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ABSTRACT
Ad auctions in sponsored search support “broad match”
that allows an advertiser to target a large number of queries
while bidding only on a limited number. While giving more
expressiveness to advertisers, this feature makes it challeng-
ing to optimize bids to maximize their returns: choosing to
bid on a query as a broad match because it provides high
profit results in one bidding for related queries which may
yield low or even negative profits.

We abstract and study the complexity of the bid optimiza-
tion problem which is to determine an advertiser’s bids on a
subset of keywords (possibly using broad match) so that her
profit is maximized. In the query language model when the
advertiser is allowed to bid on all queries as broad match,
we present an linear programming (LP)-based polynomial-
time algorithm that gets the optimal profit. In the model
in which an advertiser can only bid on keywords, ie., a sub-
set of keywords as an exact or broad match, we show that
this problem is not approximable within any reasonable ap-
proximation factor unless P=NP. To deal with this hardness
result, we present a constant-factor approximation when the
optimal profit significantly exceeds the cost. This algorithm
is based on rounding a natural LP formulation of the prob-
lem. Finally, we study a budgeted variant of the problem,
and show that in the query language model, one can find
two budget constrained ad campaigns in polynomial time
that implement the optimal bidding strategy. Our results
are the first to address bid optimization under the broad
match feature which is common in ad auctions.
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1. INTRODUCTION
Sponsored search is a large and thriving market with three

distinct players. Users go to search engines such as Yahoo!
or Google and pose queries; in the process, they express
their intention and preferences. Advertisers seek to place
advertisements and target them to users’ intentions as ex-
pressed by their queries. Finally, search engines provide a
suitable mechanism for doing this. Currently, the mecha-
nism relies on having advertisers bid on the search issued
by the user, and the search engine to run an auction at the
time the user poses the query to determine the advertise-
ments that will be shown to the user. As is standard, the
advertiser only pays if the user clicks on their ad (the ”pay-
per-click” model), and the amount they pay is determined
by the auction mechanism, but will be no larger than their
bid.

In this paper, we assume the perspective of the advertiser.
The advertisers need to target their ad campaigns to users’
queries. Thus, they need to determine the set S of queries
of their interest. Once that is determined, they need to
strategize in the auction that takes place for each of the
queries in S. A lot of research has focused on the game
theory and optimization behind these auctions, both from
the search engine [2, 20, 7, 1, 13, 5] and advertiser [4, 9,
6, 14] points of view. There has been relatively little prior
research on how advertisers target their campaign, i.e., how
they determine the set S.

The criterion for choosing S is for the advertiser to pick
a set of keyphrases that searchers may use in their query
when looking for their products. The central challenge then
is to match the advertisers keyphrases with the potential
queries issued by the users. It is difficult if not impossi-
ble for the advertisers to identify all possible variations of
keyphrases that a user looking for their product may use in
their query. As an example, consider a vendor who chooses
the keyphrase tennis shoes. Users searching for them may
use singular or plural, synonyms and other variations (“clay
court footwear”), may misspell (“tenis shoe”), use exten-
sions (“white tennis shoes”) or reorder the words (“shoes
lawn tennis”). In fact, users may even search using words
not found in the keyphrase (“Wimbledon gear”, ”US Open
Shoes”, “hard court soles”), and may still be of interest to
the advertiser. These artifacts such as plurals, synonyms,
misspellings, extensions, and reorderings are very common,



and the problems get compounded since typical ad cam-
paigns comprise several keyphrases, each with its own set of
artifacts.

Major search engines help advertisers address this chal-
lenge by providing a structured bidding language. While the
specific details differ from search engine to search engine [21,
22, 23], at the highest level, the bidding language supports
two match types: exact and broad. In exact matchtype
(called “exact” in MSN AdCenter and Google, and “stan-
dard” in Yahoo), ad would be eligible to appear when a
user searches for the specific keyphrase without any other
terms in the query, and words in the keyphrase need to
appear in that order. In broad matchtype (called “broad”
in MSN, related to “phrase” and “broad” in Google, and
“advanced match type” in Yahoo), the system automati-
cally makes advertisers eligible on relevant variations of their
keyphrases including for the various artifacts listed earlier,
even if the search terms are not in the keyphrase lists. Thus,
the search engines automate the aspect of detecting artifacts
and matching the query to keyphrases of interest to adver-
tisers.1 Thus the task of advertisers becomes determining
the keyphrases and choosing the match type on each.

The question we address here is, how does an advertiser
bid in presence of these match types? Say each query q has
a value v(q) per click for the advertiser that is known to
the advertiser and is private. Further, we let c(q) be the ex-
pected price per click and let n(q) be the expected number of
clicks. These are statistical estimates provided by the search
engines [24, 25, 26]. Then, we consider two optimization
problems: (i) in one variant, we assume that the advertiser
wishes to maximize their expected profit, that is,

∑
q(v(q)−

c(q))n(q), and (ii) in the other variant, given a budget B
for the advertiser, we assume that the advertiser wishes to
maximize their expected value, that is,

∑
q v(q)n(q) subject

to the condition that the expected spend
∑

q c(q)n(q) does
not exceed the budget.

The technical challenge arises due to query dependencies.
When one bids on a keyphrase for query q, as a result of
a broad match, it may apply to query q′ as well. The ad-
vertiser has different values v(q) and v(q′) on these because
users for q and q′ differ on their intentions and therefore on
their respective values to the advertiser. So, the advertiser
may make good profit on q and may wish to bid on that
query, but is then forced to implicitly bid on q′ as well, and
may even make negative profit on q′! Under what circum-
stances is it now desirable for the advertiser to bid for q?

Note that query dependence is a fundamental aspect of
sponsored search since advertisers can realistically only choose
and strategize on a small set of keyphrases because of the
effort involved, and have to typically rely on the search en-
gine to carefully apply their strategy to variants of their
keyphrases. But beyond that, even an ad campaign that
is willing to exert a lot of effort and use a large number of
keyphrases or relies on a search engine to provide rich bid-
ding languages [11] will still find it impossible to include all
search variations of the keyphrases as exact matches, and
must necessarily rely on broad match for the variations that

1These match types may be further modified by ensuring
that the ad be not shown on occurrence of certain keywords
in the query; this feature (called “negative” in MSN and
Google or ”excluded” by Yahoo) and other targeting crite-
ria associated with keyphrase campaigns do not change the
discussion and the results here.

search users develop and prefer over time. Thus, the ad-
vertisers bid implicitly on queries on which they can not
directly control the tradeoff between the cost and the value.

