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Abstract

We design two computationally-efficient incentive-compatible mechanisms for combinatorial
auctions with general bidder preferences. Both mechanisms are randomized, and are incentive-
compatible in the universal sense. This is in contrast to recent previous work that only addresses
the weaker notion of incentive compatibility in expectation. The first mechanism obtains an
O(

√
m)-approximation of the optimal social welfare for arbitrary bidder valuations – this is

the best approximation possible in polynomial time. The second one obtains an O(log2 m)-
approximation for a subclass of bidder valuations that includes all submodular bidders. This
improves over the best previously obtained incentive-compatible mechanism for this class which
only provides an O(

√
m)-approximation.

1 Introduction

1.1 Background

The field of Algorithmic Mechanism Design attempts to design efficient mechanisms for decentralized
computerized settings. These mechanisms must take into account both the strategic behavior of
the different participants and the usual algorithmic efficiency considerations. Target applications
include many types of protocols for Internet environment that necessitate looking at both issues –
strategic and algorithmic – together. For an introduction see [20].

The basic strategic notions are taken from the field of mechanism design – a subfield of economic
theory (see [18, 23]), and in most of the work in computational settings, as in this one, the very robust
notion of equilibrium in dominant strategies is used. It is well known ([18], see [20]) that without loss
of generality, we can limit ourselves to looking at “incentive compatible” mechanisms, also known
as “truthful” mechanisms or “strategy-proof” mechanisms. In such mechanisms participants are
always rationally motivated to correctly report their private information.

The main difficulty in this field is the fact that the basic technique of mechanism design – namely
VCG mechanisms [25, 4, 11] – can only be applied in cases where the exact optimal outcome is
achieved. However, in most interesting computational applications, exact optimization is NP-hard,
and computationally-speaking we must settle for approximations or heuristics. As was observed
in [20, 17], the VCG technique cannot be applied in such cases, and in fact [21] showed that this
inapplicability was essentially universal. Thus, the challenge is to design alternative incentive-
compatible mechanisms for interesting applications.

The problem of combinatorial auctions has gained the status of the paradigmatic problem of
this field. For a thorough overview see [5]. In a combinatorial auction, m items are auctioned to
n players. Each player i has a valuation function vi that describes his value vi(S) for each subset
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S of items. The basic question is how to construct the auction mechanism that allocates all the
items in a way that maximizes the social welfare Σivi(Si) where Si is the set of items allocated to
bidder i. This problem indeed exhibits the basic issues of algorithmic mechanism design: finding
the exact optimum is computationally hard, even for the most interesting special cases, but several
approximation algorithms, with varying approximation ratios, are known for the general case as
well as for various interesting special cases [16, 6, 7, 8]. However, these approximation algorithms
do not yield incentive compatible mechanisms.

In a landmark paper, Lehmann et al [17] were able to design an incentive-compatible, efficiently-
computable, approximation mechanism – which achieves an approximation ratio that is as good as
computationally possible Θ(

√
m) [24] – for the special case of “single-minded bidders”. This is the

case in which each bidder is only interested in a single bundle of goods. For this special case, as
well as some other single-parameter scenarios a host of incentive compatible mechanisms have been
designed in the last few years (e.g., [19, 1, 10, 9]). However, almost nothing is known for more
general cases in which bidders have complex multi-dimensional preferences. Only two results are
known in multi-dimensional settings1: the first is a pair of algorithms that completely optimize
over a very restricted range of allocations and then use the usual VCG mechanism. These get a
barely better than trivial approximation ratio of O(m/

√
log m) for the general case [12] and a weak

O(
√

m) for the “complement-free” case [6] – both ratios being quite far from what is computationally
possible. The second result is the mechanism of [2] that applies only to the special case of auctions
with many duplicates of each good and indeed is not a VCG mechanism. Some evidence showing
that obtaining a non-VCG incentive-compatible mechanism for combinatorial auctions and related
problems would be difficult was given in [14].

1.2 Randomized Mechanisms

It was observed in [20] that randomized mechanisms can sometimes provide better approximation
ratios than deterministic ones. There are two possible definitions for incentive compatibility of
a randomized mechanism. The first and stronger one, defines an incentive-compatible randomized
mechanism as a probability distribution over incentive compatible deterministic mechanisms. Thus,
this definition requires that for any fixed outcome of the random choices made by the mechanism,
players still maximize their utility by reporting their true valuations. This definition was used in
[20, 10, 9], and will be called incentive compatible in the universal sense. The weaker definition
only requires that players maximize their expected utility, where the expectation is over the random
choices of the mechanism (but still for every behavior of the other players). This was used in [15, 8]
(see below), and will be called incentive compatibility in expectation.

There are two major implications of the difference between these two notions:

1. Attitude towards risk: randomized mechanisms that are incentive compatible in expecta-
tion only motivate risk-neutral bidders to act truthfully. Risk-averse bidders may benefit from
strategic behavior. In contrast, the universal sense of incentive compatibility applies to any
attitude towards risk, as it applies to every possible realization of the random coins.

