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Abstract

We analyze the problem of fully implementing a social choice set in ex post equilibrium. We identify
an ex post monotonicity condition that is necessary and—in economic environments—sufficient for full
implementation in ex post equilibrium. We also identify an ex post monotonicity no veto condition that is
sufficient. Ex post monotonicity is satisfied in all single crossing environments with strict ex post incentive
constraints.

We show by means of two classic examples that ex post monotonicity does not imply nor is it implied
by Maskin monotonicity. The single unit auction with interdependent valuations is shown to satisfy ex post
monotonicity but not Maskin monotonicity. We further describe a Pareto correspondence that fails ex post
monotonicity but satisfies Maskin monotonicity.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recent research in auction theory, and mechanism design theory more generally, has led to
a better understanding of models with interdependent rather than private values. Much of this
work has used the solution concept of ex post rather than Bayesian equilibrium.1 The analysis
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of ex post equilibrium is considerably more tractable, because incentive compatible transfers can
frequently be derived with ease and single crossing conditions generating incentive compatibility
are easy to identify. A conceptual advantage of ex post equilibrium is its robustness to the infor-
mational assumptions about the environment. In particular, it often seems unrealistic to allow the
mechanism to depend on the designer’s knowledge of the type space as Bayesian mechanisms
do.2

Research on interdependent values has focussed almost exclusively on the incentive compat-
ibility of the social choice problem in the direct mechanism. In contrast, this paper focuses on
the problem of full rather than partial implementation. The task for the designer, who does not
know the agents’ types, is to choose a mechanism such that in every equilibrium of the mech-
anism, agents’ play of the game results in the outcome specified by the social choice objective
at every type profile. If the social choice problem is described by a social choice set, a set of
social choice functions, then full implementation also requires that every selection from the set
can be realized as an ex post equilibrium under the mechanism. This problem has been ana-
lyzed under the assumption of complete information, i.e., there is common knowledge among
the agents of their types (see Maskin, 1999). It has also been analyzed under the assumption
of incomplete information, with common knowledge among the agents of the prior (or the
priors) according to which agents form their beliefs (see Postlewaite and Schmeidler, 1986;
Palfrey and Srivastava, 1989a and Jackson, 1991). While complete information (or Nash) im-
plementation and incomplete information (or Bayesian) implementation are well understood, the
ex post implementation problem has not been analyzed. In this paper, we develop necessary
and sufficient conditions for ex post implementation, both in general environments and also in
settings of special interest for auction theory.

A strategy profile in an incomplete information game is an ex post equilibrium if each ac-
tion profile is a Nash equilibrium at every type profile. Put differently, each player’s incomplete
information strategy mapping types to messages must remain a best response even if he knew
the types of his opponents. We introduce an ex post monotonicity condition that—along with
ex post incentive compatibility—is necessary for ex post implementation. We show that a slight
strengthening of ex post monotonicity—the ex post monotonicity no veto condition—is suf-
ficient for implementation with at least three agents. The latter condition reduces to ex post
monotonicity in economic environments. These results are the ex post analogues of the Bayesian
implementation results of Jackson (1991), and we employ similar arguments to establish our re-
sults. But just as ex post incentive compatibility conditions are easier to verify and interpret, the
ex post monotonicity condition is easier to verify and interpret than the Bayesian monotonicity
condition, because it depends on complete information utilities and does not involve the prior or
posterior distributions of the agents.

Because an ex post equilibrium is a Nash equilibrium at every type profile, there is a nat-
ural relationship between ex post and Nash implementation. When we compare the complete
with the incomplete information settings, two important differences regarding the ability of the
agents to sustain equilibrium behavior emerges. With complete information, the agents have the
ability to coordinate their actions at every preference profile. Yet with complete information the
designer can also detect individual deviations from the reports of the other agents. The ability
of the agents to coordinate in complete information settings makes the task of implementing the

2 In this paper, we take the solution concept of ex post equilibrium as given. At the end of the introduction, we discuss
alternative justifications for focussing on ex post equilibrium in this context, including our earlier contribution Bergemann
and Morris (2005c).
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social choice outcome more difficult for the designer, but it is made easier by the lack of indi-
vidual incentive constraints. With incomplete information, the first problem becomes easier, but
the second becomes harder. As these two effects are in conflict, we will show that ex post and
Maskin monotonicity are not nested notions. In particular, either one of them can hold while the
other fails. Interestingly, in the class of single crossing environments, ex post monotonicity is
always guaranteed as is Maskin monotonicity. Even though ex post monotonicity has to include
ex post incentive constraints absent in the complete information world, it turns out that the local
property of single crossing indifference curves is sufficient to guarantee ex post monotonicity in
the presence of strict rather than weak ex post incentive constraints.

The “augmented” mechanisms used to obtained our general positive ex post implementation
results inherit some complex and unsatisfactory features from their complete information and
Bayesian counterparts. The hope often expressed in the literature is that it should be possible to
show in specific settings that less complex mechanisms are required. We are able to identify a
number of important settings where ex post implementation is only possible when it is possible
in the direct mechanism. This is true, for example, if the social choice function has a sufficiently
wide range or if the environment is supermodular.

We also use the methods developed for the general case to show that the direct mechanism
has a unique ex post equilibrium in the problem of efficiently allocating goods when bidders
have interdependent values (see Dasgupta and Maskin, 2000 and Perry and Reny, 2002). And in
this context, the interdependent value model delivers new and positive results. With at least three
symmetric bidders, we show that the generalized Vickrey–Clark–Groves (VCG) allocation can
be ex post implemented in the direct mechanism, even though Maskin monotonicity fails. This
result is in stark contrast with the impossibility to Nash implement the single unit auction with
private values. The positive result relies on interdependence. The latter intuition is also confirmed
by contrasting our positive results with a recent result by Birulin (2003). He shows that with two
bidders there are multiple and inefficient ex post equilibria in the single unit auction. With two
agents, bidder i can use a non-truthful bidding strategy to exactly offset a non-truthful bidding
strategy of bidder j . With more than two agents, the strategy of bidder i cannot incorporate
anymore the bidding behavior by j and k and truthtelling becomes the unique ex post equilibrium
strategy.