Query dependence introduces a complex optimization prob-
lem of trading off the benefits of bidding on a keyphrase
against the impact of bidding on its dependent queries. In
the sponsored search world, there is a keen awareness of this
complexity of bidding, and most search engines and third-
party bidding agents provide detailed tips and guidelines for
advertisers [27, 28]. Beyond these guidelines, what is miss-
ing is a clear theoretical understanding of the tradeoffs and
the complexity of the bidding problem that advertisers face.

We initiate principled study of bidding in presence of
broad matches. Specifically, our contributions are as fol-
lows.

1. We abstract two models — query and keyword lan-
guage models — to study bidding optimization prob-
lems.

In the query language model, the advertiser bids di-
rectly on user queries and wishes to determine which
query if any to bid on, to maximize expected profit.
This models both the theoretical extreme where an
advertiser can bid on any of the queries the search
engine will see, and the practical reality where the ad-
vertiser has a select set of queries in mind and wishes
only to optimize within that set. In the keyword lan-
guage model, advertisers may bid only on a subset
of queries, and broad match implicitly derives bids as
needed. This directly models the common reality.

2. We present efficient, polynomial time algorithms for
the bid optimization problem under these two models.

In query bidding, we get a polynomial-time algorithm
that maximizes the profit, using a reduction to the
well-known Min-Cut problem in graphs. This is in
contrast to the poor performance of natural greedy al-
gorithms for this problem. We also study the budgeted
variant of the problem, and propose a novel strategy
using two distinct budgeted ad campaign that gets the
optimal profit. We do so by studying the structure of
the basic feasible solutions of a corresponding linear
programming formulation of the problem.

For keyword bidding, we show that even limited in-
stances are NP-Hard to not only optimize, but even
to approximate; to deal with this hardness result, we
present a constant-factor approximation when adver-
tisers profit following an optimal bid is considerably
greater than her cost. This result is based on applying
a randomized rounding method on the optimal frac-
tional solutions of the linear programming relaxation
of the problem.

These represent the first known theoretical results for the
problem of bid optimization in presence of broad matches,
a problem advertisers face now since this feature is offered
by the major search engines. Prior research in bid opti-
mization for advertisers [4, 6, 16] primarily focused on de-
termining suitable bids for exact match types and does not
study the query dependence and implicit bids; [9, 14] stud-
ied the problem of maximizing the number of clicks, and not
the profit which is the more standard metric. At the tech-
nical core, our challenge is to tradeoff positive profit from



bidding on a keyphrase that applies to one query q against
possibly a negative profit from the implied bids of broad
match on queries q′. This query dependence is a novel fea-
ture in sponsored search auctions, not explicitly studied in
prior literature, and our results for this problem may have
applications beyond, in the general auction theory area.

Finally, we report experimental results on a small family
of instances of the bid optimizations problem, and compute
the optimal bidding using the integer linear programming
formulation. Our main observation in these experiments is
that by considering only the broad match, we do not lose
much in the maximum profit of the solution. This supports
our hope that under reasonable circumstances (similar to
the ones in our experiments), considering only broad match
is effective, and in turn, that would enable advertisers to
focus on campaigns with small lists of keyphrases.

2. MODEL
We consider the optimization problems that an advertiser

faces while bidding in an auction for queries with a broad
match feature.

The Advertiser. We consider a single advertiser who is
interested in showing her ad to users after they search for
queries from a set Q. The advertiser has some utility from
having a user click on her ad. In reality, clicks associated
with different queries may bring have utility to the adver-
tiser; The advertiser has a value of v(q) units of monetary
value associated with a ‘click’ that follows a query q ∈ Q.

We assume a posted price model where prices are posted
and the search volume of every query as well as its click
through rate (i.e., the probability that users would click her
ad) are known to the advertiser. Namely, every query q is
associated with a pair of parameters, known to the adver-
tiser, (c(q), n(q)), where c(q) is the per click cost of q, and
n(q) is the expected number of clicks that would result from
winning q (the expected number of clicks can be determined
from the search volume of q and the advertiser’s specific click
through rate for q).

Thus, when an advertiser wins a query q, her overall
profit 2 from winning, denoted w(q) is

w(q) = (v(q)− c(q)) n(q) .

Note that although each query has a positive value, winning
it may result an overall negative profit.

Bidding languages. A bidding language is a way for an ad-
vertiser to specify her value or willingness to pay for queries.
Eventually, the auctioneer needs to have a bid for every pos-
sible query 3. The choice of a bidding language is critical
for the auction mechanism. At the one extreme, it may
be infeasible to allow an advertiser to specify explicitly her
value for every possible query. On the other hand, a lan-
guage that is too restrictive would not allow an advertiser
to communicate her preferences properly.

In order to study the complexity of the optimal bidding
in the broad match framework while taking into account the

2In this paper, we use terms utility and profit inter-
changably.
3A bid of 0 for a query may be regarded as the default in
a case where the advertiser is not explicitly interested in a
query q and nor in queries that q match broadly.

intersections among broad matches for different keywords,
we first consider a bidding language in which an advertiser
can specify a bid for every query q but only as a broad-
match. We refer to this language as the query language.

To allow the most accurate description of an advertisers
value per query, the ultimate way is to let the advertiser
specify all possible queries with exact or broad match, and
a monetary bid for each of them. If an advertiser is allowed
to bid on each type of query as an exact match as well as
broad match, she can decide for each query independent of
the other queries, and the complexity of the bidding problem
is not captured in such bidding language.

To capture the complexity of the optimal bidding prob-
lem and the fact that advertisers may only bid on a subset
of queries, we study the keyword language that allows ad-
vertisers to place a bid only on (single) keywords or short
phrases. More precisely, in the keyword language, we as-
sume that advertisers are allowed to bid only on a subset
S ⊂ Q of queries.

A further improvement of this language would allow the
advertiser to specify, besides a value bid for s ∈ S, whether
s is to be matched exactly or broadly.