2. Knowledge of the randomization results: randomized mechanisms that are incentive
compatible in expectation induce truthful behavior only as long as players have no information
about the outcomes of the random coin flips before they need to act. Thus, in order to ensure
truthful behavior the mechanism must utilize cryptography-grade randomness, and keep it
secret from the players. In contrast, any randomization that is effective algorithmically suffices
to ensure truthful behavior in the universal case. (In a similar vein, technically speaking,

1This is true not only for combinatorial auctions but also for any other computationally-hard problem.
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using a pseudorandom generator will destroy the formal incentive compatibility properties
of randomized mechanisms that are incentive compatible in expectation, due to the slight –
sub-polynomial – change in probabilities of outcomes.)

In the recent [15] a rather general technique was developed for converting approximation algo-
rithms into randomized mechanisms that are incentive compatible in expectation. The technique
is based on randomized rounding of the LP relaxation, and relies on a clever representation of the
LP solution as a scaled convex combination of integer solutions. In particular, they design a ran-
domized mechanism for general combinatorial auctions that is incentive compatible in expectation
and obtains the computationally-optimal approximation ratio of O(

√
m). Very recently, [8] used

a different but somewhat related randomized rounding procedure to obtain another randomized
mechanism for the case of combinatorial auctions with complement-free bidders. This mechanism
is, again, incentive-compatible in expectation, and achieves an approximation ratio of O( log m

log log m),
which is worse than what he obtains algorithmically – a ratio of 2.

1.3 Our Results

We present the first randomized mechanism for combinatorial auctions that is incentive compatible
is the universal sense. This is another step towards the “holy grail” of obtaining a deterministic
one.

Theorem: There exists a polynomial-time computable randomized mechanism for combinatorial
auctions with general bidders that is incentive compatible in the universal sense and obtains a
O(

√
m) approximation ratio.2

The algorithm runs in time that is polynomial in the natural parameters of the problem: the
number of players n and the number of items m. Access to the (exponentially long) valuation
functions of the players is done using the usual demand queries [3, 6, 7], in which bidders are
presented with a vector of item prices p1...pm and reply with the set of items S that maximizes their
utility under these prices v(S)−∑

j∈S pj. The approximation factor mentioned in the theorem is in
expectation, however, our result is technically stronger: for any fixed ε > 0 we provide a mechanism
that obtains

√
m

poly(ε) -approximation with probability of at least 1 − ε.
Our techniques are quite simple, completely different than the methods of [15, 8], and do not

rely on the LP-relaxation of the problem. They are more in line with the random sampling methods
that were used for auctioning “digital goods” [10, 9]. These techniques can be viewed as providing
a general framework for obtaining randomized incentive compatible mechanisms in the universal
sense. In particular, a significant property of this framework is that it provides, for any ε > 0,
a mechanism that achieves an approximation ratio not just in expectation, but with probability
1 − ε. We stress that this cannot be achieved by the usual techniques of amplification, since
repetition can destroy the incentive properties. Using the same framework, we are also able to
design improved mechanisms for the important special case of submodular valuations, and actually
even for a more general class of valuations termed “XOS” in [16] and “fractionally-subadditive” in
[8]3. This improves over the truthful deterministic O(

√
m)-approximation achieved in [6].

Theorem: There exists a polynomial-time computable randomized mechanism for combinatorial
auctions with submodular bidders that is incentive compatible in the universal sense and obtains a
O(log2 m) approximation ratio.

2Somewhat unusually, the equilibrium obtained is in dominant strategies even for the adaptive query model which
usually only supports ex-post equilibria.

3For the XOS class, the bidders must also be able to answer, so called, XOS queries [6].
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Beyond the use of randomization, this theorem is sub-optimal in two other senses, which remain
as open problems: first, the approximation ratio achieved is worse than the ratio of e

e−1 that is
computationally possible [7]; second, our mechanism does not apply to the somewhat wider class of
complement-free valuations that is handled in [8, 6].

The major open problem left is that of finding deterministic O(
√

m)-approximation efficiently-
computable incentive-compatible mechanisms for combinatorial auctions.

2 Preliminaries

In a combinatorial auction, a set M of items, M = {1, ...,m}, is sold to n bidders. Every bidder
values bundles of items, rather than only assigning values to single items. The value that bidder i
assigns to bundle S is defined by a valuation function vi : 2M → R

+. Two standard assumptions
regarding each bidder i, are that vi is normalized (vi(∅) = 0), and monotone (for every S ⊆ T ⊆
M, vi(S) ≤ vi(T )). The allocation problem is to partition the items between the bidders in a way
that maximizes the “total social welfare”. I.e., to find a partition S1, ..., Sn of M , that maximizes
Σivi(Si).

Even though the size of the “input” is exponential in m (each vi is described by 2m real numbers)
we require algorithms to run in time polynomial in the natural parameters of the problem, m and
n. An important issue is how the input can be accessed. In this paper we follow the “black box”
approach: we assume that we are given an oracle for each valuation function. The oracle is limited
to some predefined type of queries. A common type of query is the demand query (e.g., [6, 7, 3]).
A demand query to a valuation vi specifies a vector p = (p1...pm) of “item prices”. The answer to
the query is a set that would be “demanded” by the queried bidder under these item prices. I.e., a
subset S that maximizes vi(S) − ∑

j∈S pj .
In this paper we seek algorithms that are incentive compatible (a.k.a. truthful). That is,

algorithms which ensure that it is in the best interest of each of the bidders to always reveal his
true preferences when asked. In the case of randomized mechanisms this translates to being incentive
compatible in the universal sense – randomized mechanisms that are a probability distribution over
incentive compatible deterministic mechanisms. In other words, telling the truth is the dominant
strategy of each bidder, regardless of the coins tossed by the mechanism. This is a much stronger
requirement than incentive compatibility in expectation (see [15]).