For twenty years from the mid-1970s to the mid-1990s, there was a large literature devoted
to the problem of full implementation. While elegant characterizations of implementability were
developed, the “augmented” mechanisms required to achieve positive results were complex and
seemed particularly implausible. While the possibility of multiple equilibria does seem to be a
relevant one in practical mechanism design problems, particularly in the form of collusion and
shill bidding, the theoretical literature is not seen as having developed practical insights (with
a few recent exceptions such as Ausubel and Milgrom, 2006 and Yokoo et al., 2004). The gap
between pure implementation theory and practical market design has appeared especially stark
when thinking about full implementation. Following Wilson (1987), we hope that by relaxing
unrealistic implicit common knowledge assumptions, we will deliver predictions that are more
robust and practical. While the complete information implementation literature makes the as-
sumption of common knowledge of preferences, the Bayesian implementation literature makes
the assumption that there is common knowledge of a prior on a fixed set of types; this both seems
unlikely to practical market designers and is a substantive constraint when viewed as a restriction
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on all possible beliefs and higher order beliefs.3 Our hope is partially vindicated by the results of
this paper: it does turn out that in many environments of interest, augmented mechanisms cannot
deliver ex post implementation when direct mechanisms cannot. Of course, direct mechanisms
also have their own robustness critiques, but a number of important papers have shown that, in the
type of interdependent environments discussed in this paper, direct mechanisms can be replicated
by more plausible auction mechanisms.4

This paper identifies the extra condition (ex post monotonicity) required for full implemen-
tation when the ex post incentive compatibility (EPIC) conditions already required for partial
implementation are possible. Our results are only of interest if there are interesting environ-
ments where the EPIC conditions hold. A recent literature has identified sufficient conditions
for EPIC in a widening variety of settings, when agents have one dimensional types (see the
references in footnote 1). On the other hand, Jehiel et al. (2006) show in a recent paper that no
non-trivial social choice functions are ex post implementable in a “generic” class of environ-
ments with multidimensional signals. The results in this paper are moot in such environments.
But some economically natural problems with multidimensional signals will fail the genericity
requirement.5

In this paper, we take the solution concept of ex post equilibrium as given and ask when full
implementation in ex post equilibrium is possible. The interpretation of our results is sensitive to
the justification for using ex post equilibrium as a solution concept. One justification would be a
refinement argument: when ex post equilibria exist, they are more compelling as a solution con-
cept for how the game might be played in a Bayesian setting, even when there are other Bayesian
equilibria. Every ex post equilibrium has the important no regret property which means that no
agent would have an incentive to change his report even if he were to be informed of the true type
profile of the other agents. In this sense, the refinement of an ex post equilibrium shares the spirit
of the subgame perfection refinement with respect to the move by nature. A related justification
is that only ex post equilibria have the property that agents do not have incentives to invest in
finding out other agents’ types; such incentives would lead to instability of the underlying mech-
anism; anticipating this, we might expect them to play the ex post equilibrium.6 Under either of
these justifications, our full implementation results have a natural positive interpretation: under
weak additional assumptions, there are no further ex post equilibria.

In an earlier contribution, Bergemann and Morris (2005c), we formalized a different justifi-
cation for focussing on ex post equilibrium in the context of truthful (or partial) implementation.
We showed that in many environments a social choice problem can be truthfully Bayesian im-
plemented for all beliefs and higher order beliefs about payoff types if and only if it can be
truthfully ex post implemented. Thus for partial implementation, one may focus on ex post equi-
librium. However, the fact that there is a unique ex post equilibrium does not imply that there are
no other Bayesian equilibria on some type spaces. In companion papers, Bergemann and Mor-

3 The common knowledge of a common prior assumption has particularly strong consequences in mechanism design,
as argued by Neeman (2004) and Bergemann and Morris (2005c).

4 See Dasgupta and Maskin (2000) and Perry and Reny (2002).
5 Eso and Maskin (2000) obtain EPIC allocations in a multi-good setting: they assume that each agent has a distinct

signal for each good; utility is additive across goods, but there may be constraints on what bundles of goods can be bought
by a given agent; and a third buyer’s signal has an identical effect on any pair of bidders’ valuations. Bikhchandani (2006)
shows that it is possible to construct EPIC allocations in a private good model with multidimensional signals, and argues
that the genericity condition in Jehiel et al. (2006) requires externalities as well as interdependence.

6 This was a folk justification for focussing on dominant strategies equilibria (in private values settings) in the early
days of the mechanism design literature.
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ris (2005a, 2005b), we address the more demanding requirement of “robust implementation”: all
Bayesian equilibria on all type spaces must deliver the right outcome. While the incentive com-
patibility constraints for this problem are the same as for the ex post implementation problem,7

the resulting “robust monotonicity” condition (equivalent to Bayesian monotonicity on all type
spaces) is strictly stronger than ex post monotonicity (and Maskin monotonicity). The resulting
robust monotonicity notions provide the full implementation counterparts to the robust mecha-
nism design (i.e. partial implementation) questions pursued in Bergemann and Morris (2005b).
Since robust implementation is a much stronger requirement than ex post implementation, our
results in this paper can then be seen as highlighting the dangers of a naive adoption of ex post
equilibrium as a “robust” solution concept.

The paper is organized as follows. Section 2 describes the formal environment and solution
concepts. Section 3 introduces the notion of ex post monotonicity and compares it to Maskin
monotonicity in a simple public good example. Section 4 shows that ex post monotonicity is
necessary and, in economic environments, also sufficient for ex post implementation. We also
provide a sufficient condition—ex post monotonicity no veto—for non-economic environments.
Section 5 considers an important class of single crossing environments; we show that ex post
monotonicity is satisfied in all single crossing environments if the social allocation problem sat-
isfies strict rather than weak ex post incentive constraints. Section 6 provides sufficient conditions
under which ex post implementation is possible in the direct mechanism. Section 7 considers the
single unit auction environment. It is an important example as it fails Maskin monotonicity and
has weak ex post incentive constraints almost everywhere; yet it satisfies ex post monotonicity
and ex post implementation is possible in the direct mechanism. Section 8 presents a Pareto so-
cial choice set with the converse implementation properties: it satisfies Maskin monotonicity but
fails ex post monotonicity. Section 9 extends the analysis to mixed strategy implementation and
the use of stochastic mechanisms. Section 10 concludes.

2. Model

We fix a finite set of agents, 1,2, . . . , I . Agent i’s type is θi ∈ Θi . We write θ ∈ Θ = Θ1 ×
· · ·×ΘI . There is a set of outcomes Y . Each agent has utility function ui : Y ×Θ → R. Thus we
are in the world of interdependent values, where an agent’s utility may depend on other agents’
types.8 A social choice function is a function from states to allocations, or f : Θ → Y . The set
of all social choice functions is F = {f | f : Θ → Y }. A social choice set F is a subset of F .9

In the tradition of the implementation literature, we describe the implementation problem
here for deterministic mechanisms and pure strategies. In Section 9 we extend the analysis to
implementation with stochastic mechanisms and mixed strategies. We postpone the relevant mod-
ifications to accommodate mixed strategies until then.