A bid b ∈ R|Q|+ in some bidding language is associated with
a set of ‘winning queries’ denoted by ϕ(b) = {q ∈ Q | b(q) ≥
c(q)}. A subset T of queries which is a winning set of some
bid b is referred to as a feasible winning set. The utility
associated with a winning set T is

u(T ) =
∑
q∈T

(v(q)− c(q)) n(q),

where v(·) and n(·) are advertiser specific.
A feasible winning set with optimal utility is referred to

as an optimal winning set.

The Auction. For every query, the auctioneer should de-
cide the bid of every advertiser. This decision is easy for
queries on which the advertiser bids explicitly (as an exact
match). However, for the queries that the advertiser has
not bid directly, but only through a broad match frame-
work, the auctioneer should compute an appropriate bid for
the advertiser to participate in the auction.

A natural way for setting such a value is to aggregate the
bid values of all the phrases matched by the query. While
there are several choices for the aggregation method, in this
paper, we consider the max aggregation operator — when a
query q matches phrases w1, . . . , wk from the advertiser list
of phrases, its bid is interpreted as b(q) = maxi b(wi).

We can now state formally the bid optimization problem.
Given advertiser’s specific data (A set Q, value for queries v,
search volume and click through rates n(·) ) and a bidding
language L, an optimal bid b∗, is a feasible bid in the lan-
guage L that maximizes the advertisers’ utility from winning
a set ϕ(b) of queries. Formally,

b∗ ∈ argmaxb∈L{u(ϕ(b))}. (2.1)

Query dependencies. We say that a query q depends on a
query q′ if winning query q′ implies winning query q. In the
broad match auction in which the bid interpretation strategy
is done using the max operator, this happens if q matches q′

broadly, and its cost c(q) is less than that of c(q′). In other
words, if a bid b wins q′, it must be that b(q′) ≥ c(q′), but



the interpreted bid for q is then at least b(q′) ≥ c(q) since
c(q′) ≥ c(q), hence the bid b must be winning q as well. As
a result, the cost structure incurs a set of pairs (q′, q) where
the first entry of each pair q′ ∈ S is a valid phrase in the
bidding language and the second entry is a valid query in the
set of queries Q such that winning query q′ implies winning
query q. This set of pairs is denoted by C and formally:

C = {(q′, q)|q′ ∈ S, q ∈ Q, q matches q′ broadly , c(q′) ≥ c(q)}.
Moreover, we define D(q) = {q′|(q′, q) ∈ C}, and N(q) =

{q′|(q, q′) ∈ C}.

Budget-constrained Ad Campaigns. A variant of the
optimal bidding problem in the broad match framework is
to find a set of queries to bid on that maximizes the total
value of the queries won by the advertiser subject to a bud-
get constraint, i.e, our goal is to bid on a subset T of queries
to maximize

∑
q∈T v(q)n(q) subject to the budget constraint∑

q∈T c(q)n(q) ≤ B. To handle such a budget constraint, we
assume that one can run a budget-constrained ad campaign
by bidding on a subset T of keywords and setting a budget
B. Assuming B′ =

∑
q∈T c(q)n(q), there are two possibili-

ties in this budget-constrained ad campaign: (i) If B′ ≤ B,
the auction is run in a normal way and the value from this
ad campaign for the advertiser is

∑
q∈T v(q)n(q), (ii) On the

other hand, if B′ > B, we assume that the queries arrive at

the same rate and as a result, for each query, we get B′
B

fraction of the value of an ad campaign without the bud-
get constraint. In other words, the value that the advertiser

gets is
∑

q∈T v(q)n(q)B′
B

. We can also interpret the above
assumption by a throttling method in which, in order to
cope with the budget constraint, at each step, we let the

advertiser participate in the auction with probability B′
B

.

3. BIDDING IN THE QUERY LANGUAGE
In this section, we study the query language that allows

placing a bid on every query. We observe that in the query
language, the task of computing an optimal bid is equiva-
lent to that of computing an optimal winning set: Given an
optimal feasible set T set a bid b(q) = c(q) for every query
q ∈ T with positive weight and b(q) = 0 otherwise.

Lemma 3.1. A bid b derived from an optimal winning set
T , as described above, is an optimal bid.

Proof. By construction, the bid b wins all the queries
with positive weight from T , and every other query must
belong to T (otherwise T would not be feasible).

We therefore consider algorithms for computing an opti-
mal feasible winning set. First, we consider a greedy al-
gorithm, denoted by Max-Margin Greedy. Initially, Max-
Margin Greedy sets the winning set to be empty. Then, it-
eratively, it adds a bid on a query with the highest marginal
benefit to the winning set utility. Unfortunately, Max-Margin
Greedy fails to compute an optimal winning set due to the
following example.

Example. Consider a set Q of queries which contains n
keywords and another

(
n
2

)
queries, each of which is a pair of

keywords. The cost of each query is set to $1. Hence, the
query dependencies is such that winning a keyword implies

winning the set of n − 1 queries made of pairs of keywords
in which this keyword appears. The value of a keyword
is set to $2; The value of a each pair is set to 1 − 1.5/n.
So, every keyword attains a positive utility of $1, and every
pair causes a loss of $1.5/n. Initially, Max-Margin Greedy ’s
bid is empty. At this point Max-Margin Greedy is stuck
— every single query it adds to the winning set results in
a negative overall utility. Thus, this instance, Max-Margin
Greedy would yield 0 utility. An optimal solution wins all the
queries and has a utility of n×(2−1)−(

n
2

)
(1− 1.5

n
−1) = n−3

4
.

One can explore other variants of greedy algorithms for
this problem. For example, a natural greedy algorithm is
Max-Rate Greedy algorithm: Initially set the winning set to
the empty set, and then iteratively, add a bid on a query
with the highest ratio of marginal profit over the marginal
cost, or the query with the highest ratio of marginal value
over marginal cost. We note that all these iterative greedy
algorithms pefrom poorly for the above example. Even a
significant look-ahead will not resolve this bad example.

We turn to the next algorithm OptBid1 for computing an
optimal winning set. OptBid1 is a solution to the following
integer linear program:

ILP : max
∑

qi∈Q

Xqiw(qi)

For every pair (qj , qi) ∈ C : Xqi −Xqj ≥ 0

∀qi ∈ Q : Xqi ∈ {0, 1} (3.1)

For every query q, an integral variable Xq is a 0-1 variable
which is equal to 1 if and only if q belongs to the winning
set of queries. In order to solve the above ILP, we relax it
to a linear program where instead of integer 0-1 variables,
we have fractional Xq variables with values between 0 and 1
(0 ≤ Xq ≤ 1). Here, we observe that the integrality gap of
this linear programming relaxation is 1, i.e., for any instance
of this linear program, there exists an optimal solution X∗

in which all the values are integer X∗
q ∈ {0, 1} for all q ∈ Q.