Some special cases of combinatorial auctions have recently received great attention. In particu-
lar, combinatorial auctions in which all bidders are known to have submodular valuations are the
subject of extensive research (e.g., [16, 6, 13, 7]). A valuation v is submodular if v(S∪T )+v(S∩T ) ≤
v(S) + v(T ) for all S, T ⊆ M . All submodular valuations are known to be strictly contained in the
more general class of valuations termed “XOS” in [16], and “fractionally-subadditive” in [8]. A valu-
ation v is said to be XOS if there are additive valuations {a1, ..., at}, such that v(S) = maxk{ak(S)}
for all S ⊆ M4. See [7] for a more thorough explanation. For every XOS valuation v = maxk{ak},
and bundle S, we call an additive valuation a such that a(S) = arg maxk{ak(S)} a maximizing
clause for S in vi. We require XOS bidders to be able to answer XOS queries. In this type of
queries the question is in the form of a bundle and the answer is a maximizing clause for that
bundle.

3 A Framework For Designing Incentive-Compatible Mechanisms

The design of a randomized approximation algorithm comprises two basic steps: first, we are in-
terested in making sure that the expected value of the solution produced by the algorithm is “not

4A valuation a is additive if for every S ⊆ M , a(S) = Σj∈Sa({j})
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far” from the optimum. Second, we wish to be able to find a solution with a value “close” to the
expectation with high probability. Usually, the main difficulty is in achieving the first goal and
proving that a solution close to the expectation can be obtained with some (perhaps polynomially
low) probability. Amplification of the probability of success is then easily attainable by running the
algorithm a polynomial number of times and choosing the best solution.

In contrast, the design of a randomized mechanism is inherently different: in general, running
a mechanism multiple times and choosing the best output does not preserve the truthfulness of the
mechanism. In addition, it is well known that in order to ensure truthfulness, the price a bidder
pays for the bundle he is allocated cannot depend on information he provides. The framework we
introduce here helps us overcome these problems.

The framework relies on the examination of two distinct possible cases: either there is one bidder
such that allocating all items to him is a good approximation to the welfare, or there is no such
bidder. I.e., there is no “small” group of bidders that contributes “a lot” to the optimal solution.
In the first case, achieving a good approximation is easy - allocate all items to that bidder. In the
second and more complicated case, we will perform a fixed-price auction, and will have to prove
that we get a good approximation. The key observation used in handling the second case is that
two randomly chosen groups that consist (in expectation) of a constant fraction of the bidders have
many properties in common (e.g., both hold a constant fraction of the total welfare.) This idea is
similar to the main principle in random-sampling auctions for “digital goods” [10, 9]. However, our
situation is much more complex due to the multi-parameter setting of combinatorial auctions, in
contrast to the single-parameter setting of [10, 9]. In addition, our goal is to optimize the welfare,
and not maximize revenue. Moreover, we do not assume that all the items are identical and that
there is an unlimited supply of items, as in the case of “digital goods”. From a computational point
of view, another difference is that the problems we consider are NP-hard to approximate.

The framework allows us, with high probability, to distinguish between the two cases, and
provides us with the tools for finding the price used in the fixed-price auction. The main difficulty
in tailoring the framework to a specific setting is showing that the fixed-price auction guarantees
a good approximation. Indeed, in the two mechanisms we are about to present in this paper the
price used in the fixed-price auction is determined in a completely different manner.

The Framework:

Phase I: Partitioning the Bidders

We assign each bidder to exactly one of the following three sets: SEC-PRICE with probability
1−ε, FIXED with probability ε

2 , and STAT with probability ε
2 . Only bidders from SEC-PRICE

will be allowed to participate in the second-price auction. Bidders in STAT will never get any
items, so we can safely use this group to gather the necessary statistics (see next phase). The
bidders in FIXED will be the only bidders who participate in the fixed-price auction.

Phase II: Gathering Statistics

The goal in this phase is to use the bidders in STAT in order to find prices for the second-
price auction with reserve price, and the fixed-price auction. Both auctions will be conducted
in the next phases. To ensure incentive compatibility, a bidder should have no influence on
the price of the bundle he is offered. This is why the prices of bundles offered to bidders in
SEC-PRICE and FIXED in the following phases will be determined using bidders in STAT
only. The bidders in STAT never get any items and so have no incentive to misreport their
preferences.

Finding the price of the fixed-price auction is mechanism specific. However, the reserve price
for the second price auction is generally determined by applying an approximation algorithm
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to bidders from STAT. If no small groups of bidders contributes a large fraction of the optimal
solution (the first case), we can prove that with high probability the reserve price we obtain
is a good approximation to the optimal welfare. On the other hand, If there is one bidder
with very high value for the bundle of all items (the second case), we will see that this reserve
price has no effect on the result of the second-price auction.

Phase III: A Second-Price Auction

We now conduct a second-price auction with a reserve price for selling the bundle of all items
to one of the bidders. Intuitively, one can think of this phase as handling the first case, where
there is one bidder with a very high value for the bundle of all items. A second-price auction
will allocate the bundle of all items to the bidder that values it the most. If there is one bidder
with a very high value for this bundle, he will be placed in SEC-PRICE with probability 1− ε.
We then get a good approximation to the welfare, and the algorithm terminates.