7 This follows from results in Bergemann and Morris (2005c).
8 We represent the preferences of the agents by utility functions rather than by preference relations as much of the

mechanism design literature with interdependent values uses utility functions rather than preferences. However, all our
results (with the exception of the mixed strategy implementation results in Section 9) only rely on ordinal properties of
the preferences and all results could be restated in terms of preferences rather than utility functions. This is made precise
in Section 4.

9 In the literature on complete information implementation, it is customary to use social choice correspondences (see
Maskin, 1999) whereas in the literature on incomplete information implementation (see Postlewaite and Schmeidler,
1986 and Jackson, 1991) it is customary to use social choice sets. We shall discuss some of the issues regarding ex post
implementation of functions, sets and correspondences in Section 8 in conjunction with the Pareto correspondence.
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A planner must choose a game form or mechanism for the agents to play in order to determine
the social outcome. Let mi be a message of agent i, Mi be the set of messages available to i and
a message profile is denoted by m = (m1,m2, . . . ,mI ) ∈ M = ×I

i=1Mi . Let g : M → Y be the
outcome function and g(m) = y be a specific outcome if message profile m is chosen. Thus a
mechanism is a collection:

M= (
M1, . . . ,MI , g(·)).

Unless otherwise stated, we make no additional assumptions on the structure of the type space Θ ,
the outcome space Y , or the message space M .10

For the given environment, we can combine the type space Θ with a mechanism M to get
an incomplete information game. We wish to analyze the ex post equilibria of the incomplete
information game (without a prior). A pure strategy in this game is a function si : Θi → Mi .

Definition 1 (Ex post equilibrium). A pure strategy profile s∗ = (s∗
1 , . . . , s∗

I ) is an ex post equi-
librium if

ui

(
g
(
s∗(θ)

)
, θ

)
� ui

(
g
(
mi, s

∗−i (θ−i )
)
, θ

)
,

for all i, θ and mi .

An ex post equilibrium is a Nash equilibrium for every type profile θ . We observe that the
notion of an ex post equilibrium does not refer to prior or posterior probability distributions of
the types as the Bayesian Nash equilibrium does. The ex post equilibrium has an ex post no regret
property in the incomplete information game, as no agent would like to change his message even
if he were to know the true type profile of the remaining agents.11

In an environment with private values, the notion of ex post equilibrium is equivalent to the no-
tion of dominant strategy equilibrium. If in addition one could guarantee strict dominant strategy
incentives, then full implementation can be achieved by fiat. The importance of the distinction
between weak and strict incentive compatibility for implementation will be discussed in detail
in the context of the single unit auction in Section 7. Results about the private value special case
and dominant strategy incentive compatibility are collected in Appendix A.

Definition 2 (Ex Post Implementation). Social choice set F is ex post implementable (in pure
strategies) if there exists a mechanismM such that:

(1) for every f ∈ F , there exists an ex post equilibrium s∗ of the game that satisfies:

g
(
s∗(θ)

) = f (θ), ∀θ ∈ Θ;
(2) for every ex post equilibrium s∗ of the game there exists f ∈ F such that:

g
(
s∗(θ)

) = f (θ), ∀θ ∈ Θ.

10 In Section 5, we assume that Y is compact subset of R
n with non-empty interior. In Section 9, we let Y be a lottery

space.
11 Ex post incentive compatibility was discussed as “uniform incentive compatibility” by Holmstrom and Myerson
(1983). Ex post equilibrium is increasingly studied in game theory (see Kalai, 2004) and is often used in mechanism
design as a more robust solution concept (see Cremer and McLean, 1985 and the references in footnote 1).
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Implementation then requires that the equilibria of the mechanism exactly coincide with the
given social choice set. The notion of implementation defined above is sometimes referred to as
“full” implementation (see Dasgupta et al., 1979; Maskin, 1999 and Postlewaite and Schmeidler,
1986).

3. Monotonicity

3.1. Ex post monotonicity

Implementation is meant to address the problem that privately informed agents may consis-
tently misrepresent their information and jointly establish equilibrium behavior which fails to
realize the social choice objective of the planner. The notion of ex post monotonicity is easiest
to grasp by considering the direct revelation game. If we were just interested in partially imple-
menting F —i.e., constructing a mechanism with an ex post equilibrium achieving a selection
f ∈ F —then by the revelation principle we could restrict attention to the direct mechanism and
a necessary and sufficient condition is the following ex post incentive compatibility condition.

Definition 3 (Ex Post Incentive Compatibility). F is ex post incentive compatible (EPIC) if for
every f ∈ F :

ui

(
f (θ), θ

)
� ui

(
f (θ ′

i , θ−i ), θ
)
,

for all i, θ and θ ′
i .

In the direct mechanism, a misrepresentation by an agent is a non-truthtelling strategy. As such
it is an attempt by the agent to deceive the designer and we refer to such a misrepresentation as
a deception αi by agent i:

αi : Θi → Θi.

The deception αi represents i’s reported type as a function of his true type. The entire profile of
deceptions is denoted by:

α(θ) = (
α1(θ1), . . . , αI (θI )

)
.

In the direct mechanism, if agents report the deception α(θ) rather than truthfully report θ , then
the resulting social outcome is given by f (α(θ)) rather than f (θ). We write f ◦α(θ) � f (α(θ)).
The notion of ex post monotonicity guarantees that there exists a whistle-blower (among the
agents) who (i) will alert the designer of deceptive behavior α by receiving a reward for his alert;
and (ii) will not falsely report a deception in a truth-telling equilibrium.

Definition 4 (Ex Post Monotonicity). Social choice set F satisfies ex post monotonicity (EM) if
for every f ∈ F and deception α with f ◦ α /∈ F , there exists i, θ and y ∈ Y such that

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
, (1)

while

ui

(
f

(
θ ′
i , α−i (θ−i )

)
,
(
θ ′
i , α−i (θ−i )

))
� ui

(
y,

(
θ ′
i , α−i (θ−i )

))
, ∀θ ′

i ∈ Θi. (2)
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It is convenient to denote the set of allocations that make agent i worse off (relative to the
social choice function f ) at all of his types, θ ′

i ∈ Θi , and a given type profile θ−i ∈ Θ−i of the

other agents by Y
f
i (θ−i ):

Y
f
i (θ−i ) �

{
y: ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
y, (θ ′

i , θ−i )
)
,∀θ ′

i ∈ Θi

}
. (3)

Thus (2) can be replaced with the requirement that y ∈ Y
f
i (α−i (θ−i )). The set Y

f
i (θ−i ) depends

on the selection f ∈ F and is referred to as the reward set. It is the set of allocations which
can be used to reward the whistle-blower without upsetting the truthtelling equilibrium realizing
the social choice function f . If the social choice objective is a function rather than a set then
we can omit the superscript on the reward set for notational ease. We refer to the subset of the
reward set which also satisfies the reward inequality (1) as the successful reward set and denote
it by Y ∗

i (θ−i ).
The definition of ex post monotonicity suggests a rather intuitive description as to why

monotonicity is a necessary condition for implementation. Suppose that some selection f ∈ F

is ex post implementable. Then if the agents were to deceive the designer by misreporting α(θ)

rather than reporting truthfully θ and if the deception α(·) would lead to an allocation outside of
the social choice set, i.e. f ◦ α /∈ F , then the designer should be able to fend off the deception.
This requires that there is some agent i and profile θ such that the designer can offer agent i

a reward y for denouncing the deception α(θ) if the true type profile is θ . Yet, the designer has to
be aware that the reward could be used in the wrong circumstances, namely when the true type
profile of the remaining agents is α−i (θ−i ) and truthfully reported to be α−i (θ−i ). The strict in-
equality (1) then guarantees the existence of a whistle-blower, whereas the weak inequalities (2)
guarantee ex post incentive compatible behavior by the whistle-blower.