Lemma 3.2. The integrality gap of the linear program-
ming relaxation of the ILP 3.1 is one.

Proof. The lemma follows from the fact the the con-
straint matrix of the LP relaxation of ILP 3.1 is totally uni-
modular4. A sufficient condition for a matrix to be totally
uni-modular is that every row has either two non-zero en-
tries, one is 1 and the other −1, or a single non zero entry
with value 1 or −1. An integer program whose constraint
matrix is totally uni-modular and whose right hand side is
integer can be solved by linear programming since all its
basic feasible solutions are integer (see [15] pp. 316).

The above lemma implies the following polynomial-time
algorithm OptBid1 for optimal bidding in the query lan-
guage: compute a basic feasible solution X∗ of the LP relax-
ation of ILP 3.1, and find a bidding strategy corresponding
to the winning set of X∗, i.e., {q ∈ Q|X∗

q = 1}.
The running time of Algorithm OptBid1 is that of solving

a linear program with Ω(|Q|2) constraints, which although
polynomial in |Q|, might be inefficient. Next, we present a
faster algorithm, OptBid2.

4A matrix A is totally uni-modular if every square submatrix
of it is uni-modular, i.e., every submatrix has a determinant
of 0, -1 or +1.
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Figure 1: An example of running algorithm Opt-
Bid2 on the set of queries (with the following profit:
{(a, 11), (b, 8), (ab,−8), (abc,−9), (ef, 7), (efg,−5), (efh,−4)}),
and dependency graph as illustrated. ObtBid2 will
choose the winning set {a, b, ab, abc}. The optimal
bid is {(a, 11), (b, 8)}.

For the purpose of presenting Algorithm OptBid2, we de-
fine a weighted flow graph G = (V, E), derived from the
input. The vertex set of G is V = {s, t}∪Q+ ∪Q−, where s
is a source node, t is a target node and Q+ and Q− are
the sets of queries with positive/non-positive weights re-
spectively, i.e., Q+ ≡ {q | w(q) > 0}. The source vertex
s is connected to each vertex q ∈ Q− with an edge of weight
|w(q)| = |(v(q)−c(q))n(q)|. The target vertex t is connected
with each vertex p ∈ Q+ with an edge of weight w(p). Two
vertices q ∈ Q−, p ∈ Q+ are connected with an edge of
weight ∞ if and only if (p, q) ∈ C.

Algorithm OptBid2

1. Compute a min-cut of G. Let S, T be the two sides of
the cut.

2. Assume, without loss of generality, that t ∈ T . Return
T \ {t}, that is, the set of queries that are on the same
side of the cut as t is an optimal winning set.

The running time of Algorithm OptBid2 is that of min-
cut, i.e., O(|Q|3) [18].

Theorem 3.3. Algorithm OptBid2 finds an optimal win-
ning set.

Proof. We show T is an optimal winning set using the
dual program of ILP.

DUAL : min
∑

q∈Q+

Zq

∀q ∈ Q+ :
∑

q′:(q,q′)∈C
Yq,q′ + Zq ≥ w(q)

∀q′ ∈ Q− :
∑

q:(q,q′)∈C
Yq,q′ ≤ −wq′ (Notice that wq′ ≤ 0)

∀(q, q′) ∈ C : Yq,q′ ≥ 0

∀q ∈ Q+ : Zq ≥ 0

Let f = (fe)e∈E be a maximum flow in G, with value c. For
every (q, q′) ∈ C, set Yq,q′ := fq,q′ and for every q ∈ Q+,

set Zq := w(q) −∑
q′|(q,q′)∈C Yq,q′ . It is straightforward to

verify that this is a feasible solution of DUAL with value∑
q∈Q+ w(q)− c.
Now, observe that T is a feasible set in the query language.

For every pair (q, q′) ∈ C, we have that if q ∈ T then also
q′ ∈ T . Otherwise, the edge (q, q′), with weight ∞, would
be part of the cut. Thus, the value of the min cut is

c =
∑

q∈Q−∩T

|w(q)|+
∑

q∈Q+\T

w(q).

and therefore,

u(T ) =
∑
q∈T

w(q) =
∑

q∈Q+

wq −
∑

q∈Q+\T

w(q) +
∑

q∈Q−∩T

w(q)

=
∑

q∈Q+

wq − c.

We already found a feasible solution for the dual of ILP,
with the same value. We therefore conclude, using the weak
duality theorem, that T is an optimal solution of ILP.

4. BIDDING IN THE KEYWORD LANGUAGE
In this section, we study optimal bidding for the keyword

language, where the advertiser is restricted to bid on a sub-
set of (possibly short) queries S ⊂ Q.

Note that in the case that all queries have positive utility,
the optimal bid is trivial by simply placing a high bid for
every query in S. In addition, finding the optimal bid when
all queries are associated with a negative utility is trivial (a
bid of $0 for every phrase in S is optimal). Moreover, in the
case of uniform value from every query, the optimal bid is
easy — a uniform bid equal to the uniform value guarantees
winning every query with positive weight and losing every
query with negative weight, which is of course optimal. In
realistic settings, some queries have positive utility and some
have negative utility. In this case the problem of finding the
optimal bid becomes intractable. More precisely, as we show
now, even when the set of queries Q is made up from single
keywords and pairs of keywords, this problem becomes hard
to approximate within a factor of |S|1−ε, for every ε > 0:

Theorem 4.1. In the keyword language broad match frame-
work, it is NP-hard to approximate the optimal value of the
optimal bidding problem within a factor of |S|1−ε, for any
ε > 0.

Proof. We give a factor-preserving reduction to the in-
dependent set problem. Given a graph G with n nodes, and
m edges, we construct the following instance of our problem:
put a singleton keyword for each node v of G with weight
wv = −(deg(v)− 1), and put a query consisting of a pair of
keywords corresponding to each edge e of G with weight 1.
The maximum value we can get from picking a keyword is
1, and we get this value if all of its neighbors do not appear
in the output. It can be seen that the optimum solution is
an independent set of nodes (since otherwise, we get zero or
negative from a picked node), and as a result, the maximum
value is the same as the size of the independent set.