The purpose of the reserve price is to handle the second case, where no small group of bidders
contributes a lot to the optimal solution5. If this is the situation, allocating all items to one
bidder may provide a bad approximation. Fortunately, in the previous phase we obtained a
reserve price which is a good approximation to the optimal welfare. Therefore, if there is a
“winning bidder”, we know that we have a good approximation because the revenue obtained
in the second-price auction (which is at least the reserve price) is a lower bound on the welfare.
If we do not have a winning bidder, we continue to the next phase.

Phase IV: A Fixed-Price Auction

We go over the bidders in FIXED one by one, in some arbitrary order, asking each one for his
demand under a fixed price per item, obtained earlier from the bidders in STAT. We allocate
each bidder his most demanded set, and charge him the appropriate price. We remove the set
allocated to him from the set of items that are offered to the next bidders.

This phase is meant to handle the second case, where no small group of bidders contributes a
lot to the optimal solution. Indeed, it can be shown that since FIXED is a randomly chosen
group that consists of a constant fraction of all bidders, it also holds, with high probability,
a constant fraction of the optimal welfare. In addition, we show that in the second case the
bidders in STAT aid us in choosing a fixed-price that leads to a good approximation. The
way this price is chosen is mechanism-specific, and is not the same in our two mechanisms.

For every possible tosses of coins the framework produces a truthful deterministic mechanism.
First, bidders who are in STAT never get any items, and thus have no incentive to misreport their
preferences. A bidder can get items in exactly one of the following ways: by participating in the
second-price auction with the reserve price, or by participating in the fixed-price auction.

It is well known that second-price auctions with a reserve price are incentive compatible. The
fixed-price auction is also clearly incentive compatible, as each bidder gets the bundle that maximizes
his demand, given prices which he does not affect.

4 Combinatorial Auctions with General Valuations

In this section we exhibit an incentive-compatible mechanism for approximating combinatorial auc-
tions with general valuations. The incentive compatibility of the mechanism is guaranteed by its
use of the framework. As in all mechanisms built using the framework, the main difficulty is to

5Of course, both a second-price auction and a second-price auction with a reserve price are incentive-compatible.
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analyze the case in which no “small” group of bidders contributes “a lot” to the optimal solution.
In the case of general valuations this is translated to the case where no bidder assigns a value to M
that is higher than the

√
m-fraction of the value of the optimal fractional solution.

In this case, our mechanism uses the bidders of STAT to approximate the value of the optimal
fractional solution. We set the item price for the fixed-price auction to be (approximately) the
value of the approximation we obtained, divided by the number of items. The important technical
observation is that for each item we manage to sell at this price, we “lose” a value of at most O(

√
m)

times this price (compared to the optimal fractional solution). The revenue we get in this case sets
a lower bound on the welfare we achieve.

Although the mechanism does use the LP relaxation of the problem, LP does play a relatively
minor role, and we mainly use it for the analysis. This is in contrast to previous related work [15, 8],
where the technique itself is LP based. The reader is referred to the appendix for the standard LP
relaxation of the problem.

The Algorithm:

Input: n bidders6, each with a general valuation vi that is represented by a demand oracle, a
rational number 0 < ε < 1.

Output: An allocation of the items, which is a O(
√

m
ε3

)-approximation to the optimal allocation.

The Algorithm:

Phase I: Partitioning the Bidders

1. Assign each bidder to exactly one of the following three sets: SEC-PRICE with probability
1 − ε, FIXED with probability ε

2 , and STAT with probability ε
2 .

Phase II: Gathering Statistics

2. Calculate the value of the optimal fractional solution in the combinatorial auction with all m
items, but only with the bidders in STAT. Denote this value by OPT ∗

STAT .

Phase III: A Second-Price Auction

3. Conduct a second-price auction with a reserve price of OPT ∗
STAT√
m

, in which the bundle M of
all items is sold to the bidders in SEC-PRICE. If there is a “winning bidder”, allocate all the
items to that bidder and output this allocation. Otherwise, proceed to the next step.

Phase IV: A Fixed-Price Auction

4. Let R = M . Let p = εOPT ∗
STAT

8m .

5. For each bidder i ∈ FIXED, in some arbitrary order:

(a) Let Si be the demand of bidder i given the following prices: p for each item in R, and
∞ for each item in M − R.

(b) Allocate Si to bidder i, and set his price to be p · |Si|.
(c) Let R = R \ Si.

Theorem 4.1 For any constant ε > 0, there exists a randomized and truthful polynomial-time
mechanism that achieves an O(

√
m

ε3
)-approximation with probability 1 − ε.

6Both in this mechanism and in the XOS mechanism, we assume that n is not constant. If n is constant, one can
easily get a truthful 1

n
-approximation by bundling all items together and performing a second price auction.
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Proof: The algorithm produces a feasible allocation. In addition, the algorithm is clearly incentive
compatible, since it was designed using the framework. It is left to prove that it obtains the desired
approximation ratio with probability 1 − ε.

Denote by OPT ∗ the optimal fractional solution. There are two possible cases:

1. There is a bidder i such that vi(M) ≥ OPT ∗√
m

.

2. For each bidder i, vi(M) < OPT ∗√
m

.