3.2. Maskin monotonicity

Maskin (1999) introduced a celebrated monotonicity notion which is a necessary and almost
sufficient condition for complete information implementation. In the complete information en-
vironment, each agent i is assumed to know the entire type profile θ rather than just his private
type θi . In consequence, the deception of each agent pertains to the entire type profile θ ∈ Θ , or:

αi : Θ → Θ.

With complete information, it is easy to detect individual deceptions and hence it suffices to
consider collective and coordinated deceptions in which all agents pursue a common deception
strategy, αi = α, for all i.

Definition 5 (Maskin Monotonicity). Social choice set F satisfies Maskin monotonicity (MM) if
for every f ∈ F, α and θ with f ◦ α(θ) /∈ f̂ (θ) for all f̂ ∈ F , there exists i and y ∈ Y such that

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
, (4)

while

ui

(
f

(
α(θ)

)
, α(θ)

)
� ui

(
y,α(θ)

)
. (5)

We state the notion of Maskin monotonicity in such a way as to facilitate a simple com-
parison with ex post monotonicity. Typically, Maskin monotonicity is defined for social choice
correspondences rather than social choice sets. If we start with a social choice correspondence
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φ : Θ → 2Y /∅, then we can define an associated social choice set F = {f | f : Θ → Y } by in-
cluding all social choice functions f which select at all profiles allocations in the image of the
correspondence:

F = {
f | f (θ) ∈ φ(θ),∀θ ∈ Θ

}
.

We compare the notions of social choice set and correspondence in more detail in Section 8.
Comparing ex post and Maskin monotonicity, it may initially appear that ex post monotonicity

is a stronger requirement: the truthtelling constraint is required to hold at (θ ′
i , α−i (θ−i )) for all

θ ′
i ∈ Θi rather than just at α(θ). Thus (2) is stronger requirement than (5) because the incomplete

information reward set Y
f
i (θ−i ) is (weakly) contained in the complete information counterpart

Y
f
i (θ) = {

y: ui

(
f (θ), θ

)
� ui(y, θ)

}
.

The complete information reward set depends on the entire profile θ rather than the profile θ−i

of all agents but i. This difference in the reward sets arises from the informational assumption.
With complete information, all individual deceptions can easily be detected and the designer only
needs to worry about coordinated misrepresentations by all the agents. In the incomplete infor-
mation environment, agent i has private information about θ ′

i and hence incentive compatibility
is required to hold for all types θ ′

i ∈ Θi .
But for either ex post or Maskin monotonicity, we need a preference reversal relative to the

allocation f (α(θ)). If the behavior of the incomplete information reward set Yi(α−i (θ−i )) is lo-
cally similar to the complete information set Yi(α(θ)), then the difference between them may not
matter for implementation purposes. Indeed, we will show that in the important class of single
crossing environments, ex post and Maskin monotonicity coincide. We will illustrate this coin-
cidence in the public good example that follows. But this gap in reward sets may have important
implications. While the Pareto correspondence is always Maskin monotonic, we will later give
an example showing that it is not always ex post monotonic.

But outside the single crossing environment, ex post monotonicity is not necessarily a stronger
notion than Maskin monotonicity. In the complete information environment, the agents are
(implicitly) allowed to perfectly coordinate their misrepresentation for every societal type pro-
file θ . In contrast, in the incomplete information world, agent i has to deceive, i.e. determine
αi : Θi → Θi , independently of the type profile of the other agents. For this reason, it is strictly
more difficult to find a reward y for Maskin monotonicity than for ex post monotonicity. In
other words, the independent choice of deception αi leads to a strictly smaller number of feasi-
ble deceptions α in the incomplete information context. In the context of a single unit auction
with interdependent valuations, this second difference will enable us to show that the single unit
auction can be implemented in ex post equilibrium, yet fails to be implementable in complete
information, and hence fails Maskin monotonicity.

3.3. Public good example

We will illustrate ex post monotonicity, and the relation to Maskin monotonicity, with the
following public good example. The utility of each agent is given by:

ui(θ, x, t) =
(

θi + γ
∑
j 	=i

θj

)
x + ti , (6)

where x is the level of public good provided and ti is the monetary transfer to agent i. The
utility of agent i depends on his own type θi ∈ [0,1] and the type profile of other agents, with
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γ � 0. The cost of establishing the public good is given by c(x) = 1
2x2. The planner must choose

(x, t1, . . . , tI ) ∈ R+ × R
I to maximize social welfare, i.e., the sum of gross utilities minus the

cost of the public good:((
1 + γ (I − 1)

) I∑
i=1

θi

)
x − 1

2
x2.

The socially optimal level of the public good is therefore equal to

x(θ) = (
1 + γ (I − 1)

) I∑
i=1

θi .

The social choice set F can then be described by:

F =
{

(x, t1, . . . , tI ) : Θ → R
I+1

∣∣x(θ) = (
1 + γ (I − 1)

) I∑
i=1

θi

}
,

where the level of the public good is determined uniquely, but the designer is unrestricted in his
choice of transfers. By standard arguments, ex post incentive compatibility pins down the levels
of transfers12:

ti (θ) = hi(θ−i ) − (
1 + γ (I − 1)

)(
γ

(∑
sj 	=iθj

)
θi + 1

2
θ2
i

)
. (7)

The complete information reward set Yi(θ) is now characterized by an indifference curve in the
(x, ti) space. With the linear preferences here it is simply a straight line. The reward set is given
by the set of allocations below the indifference curve. In contrast, the incomplete information
reward set Yi(θ−i ) is characterized by the intersection of the reward sets for all θ ′

i ∈ Θi , or:

Yi(θ−i ) =
⋂

θ ′
i∈Θi

Yi(θ
′
i , θ−i ).

The boundary of the set Yi(θ−i ) is the set of all truthtelling allocations{
x
(
θ ′
i , θ−i

)
, ti

(
θ ′
i , θ−i

)}
θ ′
i∈Θi

.