4.1 A Constant-Factor Approximation
In this section, in light of the above hardness result, we de-

sign a constant-factor approximation algorithm for a special
case of the optimal bidding problem in the keyword language



in which the cost part of the optimal solution is less than 1
c

of the value part of the optimal solution, for some constant
c > 1. Recall that D(q) = {q′|q′ ∈ S, (q′, q) ∈ C}. Our
algorithm is constant-factor approximation if for any query
q ∈ Q \ S, |D(q)| is less than a constant c′. We present
our result for the case that each query q ∈ Q can be in
the broad-match set of at most two queries q1, q2 ∈ S, i.e.,
|D(q)| ≤ 2. However, our result can be extended to more
general settings in which query q ∈ Q can be the broad
match for a constant number of queries q1, . . . , qc′ ∈ S (for
a constant c′).

Based on the above discussion, we assume that |D(q)| ≤ 2
for any query q ∈ Q. Note that the hardness result of the
keyword language holds even for instances in which |D(q)| ≤
2 for all queries q ∈ Q. Also, let E = {c(q)|q ∈ Q}. Our
algorithm is based on a linear programming relaxation of
the optimal bidding problem for the keyword language. The
integer linear program is as follows:

ILP-Approx max
∑

s∈S(Z
c(s)
s + Rs)ws

+
∑

q∈Q\S Yqwq

∀q ∈ Q \ S, (s, q) ∈ C, (r, q) ∈ C Yq ≤ Z
c(q)
s + Z

c(q)
r

∀q ∈ Q \ S, (s, q) ∈ C Yq ≥ Z
c(q)
s

∀s ∈ S, p, p′ ∈ E Zp
s =

∑
t∈E,t≤p W t

s

∀s ∈ S, p ∈ E Zp
s + Rs ≤ 1

∀q ∈ Q \ S Yq ∈ {0, 1}
∀s ∈ S Rs ∈ {0, 1}

∀s ∈ S, p ∈ E W p
s , Zp

s ∈ {0, 1}
(4.1)

Where the variables correspond to the following:

• W p
s for any s ∈ S is the indicator variable correspond-

ing to the bid of p on query s (as a broad match),

• Zp
s for any s ∈ S is the indicator variable correspond-

ing to the bid of at most p on query s (as a broad
match),

• Rs for any s ∈ S is the indicator variable correspond-
ing to the exact match bid on query s,

• Yq for any q ∈ Q \ S is the indicator variable corre-
sponding to winning query q (as a result of bidding on
queries in S).

We relax the integer 0-1 variables in this integer linear
program to fractional variables between zero and one, and
then compute an optimal fractional solution for this LP re-
laxation. Then we round this fractional solution to construct
a feasible (integral) bidding strategy.
Rounding to an Integral Solution. Given a fractional
solution (V, Z, W, Y ) to the LP, we round it to an integral
solution (V ′, W ′, Z′, Y ′) as follows: for every query s ∈ S,
we set V ′

s = 1 with probability 1, and V ′
s = 0 otherwise. If

V ′
s = 1, we set W ′p

s = 0 for all p ∈ E. Otherwise, for each s ∈
S, for all p∗ ∈ E, we choose p∗ with probability proportional
to W p∗

s (1− ε) (for an appropriate small constant ε that will

be determined later) and set W ′p∗
s = 1, and for any p 6= p∗,

we set W ′p
s = 0. After setting all W ′ variables, for each

p ∈ E and s ∈ S, we set Z′ps =
∑

t∈E,t≤p W ′t
s . Finally, for

any q ∈ Q \ S, Y ′
q = 1 if and only if Z

′c(q)
s = 1 for some

s ∈ S, such that s ∈ D(p) (or equivalently (s, q) ∈ C). It
is not hard to see that the above rounded integral solution
correspond to a feasible bidding strategy. In particular, we
can implement this bidding strategy by putting an exact
match bid of b(s) = c(s) for any s ∈ S if R′s = 1 (i.e., with
probability Rs) and then by putting a broad match bid of
b(s) = p for query s ∈ S if W ′p

s = 1 (i.e., with probability
W p

s (1− ε)).
A query s ∈ S is selected if bid b(s) for this query is

at least c(s). As a result, a query s ∈ S is selected with

probability (1−ε)Z
c(s)
s +Rs. Moreover, for a query q ∈ Q\S

for which (s, q) ∈ C and (r, q) ∈ C, query q is selected if the
bid for either of the queries s or r is at least c(q), i.e., with
probability

Pr[ query q is selected ] =

1− (1− (1− ε)Zc(q)
s )(1− (1− ε)Zc(q)

r ) =

(1− ε)(Zc(q)
s + Zc(q)

r )− (1− ε)2Zc(q)
r Zc(q)

s .

Therefore, the expected utility of the solution after imple-
menting the integral solution (V ′, W ′, Z′, Y ′) (or bidding as
desribed above) is:

∑
s∈S

((1− ε)Zc(s) + Rs)ws+

∑

q∈Q\S;r,s∈D(q)

(
(1− ε)(Zc(q)

s + Zc(q)
r )− (1− ε)2Zc(q)

s Zc(q)
r

)
wq

Next, we derive a lower bound and an upper bound on
the probability that the bid generated as above, wins query
q. We will show that

Yq(1− ε)(1− 1

2
(1− ε)) ≤ Pr[q is selected ] ≤ (1− ε)2Yq.

(4.2)
Consider the following set of inequalities that hold for every
query q that depends on queries s, r ∈ D(q):

Zc(q)
s Zc(q)

r ≤
√

Z
c(q)
s Z

c(q)
r ≤ (4.3)

Z
c(q)
s + Z

c(q)
r

2
≤ Yq ≤ Zc(q)

s + Zc(q)
r ,

The first inequality follows the constraints 0 ≤ Z
c(q)
s , Z

c(q)
r ≤

1 and the second inequality is the arithmetic geometric mean
inequality. The third inequality follows the summation of

the inequalities Z
c(q)
r ≤ Yq and Z

c(q)
s ≤ Yq and the last

inequality appears as a constraint in the LP.
The left hand side in Inequality 4.2 follows since

(1− ε)(Zc(q)
s + Zc(q)

r )− (1− ε)Zc(q)
s (1− ε)Zc(q)

r ≤
(1− ε)2Yq − (1− ε)2Zc(q)

s Zc(q)
r ≤ (1− ε)2Yq

And the right hand side follows

(1− ε)(Zc(q)
s + Zc(q)

r )− (1− ε)2Zc(q)
s Zc(q)

r ≥
(1− ε)(Zc(q)

s + Zc(q)
r )− (1− ε)2

1

2
(Zc(q)

s + Zc(q)
r ) ≥

(1− ε)(Zc(q)
s + Zc(q)

r )(1− 1

2
(1− ε)) ≥

Yq(1− ε)(1− 1

2
(1− ε)).