We start by handling the first case. Let i be some bidder such that vi(M) ≥ OPT ∗√
m

. Observe
that with probability 1− ε bidder i is in SEC-PRICE. If there is no such bidder is in SEC-PRICE,
then the algorithm fail to guarantee any approximation ratio. This happens with probability of at
most ε. The next proposition shows that if bidder i is in SEC-PRICE the algorithm obtains an
O(

√
m)-approximation.

Proposition 4.2 If there exists a bidder i in SEC-PRICE such that vi(M) ≥ OPT ∗√
m

, then the
allocation generated by the algorithm is an O(

√
m)-approximation to the optimal allocation.

Proof: Let i′ be the bidder in SEC-PRICE with the highest value for M . By the conditions of
the lemma, vi′(M) ≥ OPT ∗√

m
. Clearly, since STAT ⊆ N , we have that:

OPT ∗
STAT√
m

≤ OPT ∗
√

m
≤ vi′(M)

Hence, due to the properties of second-price auctions with a reserve price, all items will be sold
to i′, and the algorithm will terminate in Step 3. Thus, we get an allocation that is an O(

√
m)-

approximation to the optimal one.
The second case is more involved. For each bidder i, vi(M) < OPT ∗√

m
. We will take advantage

of the fact that no bidder contributes “a lot” to the optimal fractional solution, and see that, with
high probability, OPT ∗

STAT is a good approximation to the optimal fractional solution. We will see
that the same holds for OPT ∗

FIXED, which is the value of the optimal fractional solutions in the
combinatorial auctions with all m items and with bidders from FIXED only.

Lemma 4.3 If for each bidder i, vi(M) < OPT ∗√
m

, then with probability 1 − o(1):

1. ε
4 · OPT ∗ ≤ OPT ∗

STAT

2. ε
4 · OPT ∗ ≤ OPT ∗

FIXED

Proof: We will start by proving that the probability that the first event does not occur is o(1).
The proof for the second is almost identical. The lemma will then follow, by applying the union
bound.

Let A be the random variable that receives the value of OPT ∗
STAT . For every bidder i we denote

by Ai the random variable that receives the value of bidder i in OPT ∗
STAT . Let {xi,S}1≤i≤n,S⊆M

be the set of variables in the fractional solution, OPT ∗. Since every bidder is placed in STAT with
probability ε

2 , and STAT ⊆ N , we have that E[A] = Σi
ε
2E[Ai] ≥ Σi

ε
2ΣSxi,Svi(S) = ε

2OPT ∗. If
the conditions of the lemma hold, we also have that for each i, Ai < OPT ∗√

m
. We can use this fact

to set an upper bound on the probability that A gets a value that is substantially smaller than its
expectation. We make use of the following corollary from Chebyshev’s inequality:
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Claim 4.4 Let X be the sum of independent random variables, each of which lies in [0, t]. Then,
for any α > 0, Pr[|X − E[X]| ≥ α] ≤ tE[X]

α2 .

Since for each i, Ai ∈ [0, OPT ∗√
m

], we have that

Pr[A <
ε

4
· OPT ∗] ≤ Pr[|A − ε

2
· OPT ∗| ≥ ε

4
· OPT ∗]

≤
OPT ∗√

m
· ε

2 · OPT ∗

( ε
4OPT ∗)2

≤ 8
ε
√

m

With probability of 1 − o(1) we have that the values of the optimal fractional solutions for
FIXED and STAT are “close” to OPT ∗. If this is the case, we will show that we manage to achieve
an O(

√
m

ε2
) approximation factor. With probability of at most o(1) this is not the case, and the

algorithm fails to provide any approximation ratio.
Although the second-price auction was designed to handle the first case, when there is one bidder

that contributes “a lot” to the welfare, it is still possible that some bidder i in SEC-PRICE will be
allocated the bundle M in Step 3. However, notice that bidder i was forced to pay at least OPT ∗

STAT√
m

.

Therefore, that bidder’s value for the bundle M is greater than OPT ∗
STAT√
m

, which by Lemma 4.3 is

at least εOPT ∗
4
√

m
. Hence, allocating the bundle M to bidder i provides an O(

√
m
ε ) approximation to

the optimal solution.
If no bidder in SEC-PRICE got the bundle M then the algorithm attempts to sell items to the

bidders in FIXED (Step 5). As before, we claim that the revenue is a lower bound to the social
welfare. The next lemma shows that in this case the revenue will be Ω( ε3OPT ∗√

m
). Hence, Step 5 will

result in an allocation that is a Ω(
√

m
ε3

)-approximation to the optimal allocation.

Lemma 4.5 If the following conditions hold:

1. The algorithm reaches Step 5

2. For each bidder i, vi(M) < OPT ∗√
m

3. For the item-price p it holds that: ε2OPT ∗
16m ≤ p ≤ εOPT ∗

8m

4. OPT ∗
FIXED ≥ ε

4 · OPT ∗

then the revenue of the algorithm is Ω( ε3OPT ∗√
m

).

Proof: Let {yi,S}i∈FIXED,S⊆M be the variables in the fractional solution OPT ∗
FIXED. We will

restrict our attention to bundles in OPT ∗
FIXED that are profitable when setting a price of p for each

item. That is, let T be the set of pairs (i, S) such that yi,S > 0, and vi(S) − p · |S| > 0. The next
claim shows that we do not lose too much by ignoring all other bundles in OPT ∗

FIXED.

