arise: first, we might not be able
to define the value of some other bundle T ⊆ S as the value
of T might be “dominated” by the clause of S. Notice that
this problem does not arise if c is large enough: “according”
to the S clause the difference between the value of S and
the sum of values of items in T is at least c/|S| (since there
exists some j ∈ S, j /∈ T , while v(S)− v(T) << c/|S|.

The second problem we might encounter is due to the
’‘balancing”: we start with an arbitrary clause x1 : b1 ∨ x2 :
b2 ∨ ... ∨ xm : bm) and transform it to a clause of the form
(∨j∈Sj : ((v(S) + c)/|S|)), where all items have the value.
The next proposition, needed in the proof of Lemma 3.5
if the valuations are XOS (needed in the construction of
cases 2 and 3), shows some connection between P (S, T),
and P (S, U), where U ⊆ T .

Proposition B.2. If α ∈ P (S, T), then for every U ⊆ T ,

(|U|(α1+c)
|S| , |M\U|(α2+c)

|M\S|) ∈ P (S, U), for large enough values

of c.

Proof. Take some v, u, such that f(v, u) = (S, M \ S),
and α = (v(S)− v(U), u(M \S)− u(M \U)). Define v′ and
u′:

v′ = (∨j∈Sj : ((v(S) + c)/|S|))⊕
(∨j∈T j : ((v(T) + c)/|T |))

u′ = (∨j∈M\Sj : ((v(S) + c)/|M \ S|))⊕
(∨j∈M\T j : ((v(M \ T) + c)/|M \ T |))

Notice that f(v′, u′) = (S, M \ S). In particular this im-
plies that for each U ⊆ T the allocation (T, M \ T) is not
chosen. Also, (v′(S) − v′(U), v′(M \ S) − v′(M \ U) =
|U|(α1+c)

|S| , |M\U|(α2+c)
|M\S|), as needed.

47