In the summation that describes the overall utility from
the queries, the probability for selecting query q, is multi-
plied by both the value and the cost of q. Using Inequality
4.3, we get a lower bound on the expected value from q and
an upper bound on the expected cost of q.

Let us denote the optimal utility any bidding strategy can
achieve by U∗ = V ∗ − C∗, where V ∗ and C∗ are the value
and cost part of the objective utility function, respectively.
Let U∗ = U∗E +U∗B where U∗E is the utility resulting from the
exact match bidding, and U∗B is the utility from the broad
match bidding. Similarly we define U∗E = V ∗

E − C∗E , and
U∗B = V ∗

B−C∗B (where V and C correspond to the value and
the cost of each part of the solution). Knowing that for each
query w(q) = v(q)n(q)−c(q)n(q), the expected utility of the
above algorithm based on randomized rounding of the LP is
at least:

(1− ε)(1− 1

2
(1− ε))V ∗

B − (2− 2ε)C∗B + V ∗
E − C∗E ≥

(1− ε)(1− 1

2
(1− ε))V ∗ −max(1, 2− 2ε)C∗.

Lemma 4.2. By setting ε = 0 or ε = 1/2 in the above
algorithm, we get that UALG ≥ 1

2
V ∗−2C∗ or UALG ≥ 3

8
V ∗−

C∗, respectively.

Given the above lemma, we conclude the following:

Theorem 4.3. For instances of the optimal bidding prob-
lem in which C∗ ≤ V ∗

4
and each query depend on at most 2

other queries (i.e., |D(q)| ≤ 2 for each q ∈ Q \S), the above
randomized algorithm is a 1

6
-approximation algorithm.

In order to extend the above result for the more general
case in which |D(q)| ≤ c′ for a constant c′, we should add the

inequality Yq ≥
∑

s∈D(q) Z
c(q)
s , and then one can generalize

the above result to the following: For any constant c′, there
exist two constants c and c′ such that for instances of the op-
timal bidding problem in which C∗ ≤ V ∗

c
and |D(q)| ≤ c′ for

each q ∈ Q\S, there exists a constant-factor approximation
algorithm.

5. BUDGET CONSTRAINTS
In this section, we study the problem with an additional

budget constraint, i.e, we have a budget limit B and the
total cost of our bidding strategy should not exceed this
limit(B). Our goal is to maximize the total value subject
to this budget constraint. More formally, the problem is as
follows:

Budgeted− IPmax max
∑

qi∈Q

Xqiv(qi)n(qi)

∀(qj , qi) ∈ C : Xqi −Xqj ≥ 0
∑

qi∈Q

Xqic(qi)n(qi) ≤ B

∀qi ∈ Q : Xqi ∈ {0, 1} (5.1)

Similar to IP 3.1, for every query q, an integral variable
Xq indicates whether q belongs to the set of queries won
by an the optimal solution or not. There are two difference
between the above IP and the IP for query language without
the budget constraint: One difference is in the objective
function in which instead of w(qi), we have v(qi), and the

RL

(c,M)

T
1

T2

T3

T4

(c`,1) (1,0) (1,0) (1,0)

n

Figure 2: An illustration of a bidding problem with
a large integrality gap (k = 3).

more important difference is the extra budget constraint.
Because of this extra linear constraint, the following linear
programming relaxation of this IP is not totally unimodular
anymore.

Budgeted− LP : max
∑

qi∈Q

Xqiv(qi)n(qi)

For every pair (qj , qi) ∈ C : Xqi −Xqj ≥ 0
∑

qi∈Q

Xqic(qi)n(qi) ≤ B

∀qi ∈ Q : 0 ≤ Xqi ≤ 1 (5.2)

In fact, we can show that the integrality gap of this LP
can be very large, and thus one cannot round the fractional
solution of this linear programming relaxation to a good
integral solution (as we did for IP 3.1).

Lemma 5.1. The integrality gap of linear programming
relaxation 5.2 can be arbitrarily large.

Proof. Consider the following instance of the bidding
problem with a budget constraint in the query language: Let
the set of queries Q = R∪L∪T where R = {r1, r2, . . . , rk+1},
L = {l1, l2, . . . , lk+1}, and T = T1 ∪ T2 ∪ · · · ∪ Tk+1, where
Ti = {ti1, ti2, . . . , tin}. For any query q ∈ L, we have c(q) =
c and v(q) = M , and for q ∈ R, c(q) = c′ and v(q) = 1. We
assume that c >> c′ >> n >> 1. For any q ∈ T , v(q) = 0,
and c(q) = 1. Also, let the query dependency structure be:

C = {(ri, lj)|1 ≤ i, j ≤ k + 1, i 6= j}∪
{(ri, ti1|1 ≤ i ≤ k + 1}∪

{(tij , ti(j+1)|1 ≤ i ≤ k + 1, 1 ≤ j ≤ n− 1}.
It is easy to check that C matches the cost and query

definitions. We also set the budget B = c + kc′ + n. In this
instance of the bidding problem, the optimal integer solution
can pick at most one node from the set L (given the budget
constraint of B and the fact that c >> c′ >> n >> 1), and
thus the optimal integer solution is M + k.

On the other hand, as a fractional solution, we can set

x = (c+kc′+n)
((k+1)c+(k+1)c′+n)

. The value of this fractional solution

is [(k+1)M+k+1] (c+kc′+n)
((k+1)c+(k+1)c′+n)

which is approximately

(k + 1)M . As a result, the ratio between the optimal frac-
tion solution and the integral solution can be as large as k.
This proves that the integrality gap of the LP is arbitrarily
large.