Claim 4.6 Σ(i,S)∈T yi,S vi(S) ≥ 1
2 · OPT ∗

FIXED

Proof: Define T to be the “complement” set of T . Formally, T consists of all pairs (i, S)
such that yi,S > 0 in OPT ∗

FIXED, but vi(S) − p · |S| ≤ 0. It is easy to see that OPT ∗
FIXED =

9



Σ(i,S)∈T yi,Svi(S) + Σ(i,S)∈T yi,Svi(S). Since OPT ∗
FIXED ≥ ε

4 · OPT ∗ it is enough to bound from
above the contribution of T to OPT ∗

FIXED to prove the claim.

Σ(i,S)∈Tyi,Svi(S) ≤ Σ(i,S)∈T yi,S p · |S| ≤ m · p

≤ m · ε · OPT ∗

8m
≤ OPT ∗

FIXED

2

where the first inequality is because of the definition of T and the second inequality is due to the
LP constraints.

Let us now calculate the revenue we get in Step 5. Without loss of generality, assume the bidders
in FIXED are 1, ..., ε

2n. In the first iteration of Step 5, bidder 1 is asked for his most demanded set.
The key observation is that if there is some S such that x1,S > 0 and (1, S) ∈ T then bidder 1’s
demand is not empty. Recall that for each item in S1 we gain a revenue of p.

We will now upper bound what we “lose” by assigning S1 to bidder 1 in comparison to OPT ∗
FIXED.

Notice, that by assigning S1 to bidder 1 we lose both the value of all the fractional bundles assigned
to bidder 1 in OPT ∗

FIXED, and of all the bundles in OPT ∗
FIXED that contain some item from S1.

The value of all the fractional bundles assigned to bidder 1 in OPT ∗
FIXED is at most OPT ∗√

m
:

Σ(1,S)∈T y1,Sv1(S) ≤ OPT ∗
√

m

because v1(M) < OPT ∗√
m

and Σ(1,S)y1,S ≤ 1, due to the constraints of the LP formulation.
We will now bound the value of all the bundles in OPT ∗

FIXED that contain some item from S1.
Fix some item j ∈ S1. Again, using the constraints of the LP and vi(M) < OPT ∗√

m
,

Σ(i,S)∈T |j∈Syi,Svi(S) ≤ OPT ∗
√

m

To conclude, for every item we sell to bidder 1 at price p ≥ ε2 · OPT ∗
16m , we lose bundles in T

that are together worth at most 2 · OPT ∗√
m

. The analysis continues by removing from OPT ∗
FIXED all

pairs (i, S) which can not be assigned now (either i = 1, or j ∈ Si and j ∈ S), and applying similar
arguments to the rest of the bidders in FIXED.

The revenue achieved by the algorithm is an O(
√

m
ε2

)-approximation to the value of OPT ∗
FIXED.

Since OPT ∗
FIXED ≥ ε

4 ·OPT ∗ we have that it is a O(
√

m
ε3

) approximation to OPT ∗, and the theorem
follows.

5 Combinatorial Auctions with XOS Valuations

Like the mechanism for approximating combinatorial auctions with general valuations, the mecha-
nism for XOS valuations is also based on the general framework. Again, the main challenge involved
in designing this mechanism is analyzing the case in which no “small” group of bidders contributes
“a lot” to the optimal solution. The way this is achieved for XOS valuations is entirely different
from the way it is done with general valuations.

Suppose we assign a bundle S to a bidder with an XOS valuation vi. By the definition of XOS
valuations, v(S) is determined by the value S gets under some additive valuation a (we will also
refer to a as the maximizing clause). We can look at the whole process as implicitly assigning a
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“price” to each item in S (the price that a assigns to each item in S.) We will use this property
for finding a price for the fixed-price auction. To see how this is done we must first introduce the
following definition:

Definition 5.1 We say that an allocation of the items T = (T1, ..., Tn) is supported by a price p,
if for each bidder i and each possible bundle Si ⊆ Ti, it holds that vi(Si) ≥ |Si| · p. We call Σi|Ti| · p
the supported value of T .

We now show that for every allocation it is possible to find a “contained” allocation and a price
that supports it, and holds a considerable part of the welfare of the original allocation.

Lemma 5.2 For every allocation T = (T1, ..., Tn) it is possible to find in polynomial time an al-
location (S1, ..., Sn) and a price p that supports it, such that for each i, Si ⊆ Ti, and Σi|Si| · p ≥
Ω(Σivi(Ti)

log m ).

Proof: Given an allocation T , we query each bidder i’s XOS oracle for the maximizing XOS
clause for Ti. We refer to the value of an item in Ti as the item’s value in the maximizing clause of
Ti. Let W = Σivi(Ti) (i.e., the welfare value of T .) Define the set P = { W

2m , W
m , ..., W

2 ,W}. Notice
that |P | = O(log m).

Round down each item’s value in the maximizing clauses to the nearest value in P . Let p ∈ P
be the (rounded down) item value that “contributes the most” to the welfare. Notice that we ignore
items with value lower than W

2m – our “loss” is not too high since the sum of these items’ values is
less than W

2 . We can now define (S1, ..., Sn) to be the allocation in which Si ⊆ Ti and the (rounded
down) value of every item in Ti is at least p.

There is still the matter of finding such a price that would enable us to get a good approximation
in the fixed-price auction. We prove that one can use the bidders in STAT to find such a price for
the bidders in FIXED with high probability.