The respective reward sets are depicted for I = 3, γ = 1
4 , and θi = 1

4 for all i in Fig. 1 (setting
hi(θ−i ) = ti (0, θ−i ) = 0 for all θ−i ).

The crucial observation is now that the slope of the boundary of the set Yi(θ−i ) at θ = (θi, θ−i )

is identical to the slope of the boundary of the set Yi(θ). In other words, locally, the slope of the
boundary of Yi(θ−i ) is determined by the preferences of type θ . It then follows that if we can
guarantee preference reversal at the allocation f (α(θ)), essentially the crossing of the indiffer-
ence curves for θ and α(θ), then the indifference curve of type θ will also cross with the boundary
of the set Yi(θ−i ). This is illustrated with θi = 3

4 and αi(θi) = 1
4 for all i in Fig. 2.

12 In this example, and in interdependent public good problems with more general functional forms, it is possible to find
ex post incentive compatible transfers for all values of γ � 0. This can be established using conditions in Bergemann
and Välimäki (2002). This contrasts with the case of allocating a private good with interdependent values, where ex post
incentive compatibility puts an upper bound on the amount of interdependence (Dasgupta and Maskin, 2000). However,
Fieseler et al. (2003) point out that negative interdependence, or γ < 0, relaxes the ex post incentive constraints in the
private good problem.
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Fig. 1. Reward sets Yi(θ), Yi(θ−i ).

Fig. 2. Successful reward sets Y ∗
i
(θ), Y ∗

i
(θ−i ).
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This basic insight allows us later to conclude that despite the additional incentive constraints
imposed by the ex post monotonicity condition, the single crossing environment by itself is strong
enough to guarantee the ex post monotonicity condition. The only modification we need is to
strengthen the necessary condition from weak to strict ex post incentive compatibility.

4. Ex post implementation

We present necessary and sufficient conditions for a social choice set F to be ex-post im-
plementable. Our results extend the work of Maskin (1999) and Saijo (1988) for complete
information implementation and of Postlewaite and Schmeidler (1986), Palfrey and Srivastava
(1989a) and Jackson (1991) on Bayesian implementation to the notion of ex post equilibrium.

4.1. Necessary conditions

Ex post incentive and monotonicity conditions are necessary conditions for ex post imple-
mentation.

Theorem 1 (Necessity). If F is ex post implementable, then it satisfies (EPIC) and (EM).

Proof. Let (M,g) implement F . Fix any f ∈ F . By the implementation hypothesis, there must
exist an equilibrium s = (s1, . . . , sI ), each si : Θi → Mi such that f = g ◦ s. Consider any
i, θ ′

i ∈ Θi . Since s is an equilibrium,

ui

(
g
(
s(θ)

)
, θ

)
� ui

(
g
(
si(θ

′
i ), s−i (θ−i )

)
, θ

)
,

for all θ ′
i ∈ Θi and all θ ∈ Θ . Noting that g(s(θ)) = f (θ) and g(si(θ

′
i ), s−i (θ−i )) = f (θ ′

i , θ−i )

establishes (EPIC).
Now fix any deception α with f ◦ α /∈ F . It must be that s ◦ α is not an equilibrium at some

θ ∈ Θ . Therefore there exists i and mi ∈ Mi such that we have

ui

(
g
(
mi, s−i

(
α−i (θ−i )

))
, θ

)
> ui

(
g
(
s
(
α(θ)

))
, θ

)
.

Let y � g(mi, s−i (α−i (θ−i ))). Then, from above,

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
.

But since s is an equilibrium and f = g ◦ s, it follows that

ui

(
f

(
θ ′
i , α−i (θ−i )

)
,
(
θ ′
i , α−i (θ−i )

)) = ui

(
g
(
s
(
θ ′
i , α−i (θ−i )

))
,
(
θ ′
i , α−i (θ−i )

))
� ui

(
g
(
mi, s−i

(
α−i (θ−i )

))
,
(
θ ′
i , α−i (θ−i )

))
= ui

(
y,

(
θ ′
i , α−i (θ−i )

))
, ∀θ ′

i ∈ Θi.

This establishes the incentive compatibility of the whistle-blower, or y ∈ Y
f
i (α−i (θ−i )). �

We defined ex post monotonicity in terms of the type profiles and associated utility functions.
As ex post monotonicity is the central condition in the subsequent analysis, we want to verify,
as promised earlier, that ex post monotonicity is nonetheless an ordinal rather than a cardinal
concept.
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Definition 6 (Ordinality). The types θi and θ ′
i are ordinally equivalent (θi ∼ θ ′

i ) if for all j ,
θ−i ∈ Θ−i , y and y′,

uj

(
y, (θi, θ−i )

)
� uj

(
y′, (θi, θ−i )

) ⇔ uj

(
y, (θ ′

i , θ−i )
)
� uj

(
y′, (θ ′

i , θ−i )
)
.

In other words, any two types of agent i, θi and θ ′
i , are ordinally equivalent if the ranking of

any pair of alternatives by any agent and for any profile of agents other than i remain unchanged.
With interdependent values, it is important that the ranking remains unchanged not only for
agent i but for all other agents as well.

Definition 7 (Ordinal Social Choice Set). Social choice set F is ordinal if f ∈ F and αj (θj ) ∼ θj

for all j and θj imply f ◦ α ∈ F .

A social choice set is hence called ordinal if for any two profiles, θ and α(θ), which only
differ by ordinally equivalent types, the corresponding allocations remain in the social choice
set.

Lemma 1. If F satisfies ex post monotonicity, then F is ordinal.

Proof. Suppose f ∈ F and αj (θj ) ∼ θj for all j and θj and that

ui

(
f

(
α(θ)

)
, α(θ)

)
� ui

(
y,α(θ)

)
.

By ordinality we have

ui

(
f

(
α(θ)

)
, θ

)
� ui(y, θ).

But if ex post monotonicity holds, we must have f ◦ α ∈ F . �
We proceed by first showing that in a wide class of environments, to be referred to as eco-

nomic environments, ex post incentive and monotonicity conditions are also sufficient conditions
for ex post implementation. We then present weaker sufficiency conditions, in the spirit of the
conditions used in Bayesian implementation, to obtain positive results outside of economic en-
vironments.

4.2. Sufficient conditions in economic environments

The sufficiency arguments—for both the economic and the non-economic environment—will
rely on the use of an augmented mechanism. The mechanism suggested here is similar to the one
used to establish sufficiency in the complete information implementation literature (e.g., Saijo,
1988). Each agent sends a message of the form mi = (θi, fi, zi , yi), where θi is the reported
type, fi is the social choice function suggested by i, zi is a positive integer from the set I =
{1,2, . . . , I } and yi is the reward claimed by i. The set of feasible messages for agent i is given
by:

Mi = Θi × F × I × Y.