In fact, not only the LP for the budgeted problem is not
integral, but also the optimal bidding problem with a bud-
get constraint is an NP-hard problem even in the query lan-
guage. The NP-hardness follows from the fact that this
problem is harder than the knapsack problem. In fact, the
knapsack problem is a special case of this problem in which
the set of queries are only the keywords and C = ∅. Despite
the large integrality gap of the above LP and NP-hardness
of the problem, in the following we show how one can use
a certain set of optimal solutions of this LP to implement
two budget constrained ad campaigns for an ad auction with
broad-match that achieves the optimal fractional solution of
the above LP. We show this fact by proving the existence of
optimal solutions for the LP with certain structural proper-
ties. The key structural lemma is the following:

Lemma 5.2. The Linear Program 5.2 has at least one op-
timal solution X∗ for which there exists a value X such that:
for each query q, X∗

q ∈ {0, 1, X}. Moreover, this optimal so-
lution can be found in polynomial time.

Proof. We prove this fact by showing that an optimal
basic feasible solution of the LP satisfies the desired prop-
erties. From standard linear programming theory, we know
that such a basic solution exists, and can be found in poly-
nomial time. Consider an optimal basic feasible solution
X∗ of the LP 5.2. Since the LP has |Q| variables, a basic
feasible solution can be uniquely characterized by |Q| tight
inequalities. In other words, there is a set P of |Q| inde-
pendent linear equations among the linear constraints that
characterize X∗. Let P1 ⊂ P be a set of these |Q| linear
equations of the form X∗

qi
= 0 or X∗

qi
= 1. Each linear

equation in P1 corresponds to an integral variable X∗
qi

. Let
S1 be the set of queries qi corresponding to these integral
variables X∗

qi
. Also let P2 ⊂ P be a set of these |Q| linear

equations of the form X∗
qi

= X∗
qj

. We construct a graph

G(X∗, P2) whose vertex set V (G) is the set of variables X∗
qi

for all queries qi ∈ Q as follows: we put an edge between a
vertex X∗

qi
to a vertex X∗

qj
if and only if X∗

qi
= X∗

qj
is a lin-

ear equation in P2. Thus, if there is path between two nodes
X∗

qi
and X∗

qj
in G, we have X∗

qi
= X∗

qj
. Let the connected

components of G be G1, G2, . . . , Gt. As a result, for any two
variables X∗

qi
and X∗

qj
in the same connected component Gp

for 1 ≤ p ≤ t, we have X∗
qi

= X∗
qj

(since there is a path

between any two nodes in the same connected component.)
We say that a connected component Gp is a bad component
if none of the nodes in Gp are in S1. Otherwise, we say
that Gp is a good component. In the following, we show that
the number of bad components is at most one, and this will
prove the lemma. In order to prove this claim, we need to
prove the following lemma:

Lemma 5.3. Graph G as defined above does not have any
cycle.

Proof. For contradiction, assume that there exists a cy-
cle X∗

1 , X∗
2 , · · · , X∗

v in graph G. Thus, all linear equations
X∗

i = X∗
i+1 for 1 ≤ i ≤ v − 1, and X∗

v = X∗
1 are in P .

But these v equations are not independent, and this cycle
contradicts the fact that P is a set of independent linear
equations.

Lemma 5.3 proves that graph G is a forest, and thus con-
nected components Gi for 1 ≤ i ≤ p are all trees, and each

has |V (Gi)| − 1 edges. Now, we observe that for any good
component Gi, there exists exactly one equation in P1. For
any good component Gi, there are |V (Gi)|−1 equations cor-
responding to edges of Gi, and at least one equation in P1.
If there two such equations in P1 for nodes of Gi, then the
union of these two equations and equations corresponding
to edges of Gi form |V (Gi)| + 1 equations in P all defined
on only variable on V (Gi). As a result, these equations can-
not be independent, which contradicts with the fact that P
is a set of independent equations. As a result, each good
component Gi corresponds to exactly |V (Gi)| equations in
P .

Let Y be the set of variables X∗
qi

in good connected com-
ponents of G(X∗, P2). Thus, Y corresponds to a set of all
integral variables X∗

qi
. The above discussion implies that

there are exactly |Y | equations in P characterizing all vari-
ables in Y . As a result, there are |P |−|Y | equations uniquely
identifying all the (fractional) variables in Q\Y . Noting that
|P | = |Q|, we conclude that |Q\Y | equations uniquely iden-
tify all the (fractional) variables in Q\Y , and none of these
equations are of the form X∗

qi
= 0 or X∗

qi
= 1. At most

one of these equations correspond to a tight budget con-
straint (

∑
qi∈Q X∗

qi
c(qi)n(qi) = B), and thus we have at

least |Q\Y |−1 equations of the form X∗
qi

= X∗
qj

on variables

Q\Y in bad components. Since there is no cycle in graph G
and vertices in Q\Y have at least |Q\Y | − 1 edges amongst
them, they should all belong to the same connected compo-
nent (i.e, the only one bad connected component), and thus
have the same value X∗

qi
= X. This completes the proof of

the lemma.

Using Lemma 5.2, we can show that in the query language
model, one can implement the optimal fractional solution
using two budget-constrained ad campaigns. To formally
show this, we assume that queries arrive at the same rate,
and by putting a budget constraint on an ad campaign (that
includes a set of queries), the budget on all queries is con-
sumed at the same rate until it gets used completely.

Theorem 5.4. In the query language model, there ex-
ists a polynomial-time algorithm that computes two budget-
constrained ad campaigns that implement an optimal bid-
ding strategy achieving the maximum value for the advertiser
given a budget constraint.

Proof. The polynomial-time algorithm is as follows:

1. Solve LP 5.2 and compute an optimal solution X∗ such
that X∗

qi
∈ {0, 1, X} for all queries qi.

2. Let S0 and S1 be the sets of queries with the cor-
responding integral variables X∗

qi
= 0 and X∗

qi
= 1,

respectively.

3. Let B1 =
∑

qi∈S1
X∗

qi
c(qi)n(qi).

4. Run the following two ad campaigns:

(a) A campaign with budget B1 on queries in S1.

(b) A campaign with budget B − B1 on queries in
Q\(S0 ∪ S1).