We also note that if a valuation is known to be submodular, an XOS oracle for it can be simulated
using a demand oracle [6]. Thus, if all bidders are known to be submodular our mechanism can be
implemented using demand oracles only.

The Algorithm:

Input: n bidders, v1, ..., vn, each represented by a demand and a XOS oracle, a rational number
0 < ε < 1

2 .

Output: An allocation of the items, which is an O( log2 m
ε3

)-approximation to the optimal allocation.

The Algorithm:

Phase I: Partitioning the Bidders

1. Assign each bidder to exactly one of the following three sets: SEC-PRICE with probability
1 − ε, FIXED with probability ε

2 , and STAT with probability ε
2 .

Phase II: Gathering Statistics

2. Find an allocation that is an O(1) approximation to the value of the optimal solution in the
combinatorial auction with all m items, but only with the bidders in STAT (e.g., using the
algorithms of [6, 7]). Denote this value by OPTSTAT .

3. Using the allocation obtained in the previous step, find a price p′ and an allocation T =
(T1, ..., T|STAT |), such that T is supported by p′ (rounded down to the nearest power of 2),
and Σi∈STAT |Ti|p′ ≥ Ω(OPTSTAT

log m ).
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Phase III: A Second-Price Auction

4. Conduct a second-price auction with a reserve price of ε2

100
OPTSTAT

log2 m
, in which the bundle M

of all items is sold to the bidders in SEC-PRICE. If there is a “winning bidder”, allocate all
the items to that bidder and output this allocation. Otherwise, proceed to the next step.

Phase IV: A Fixed-Price Auction

5. Let R = M . Let p = p′/2.

6. For each bidder i ∈ FIXED, in some arbitrary order:

(a) Let Si be the demand of bidder i given the following prices: p for each item in R, and
∞ for each item in M − R.

(b) Allocate Si to bidder i, and set his price to be p · |Si|.
(c) Let R = R \ Si.

Theorem 5.3 For any constant 0 < ε < 1
2 , there exists a randomized and truthful algorithm that

achieves an O( log2 m
ε3 )-approximation with probability 1 − ε.

Proof: The algorithm produces a feasible allocation. Incentive compatibility of the algorithm is
guaranteed since it was built using the framework. It is left to prove that it obtains the desired
approximation ratio with probability 1 − ε.

We will now prove that the the algorithm provides the approximation ratio. Let R = ε2

100
OPT
log2 m

.
There are two possible cases:

1. There is a bidder i such that vi(M) ≥ R.

2. For each bidder i, vi(M) < R.

We handle the first case in a way similar to the way we handled the first case in the correctness
proof for the algorithm of Section 4. Let i be some bidder such that vi(M) ≥ R. Observe that with
probability 1 − ε bidder i is in SEC-PRICE. If there is no such bidder is in SEC-PRICE, then the
algorithm fails to guarantee any approximation ratio. This happens with probability of at most ε.
If bidder i is in SEC-PRICE the algorithm obtains a R-approximation. The next proof is similar
to the proof of Lemma 4.2.

Proposition 5.4 If there exists a bidder i in SEC-PRICE such that vi(M) ≥ R, then the allocation
generated by the algorithm is a O(R)-approximation to the optimal allocation.

Let us now examine the second case, where for each bidder i, vi(M) < R. The basic idea is to
use the bidders in STAT to find a price that, with high probability, will obtain an allocation of the
items to the bidders in FIXED in Step 6.

To show this we need to prove that OPTFIXED, the value of the optimal solution consisting of
the bidders in FIXED only, has a value that is “close” to the value of the total welfare. This will be
done in a similar way to the previous algorithm. However, unlike the previous algorithm, we have
to prove that if a price is “good” in OPTFIXED (i.e. supports an allocation that holds a substantial
part of the welfare), then it can be found using the bidders in STAT. As in Lemma 5.2, we restrict
our attention to prices which are greater than OPT

2m log m .

Lemma 5.5 If for each bidder i, vi(M) < R, then with probability higher than 1 − 2ε2:
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1. ε
4 · OPT ≤ OPTSTAT

2. ε
4 · OPT ≤ OPTFIXED

3. Let P = {p|p is a power of 2, and OPT
2m log m ≤ p ≤ OPT

log m , and there exists an allocation T that is
supported by p, and the supported value of T is at least ε

4 · OPT
log m}. Then, for every pk ∈ P there

exists an allocation Tk of the items to the bidders in FIXED only such that Tk is supported by
pk, and the supported value of Tk is at least ε2

16 · OPT
log m .

Proof: The proof that the probability that one of the first two events does not occur is o(1) is
identical to that of Lemma 4.3. We now bound from above the probability that the third event
occurs and use the union bound to complete the proof.

Let T = (T1, ..., Tn) be an allocation, and pk ∈ P a price such that the supported value of T is
at least ε

4 · OPT
log m , and T is supported by pk. We now turn our attention to the bidders in FIXED.

Observe that for each bidder i ∈ FIXED, vi(Ti) ≥ |Ti| · pt. Therefore, we will prove that there
exists a Tk with the desired value by looking at the expected value of T , restricted only to bidders
in FIXED.