The mechanism is described by three rules:

Rule 1. If fi = f for all i, then g(m) = f (θ).
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Rule 2. If there exists j and f such that fi = f for all i 	= j while fj 	= f , then outcome yj is

chosen if yj ∈ Y
f
j (θ−j ); otherwise outcome f (θ) is chosen.

Rule 3. In all other cases, yj (z) is chosen, where j (z) is the agent determined by the modulo
game:

j (z) =
I∑

i=1

zi (mod I ).

We refer to the mechanism described by Rules 1–3 as the augmented mechanism. A strategy
profile in this game is a collection s = (s1, . . . , sI ), with si : Θi → Mi and we write:

si(θi) = (
s1
i (θi), s

2
i (θi), s

3
i (θi), s

4
i (θi)

) ∈ Θi ×F × I × Y ;
and sk(θ) = (sk

i (θ))Ii=1. We observe that if Y and Θ are finite, then the above mechanism is
finite.

Next we define the notion of an economic environment.

Definition 8 (Economic Environment). An environment is economic in state θ ∈ Θ if, for every
allocation y ∈ Y , there exist i 	= j and allocations yi and yj , such that

ui(yi, θ) > ui(y, θ),

and

uj (yj , θ) > uj (y, θ).

An environment is economic if it is economic in every state θ ∈ Θ .

Theorem 2 (Economic Environment). If I � 3, the environment is economic, and F satisfies
(EPIC) and (EM), then F is ex post implementable.

Proof. The proposition is proved in three steps, using the augmented mechanism.

Claim 1. Fix any f ∈ F . There is an ex post equilibrium s with g(s(θ)) = f (θ) for all θ .

Any strategy profile s of the following form is an ex post equilibrium:

si(θi) = (θi, f, ·, ·).
Suppose agent i thinks that his opponents are types θ−i and deviates to a message of the form

si(θi) = (θ ′
i , fi, ·, ·);

if yi /∈ Y
f
i (θ−i ), then the payoff gain is

ui

(
f (θ ′

i , θ−i ), f (θi, θ−i )
) − ui

(
f (θi, θ−i ), f (θi, θ−i )

)
,

which is non-positive by (EPIC); if fi 	= f and yi ∈ Y
f
i (θ−i ), then the payoff gain is

ui

(
yi, (θi, θ−i )

) − ui

(
f (θi, θ−i ), f (θi, θ−i )

)
,

which is non-positive by the definition of Y
f
i (θ−i ).
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Claim 2. In any ex post equilibrium, there exists f ∈ F such that s2
i (θi) = f for all i and θi .

Suppose that for all f ∈ F , there exists i and θi such that s2
i (θi) 	= f . Then there exists θ such

that Rule 1 does not apply in equilibrium.
First suppose that Rule 2 applies at θ , so that there exists j and f such that fi = f for all i 	= j .

Then any agent i 	= j of type θi who thought his opponents were types θ−i , could send a message
of the form mi = (·, fi, zi , yi), with fi 	= f and i = ∑I

k=1 zk and obtain utility ui(yi, θ). Thus
we must have ui(g(s(θ)), θ) � ui(y, θ) for all y and all i 	= j . This contradicts the economic
environment assumption.

Now suppose that Rule 3 applies at θ . Then every agent i of type θi who thought his opponents
were types θ−i , could send a message of the form mi = (·, fi, zi , yi), with i = ∑I

k=1 zk and
obtain utility ui(yi, θ). Thus we must have ui(g(s(θ)), θ) � ui(y, θ) for all y and i. This again
contradicts the economic environment assumption.

Claim 3. For any f ∈ F and in any ex post equilibrium with s2
i (θi) = f for all i and θi ,

f ◦ s1 ∈ F .

Suppose that f ◦ s1 /∈ F . By (EM), there exists i, θ and y ∈ Y
f
i (s1−i (θ−i )) such that

ui(y, θ) > ui

(
f

(
s1(θ)

)
, θ

)
.

Now suppose that type θi of agent i believes that his opponents are of type θ−i and sends message
mi = (·, fi, ·, y), with fi 	= f , while other agents send their equilibrium messages, then from the
definition of g(·):

g
(
mi, s−i (θ−i )

) = y,

so that:

ui

(
g
(
mi, s−i (θ−i )

)
, θ

) = ui(y, θ) > ui

(
f

(
s1(θ)

)
, θ

) = ui

(
g
(
s(θ)

)
, θ

)
,

and this completes the proof of sufficiency. �
The economic environment condition was used to show that in equilibrium, the suggested so-

cial choice functions all have to agree: fi = f for all i. If not, then some agent j could profitably
change his suggestion to fj 	= f and obtain a more desirable allocation than f . The economic
environment assumption guaranteed the existence of an agent j with a preferred allocation.

4.3. Sufficiency conditions in non-economic environments

We now establish sufficient conditions for ex post implementation outside of economic envi-
ronments. For simplicity, we focus on the implementation of social choice functions, rather than
social choice sets, in this section. The ex post sufficient conditions are the natural complements
of the conditions obtained earlier for Bayesian implementation. But because only ex post utilities
matter, they are more easily verified than their Bayesian analogues. We show that a joint strength-
ening of Maskin monotonicity and ex post monotonicity, together with a no veto condition, is
sufficient for ex post implementation. In Section 9 we permit random mechanisms, which will
allow us to strengthen the sufficient conditions presented here substantially.

Within the augmented mechanism there are essentially two ways in which the play of agents
can lead to equilibrium behavior outside of the social choice objective. At any profile θ ∈ Θ ,
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the agents can either misrepresent their true type and fail to alert the designer of the misrepre-
sentation. Or, some agents alert the designer and thus lead him to choose an allocation different
from f (θ). In the former case, Rule 1 of the augmented mechanism applies whereas in latter
case, either Rule 2 or Rule 3 applies. With an economic environment, it was impossible that
in any equilibrium Rule 2 or Rule 3 would apply. It followed that in every equilibrium Rule 1
would apply at all profiles θ ∈ Θ . The ex post monotonicity condition then guaranteed that the
equilibrium conformed with the social choice set. As we abandon the assumption of an eco-
nomic environment, we cannot anymore exclude the possibility that in equilibrium either Rule 2
or Rule 3 might apply. In consequence, the sufficient conditions have to account for these com-
plications. There are now basically two ways to achieve this goal. Either behavior under Rule 2
or Rule 3 can be made to conform with the social choice, or a reward can be offered in the subset
of profiles where Rule 1 applies. The sufficient condition will contain both elements: either an
application of a no veto condition will make behavior under Rule 2 or Rule 3 consistent with the
social choice objective or an ex post monotonicity condition on subsets of Θ guarantees that a
reward can be offered.