Lemma 5.2 shows that the first step of this algorithm can
be done in polynomial time. To show the correctness of
the algorithm, note that assuming that queries arrive at



the same rate, and based on the definition of the budget-
constrained ad campaign, the value from these two ad cam-
paigns is:

∑
q∈S1

v(q)n(q) +
B −B1

B′
∑

q∈Q\(S0∪S1)

v(q)n(q),

where B′ =
∑

q∈Q\(S0∪S1) c(q)n(q). Note that X∗
qi

= 1 for

qi ∈ S1, we have B1 =
∑

qi∈S1
X∗

qi
c(qi)n(qi) =

∑
qi∈S1

c(qi)n(qi),

and thus B1 +
∑

q∈Q\(S0∪S1) Xc(q)n(q) = B, therefore,

X =
B −B1∑

q∈Q\(S0∪S1) c(q)n(q)
=

B −B1

B′ .

Thus, the value of the optimal solution is:

∑
q∈S1

v(q)n(q) +
∑

q∈Q\(S0∪S1)

Xv(q)n(q) =

∑
q∈S1

v(q)n(q) +
B −B1

B′
∑

q∈Q\(S0∪S1)

v(q)n(q).

Hence, the total value from these two campaigns is the same
as the optimal fractional solution, as desired.

Finally, we observe that the optimal bidding problem with
a budget constraint is APX-hard for the keyword language.

Theorem 5.5. The optimal bidding problem with a bud-
get constraint is APX-hard for the keyword language. More-
over, this problem is not approximable within a factor better
than a multiplicative factor 1− 1

e
.

Proof. We give a simple reduction from the maximum
coverage problem. In an instance of the maximum coverage
problem, we are given a family of subset S1, . . . , Sk ⊂ V ,
and a value w(e) for each element e ∈ V . The goal is
to find a family of k subsets Sa1 , . . . , Sak that maximizes∑

e∈∪i≤kSai
. Given an instance of the maximum coverage

problem, we define an instance of optimal bidding problem
as follows: for each subset Si (1 ≤ i ≤ k) in the maximum
coverage problem, we put a keyword sSi in the set S of key-
words in the optimal bidding problem. The cost c(s) of each
keyword in S is 1 and its value is zero. We also put a query
qe ∈ Q corresponding to each element e ∈ V of the maxi-
mum coverage problem. The value of query qe ∈ Q\S is one
and the cost of each query is zero. Moreover, we say that
a query qe corresponding to an element e can be broadly
matched with any query sSi ∈ S corresponding to any sub-
set Si of the maximum coverage problem that includes the
element e, i.e., e ∈ Si. Finally, we set the budget constraint
B to k. It is not hard to see that the maximum value bidding
strategy on keywords in this instance with the total cost at
most B corresponds to the maximum value set-coverage of
at most k sets in the original problem. This reduction im-
plies that our problem is not approximable within a factor
better than 1− 1

e
unless P=NP, since the maximum coverage

problem is NP-hard to approximate within a factor better
than 1− 1

e
[8].

6. AN EXPERIMENTAL STUDY
In this section, we report results from an experimental

study to address how much an ad campaign loses by us-
ing solely broad match rather than a combination of exact

and broad match types. Our simulation is composed of 30
keywords, where we consider all pairs of keywords as the
set of possible queries. Therefore, while there are “only”
30 keywords an advertiser who is interested in managing all
possible queries will have 435 keywords to consider, which is
tedious for small advertisers. Most advertisers will prefer a
campaign with a small set of keywords which they can easily
track and evaluate, which in our simulation is represented by
the core 30 keywords. The setup is very simple. All queries
have the same cost. The net value of a query is determined
as follows. The value of a keyword is drawn from a stan-
dard normal distribution. The net value of a query is either
(1) the average net value of its keywords, or (2) the max
value among its keywords, or (3) the min value among its
keywords; the precise net value of a query is decided accord-
ing to 1 − 3 uniformly at random. This setting is loosely
motivated by the intuition that some queries just average
the keywords in the query (like “Canon or Nikon”), some
are valued as the best among the keywords (like “Canon
DSLR”), and some valued as the worst among the keywords
(like “Canon calculator”).

Running the simulation 15 times, we obtain that the av-
erage value obtained by solving the integer linear program
while allowing both exact match and broad match was 120.9
while allowing only broad match was 119.2. Furthermore
we obtain that the maximum ratio between the two was less
than 4 percent. This simple simulation supports our initial
hope that not using exact match may be a realistic assump-
tion for some advertisers, in particular, small to medium
advertisers. We must remark that a more detailed experi-
mental study is needed to be more conclusive. Our hope is
that our LP-based algorithms can indeed be run with rea-
sonably sized problems for this purpose.

7. CONCLUDING REMARKS
Our work initiates the study of the bid optimization prob-

lem for advertisers in presence of a common feature in spon-
sored search, ie., the broad match type. The central tech-
nical issue is that choosing to bid on a keyphrase may yield
positive profit from some queries, but may commit one to
implicitly bid on queries in which the profit may be small
or even negative. We propose LP-based polynomial-time al-
gorithms for this problem which is optimal under the query
language model, and is an approximation in the keyword
language model for certain cases while it is NP-Hard to even
approximate the optimal solution to any factor, in general.

Our work leaves open several research problems. A tech-
nical problem is to extend the results here to the multi-slot
case. More precisely, given a “landscape” that is a func-
tion of bids and gives estimated clicks and cost, obtain the
profit-maximizing bidding strategy. A conceptual problem
is to determine a suitable approach for broad match auctions
where search engines are able to provide faithful estimates
for clicks and cost associated with the broad matches, so
advertisers can bid accurately. This involves averaging over
many related queries. A principled approach to formulating
this notion will be of great interest.

Finally, a specific technical question that remains open in
this paper is the approximability of the budget-constrained
version of the optimal bidding problem in the keyword lan-
guage. An interesting aspect of this problem is the following
relation to submodular optimization. Given a subset T ⊂ S
of keywords on which we can bid, let us denote the total cost



and value of the queries that we win as a result of bidding
on keywords in T by C(T ) and V (T ). One can check that
both the value and cost functions V, C : 2S → R are set-
cover-type set functions, and thus they are monotone and
submodular. 5 The optimal bidding problem with a bud-
get constraint in the query language is, therefore, to find
a subset T ⊂ S of keywords that maximizes the submod-
ular function V (T ) subject to the submodular constraint
C(T ) ≤ B. Constant-factor approximation algorithms are
known for maximizing a general monotone submodular func-
tion subject to a knapsack (modular) constraint [19], but
maximizing submodular functions subject to a submodular
constraint (as in our case) is an open question.
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