Let Ai be the random variable that gets the value of p · |Ti| with probability ε
2 , and 0 with

probability 1 − ε
2 . Let A = ΣiAi. Since every bidder i is placed in FIXED with probability ε

2
we have that E[A] = ΣiE[Ai] = ε

2Σip · |Ti| ≥ ε
4 · OPT

log m}. Using Claim 4.4, and since for each i,
Ai ∈ [0, R], we have that

Pr[A <
ε2OPT

16 log m
] ≤ Pr[|A − ε2OPT

8 log m
| ≥ ε2OPT

16 log m
]

≤
R · ε2OPT

8 log m

( ε2OPT
16 log m)2

≤ 32R · log m

ε2 · OPT

Since there are less than log m possible choices of pk, we can apply the union bound to verify
that the fourth event does not occur with probability 32R·log m log m

ε2·OPT . By our choice of R, we get that
they all hold simultaneously with probability of at least 1 − 2ε2.

Given that the conditions of Lemma 5.5 hold, we will show that we manage to achieve an O( log m
ε3

)
approximation factor. With probability of at most 2ε2 this is not the case, and the algorithm fails
to provide any approximation ratio.

If some bidder i in SEC-PRICE was allocated M in Step 4, then he was forced to pay at least
ε2

100
OPTSTAT

log2 m
. Therefore, that bidder’s value for M is greater than ε2

100
OPTSTAT

log2 m
, which by Lemma

5.5 is at least O( ε3OPT
log2 m

). Hence, allocating M to bidder i provides a a O( log2 m
ε3 ) approximation to

the optimal solution.
If no bidder in SEC-PRICE got the bundle M then the algorithm attempts to sell items to the

bidders in FIXED (Step 6). The next two lemmas show that in this case we will get an allocation
that is an O( log m

ε3
)-approximation to the optimal allocation.

Lemma 5.6 Let Tp = (T1, ..., Tn) be an allocation that maximizes Σivi(Ti) such that

1. Tp is supported by p.

2. For each bidder i /∈ FIXED, Ti = ∅.
Then, if the algorithm reaches Step 6 the approximation ratio achieved is O(Σi|Ti| · p).
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Proof: We first note that by assigning Ti to each bidder i and charging a price of |Ti| · p, we gain
a revenue of Σi|Ti| · p, while all bidders are profitable. We will use this revenue as a lower bound
to the welfare that can be achieved. Notice that we do not guarantee that the actual revenue the
mechanism gets is a constant factor away from Σi|Ti| · p.

We will now upper bound the revenue we lose by assigning S1 to bidder 1, comparing to the
allocation considered earlier. Without loss of generality, assume the bidders in FIXED are numbered
1, ..., ε

2n. In the first iteration of Step 5, bidder 1 is asked for his most demanded set. First, we
could have assigned T1 to bidder 1 and gain a revenue of |T1| · p

2 . (Recall that the the price for item
is p

2 .) However, we did not lose too much because the value of T1 is at most twice the value of S1.
The last statement is true since bidder 1 could gain a profit of at least |T1| · p

2 by choosing T1, and
S1 has at least that value being bidder 1’s most demanded set. We note again that the revenue we
achieve in this case (but not the welfare) might be very small comparing to vi(Ti).

The second possible lose occurs when there is an item j ∈ S1, and there exists another bidder
i′ with j ∈ Ti′ . Because Tp is supported by p, we have that vi′(Ti′\{j}) ≥ (|Ti′ | − 1) · p. Summing
over all such items, we have that we lose a value of at most |S1| · p

2 ≤ v1(S1). The inequality holds
since S1 is profitable to bidder 1 under a price per item of p

2 .
To conclude, by assigning T1 to bidder 1 we lose a revenue of O(T1). The analysis continues

by removing from T2, ..., T ε
2

all items which can not be assigned now, and using induction to apply
similar arguments to the rest of the bidders in FIXED.

Lemma 5.7 If the following conditions hold:

1. The algorithm reaches Step 6

2. ε
4 · OPT ≤ OPTSTAT

3. ε
4 · OPT ≤ OPTFIXED

4. Let P = {p|p is a power of 2, and OPT
2m log m ≤ p ≤ OPT

log m , and there exists an allocation T that is
supported by p, and the supported value of T is at least ε

4 · OPT
log m}. Then, for every pk ∈ P there

exists an allocation Tk of the items to the bidders in FIXED only such that Tk is supported by
pk, and the supported value of Tk is at least ε2

16 · OPT
log m .

Then the algorithm produces an allocation that is an O( log m
ε3

)-approximation to the welfare.

Proof: Observe that in Step 3 we have found an allocation that is supported by p and worth
more than OPTSTAT

log m ≥ εOPT
4 log m . Obviously, an allocation restricted to bidders in STAT only is also

an allocation for all bidders with the same value. We can therefore deduce that there exists an
allocation Tp of the items to bidders in FIXED such that Tp = (T1, ..., Tn) is supported by p, and
worth at least ε2

16 · OPT
log m .

Clearly, all conditions of Lemma 5.6 hold. Therefore, the algorithm is an O( log m
ε2

)-approximation
to the value of OPTFIXED. Since OPTFIXED ≥ ε

4 · OPT we have that it is an O( log m
ε3 ) approxi-

mation to OPT .
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A The Standard LP Formulation of a Combinatorial Auction

Maximize: Σi,Sxi,Svi(S)
Subject to:

• For each item j: Σi,S|j∈Sxi,S ≤ 1

• for each bidder i: ΣSxi,S ≤ 1

• for each i, S: xi,S ≥ 0

We remark that the LP relaxation can be solved using demand oracles only [22].
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