The relevant no veto condition is simply the “no veto power” property of Maskin (1999).

Definition 9 (No Veto Power). Social choice function f satisfies no veto power (NVP) at θ if, for
any j , if ui(b, θ) � ui(y, θ) for all y ∈ Y and i 	= j , then f (θ) = b.

Note that no veto power is vacuously true at θ if the environment is economic at θ , since the
latter implies that the premise in the definition is never satisfied.

Under either Rule 2 or Rule 3, (almost) every agent can change the outcome to his most pre-
ferred outcome. If the candidate allocation under either rule is part of an equilibrium, it follows
that at least I − 1 (if Rule 2 applies and I if Rule 3 applies) agents rank the candidate alloca-
tion y higher than any other allocation. The no veto power property guarantees that allocation y

coincides with the social choice set. In other words, the possibility of undesirable equilibrium
behavior is eliminated by no veto power. However, if the no veto power property fails, it might
still be possible to generate a reward on the set of profiles where Rule 1 applies. For any strategy
profile of the agents, the set of profiles at which Rule 1 applies always satisfies a product struc-
ture. Given a strategy profile of the agents, a subset Φi identifies the types of agent i at which
Rule 1 applies. The product set Φ:

Φ � ×I
i=1Φi,

is the set of profiles at which Rule 1 applies, and the complementary set Θ − Φ at which either
Rule 2 or Rule 3 applies. We state the sufficient condition combining ex post monotonicity on
subsets and the no veto power property. We state the conditions for the case of a social choice
function and the straightforward extension to general social choice sets is provided in Appen-
dix A.

Definition 10 (Ex Post Monotonicity No Veto (EMNV)). Social choice function f satisfies ex post
monotonicity no veto if, for any deception α and any product set Φ ⊂ Θ , the following holds: If
the environment is non-economic at each θ ∈ Θ − Φ , then

(1) f satisfies no veto power on Θ − Φ;
(2) if f (α(θ)) 	= f (θ) for some θ ∈ Φ then there exists i, θ ∈ Φ and y such that

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
,
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while

ui

(
f

(
θ ′
i , α−i (θ−i )

)
,
(
θ ′
i , α−i (θ−i )

))
� ui

(
y,

(
θ ′
i , α−i (θ−i )

))
, ∀θ ′

i ∈ Θi.

The strategy profile of the agents could involve truthtelling on a subset Φ (and appealing to
Rule 1) or involve whistle-blowing and misrepresentation on the complementary set Θ −Φ (and
appeal to Rule 2 or Rule 3). The sufficient condition guarantees that for all product sets Φ an
appropriate reward can be found. The condition is weakened by the fact that we only need to
consider those subsets Φ which guarantee that on the complementary subset Θ − Φ all profiles
are non-economic. It follows that the smaller the set Φ becomes (and hence restricting the ability
of the designer to offer rewards), the more demanding is the requirement that all profiles are
non-economic. This then conceivably puts a bound on the number of sets for which the ex post
monotonicity part of the condition has to be verified.

Theorem 3 (Sufficiency). For I � 3, if f satisfies (EPIC) and (EMNV), then f is ex post imple-
mentable.

Proof. We use the same mechanism as before. The argument that there exists an ex post equilib-
rium s with g(s(θ)) = f (θ) is the same as before. Now we establish three claims that hold for
all equilibria. Let

Φi = {
θi : si(θi) = (·, f, ·, ·)}.

Claim 1. In any ex post equilibrium, for each θ /∈ Φ , (a) there exists i such that uj (g(s(θ)), θ) �
uj (y, θ) for all y and j 	= i; and thus (b) the environment is non-economic at θ .

First, observe that for each θ /∈ Φ , there exists i such that s2
i (θi) 	= f . Given the strategies

of the other agents, any agent j 	= i who thought his opponents were types θ−j could send any
message of the form

(·, fj , zj , yj ),

and obtain utility uj (yj , θ). Thus we must have uj (g(s(θ)), θ) � uj (y, θ) for all y and j 	= i;
thus the environment is non-economic for all θ /∈ Φ .

Claim 2. In any ex post equilibrium, for all θ ∈ Φ ,

ui

(
f

(
s1(θ)

)
, θ

)
� ui(y, θ)

for all y ∈ Y
f
i (s1−i (θ−i )).

Suppose that y ∈ Y
f
i (s1−i (θ−i )) and that type θi of agent i believes that his opponents are of

type θ−i and sends message mi = (·, fi, zi , y), while other agents send their equilibrium mes-
sages. Now

g
(
mi, s−i (θ−i )

) = y;
so ex post equilibrium requires that

ui

(
g
(
s(θ)

)
, θ

) = ui

(
f

(
s1(θ)

)
, θ

)
� ui

(
g
(
mi, s−i (θ−i )

)
, θ

)
= ui(y, θ).
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Claim 3. If EMNV is satisfied, then Claim 1 and 2 imply that g(s(θ)) = f (θ) for all θ .

Fix any equilibrium. Claim 1(b) establishes that the environment is non-economic at all θ /∈ Φ .
Suppose g(s(θ)) 	= f (θ) for some θ ∈ Φ . Now EMNV implies that there exists i, θ ∈ Φ and y ∈
Y

f
i (s1−i (θ−i )) such that ui(y, θ) > ui(f (s1(θ)), θ), contradicting Claim 2. Suppose g(s(θ)) 	=

f (θ) for some θ /∈ Φ . By Claim 1(a), there exists i such that uj (g(s(θ)), θ) � uj (y, θ) for
all y and j 	= i. This establishes that no veto power applies at θ . So again EMNV implies that
g(s(θ)) = f (θ). �

EMNV is almost equivalent to requiring ex post monotonicity and no veto power everywhere.
More precisely, we have:

(1) If ex post monotonicity holds and no veto power holds at every type profile θ , then EMNV
holds.

(2) If EMNV holds, then (1) ex post monotonicity holds and (2) if the environment is non-
economic whenever θi = θ∗

i , then no veto power holds whenever θi = θ∗
i . To see (1), set

Φi = Θi for all i; to see (2), set α to be the truth-telling deception and, for some i, Φi =
Θi\{θ∗

i } and Φj = Θj for all j 	= i.

In an economic environment, we only have to verify Φ = Θ . EMNV is then equivalent to
ex post monotonicity as the no veto condition is vacuously satisfied. On the other hand, if the
environment is non-economic at every profile θ ∈ Θ , then the EMNV condition simplifies con-
siderably as it suffices to evaluate the hypothesis at the most restrictive sets, or Φ = {θ} for every
θ ∈ Φ . In particular, we can then state ex post monotonicity and no veto conditions separately.

Definition 11 (Local Ex Post Monotonicity (LEM)). f satisfies local ex post monotonicity if for
all θ and all α such that f (α(θ)) 	= f (θ), there exists i and y with:

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
, (8)

while

ui

(
f

(
θ ′
i , α−i (θ−i )

)
,
(
θ ′
i , α−i (θ−i )

))
� ui

(
y,

(
θ ′
i , α−i (θ−i )

))
, ∀θ ′

i ∈ Θi. (9)

With LEM, the designer can offer a reward y at every type profile θ at which α leads to a
different allocation, or f (α(θ)) 	= f (θ). In contrast, with ex post monotonicity it suffices to find
some θ at which a reward y can be offered. The local version of ex post monotonicity is in fact
identical to Maskin monotonicity with the additional ex post incentive constraints (see (9)).

Corollary 1 (Sufficiency). For I � 3, if f satisfies (EPIC), (LEM) and (NVP), then f is ex post
implementable.

For a non-economic environment, the separate conditions of LEM and NVP are exactly identi-
cal to EM. If the environment is economic in some profiles but not all profiles, the joint conditions
are more restrictive than EMNV.
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5. Single crossing environment

In this section we consider ex post implementation in single crossing environments. To make
full use of the crossing conditions, we restrict attention to social choice problems where Y is
compact subset of R

n with non-empty interior and the social choice correspondence recommend
allocations in the interior of Y . We show that under this mild restriction, single crossing prefer-
ences are essentially sufficient to guarantee ex post monotonicity.

Definition 12 (Interior Social Choice Set). Social choice set F is interior if for all f ∈ F and for
all θ ∈ Θ,f (θ) ∈ intY for all θ ∈ Θ .

The interior condition is essential to use the full strength of the single crossing environment.
In this section we further assume that Y is a convex set and that ui(y, θ) is continuous in y at
all i and θ . The convexity and continuity assumptions appear in establishing that locally, around
f (θ), it is only the single crossing condition with respect to the type profile θ , that matter for the
monotonicity inequalities. We first give a general definition of preference reversal.

Definition 13 (Preference Reversal). The environment is an environment with preference reversal
if for all θ, θ ′ , every open set O contains allocations y, y′ such that for some i:

ui(y, θ) > ui(y
′, θ), while ui(y

′, θ ′) > ui(y, θ ′).

The above definition is weak in the sense that the preference reversal is required to occur only
for one rather than all agents. This weaker version is helpful as the type profiles of the agents
may sometimes interact so as to precisely offset each other in their effect on the preferences of
the agents. We simple require that at two distinct profiles of society, θ and θ ′, there is at least one
agent with a preference reversal.13, 14

As the above definition of single crossing applies to general allocation spaces, it is phrased as
a preference reversal condition. In many applications of mechanism design, the allocation space
for each agent is two-dimensional, say the level of private or public good and a monetary transfer.
In this case, a sufficient condition for preference reversal is the well known intersection or single
crossing condition:

Definition 14 (Single Crossing). The environment is a single crossing environment if for all
z ∈ intY , with Y ⊂ R

2, the indifference curves for any two profiles θ and θ ′ generated by ui(z, θ)

and ui(z, θ
′) intersect at z for some i.

13 With interdependent values the change in the type profile from θ to θ ′ may offset each other as can be easily verified
within the earlier public good example (see Section 3.3). For example we can keep the utility of agent i constant as we
move from θ to θ ′ , where θ ′ is given by

θ ′
j =

⎧⎨
⎩

θj − γ ε, if j = i,

θk + ε, if j = k,

θj , if j 	= i, k.

Now i has identical preferences at θ and θ ′ , but it is easily verified that for all j 	= i, there is preference reversal.
14 The condition can be weakened further: by requiring that each f ∈ F satisfies f (θ) = f (θ ′) if ui(·, θ) = ui(·, θ ′) for
all i, we can weaken the preference reversal condition to hold only at profile pairs, θ and θ ′ , at which there exists i such
that ui(·, θ) 	= ui(·, θ ′).
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With strictness and interiority of F , a local argument allows us to show that, even though
relative to Maskin monotonicity, ex post monotonicity imposes additional ex post incentive
constraints, these additional constraints do not bind. In consequence, the set of dominated al-
locations y is locally identical to the complete information set. For the local argument to go
through, we need to strengthen the ex post incentive constraints in the direct mechanism to strict
rather than weak inequalities.

Definition 15 (Strict Ex Post Incentive Compatibility). Social choice set F is strictly ex post
incentive compatible if for all f ∈ F :

ui

(
f (θ), θ

)
> ui

(
f (θ ′

i , θ−i ), θ
)
,

for all i, θ and θ ′
i 	= θi .

The public good example in Section 3.3 is an example where the (singleton) social choice set
satisfies single crossing, strict EPIC and interiority.

Theorem 4 (Single Crossing). In an environment with preference reversal, every strict ex post
incentive compatible and interior F satisfies ex post monotonicity.

Proof. We start with the contrapositive version of ex post monotonicity, which can be stated as
follows. Fix a deception α. If, for all i and all θ̂ ∈ Θ , we have that

ui

(
f

(
θ ′
i , α−i

(
θ̂−i

))
,
(
θ ′
i , α−i

(
θ̂−i

)))
� ui

(
y,

(
θ ′
i , α−i

(
θ̂−i

)))
for all θ ′

i ∈ Θi and y ∈ Y,

implies that

ui

(
f

(
α
(
θ̂
))

, θ̂
)
� ui

(
y, θ̂

)
,

then f ◦ α ∈ F . For a given θ̂ ∈ Θ with α(θ̂) 	= θ̂ , let us define for notational ease θ � α(θ̂).
Now consider the indifference curve for θ and θ̂ at f (θ). Since the environment has preference
reversal, there is a sequence of allocations {yn}∞n=1 with limn→∞ yn = f (θ) such that for all yn:

ui

(
f (θ), θ

)
> ui(yn, θ)

and

ui

(
f (θ), θ̂

)
< ui

(
yn, θ̂

)
.

We shall now argue that for every θ ′
i ∈ Θi there exists sequence {yn}∞n=1 such that:

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
yn, (θ

′
i , θ−i )

)
. (10)

The proof is by contrapositive. Suppose that (10) did not hold, and that there exists θ ′
i such that

for all yn:

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
< ui

(
yn, (θ

′
i , θ−i )

)
,

then it would follow from continuity of the utility function that:

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
f (θi, θ−i ), (θ

′
i , θ−i )

)
.

But this violates the hypothesis of strict ex post incentive compatibility. We have thus shown
that the hypothesis in the definition of ex post monotonicity is never satisfied and hence the
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implication is never required. It follows that ex post monotonicity is vacuously satisfied in the
single crossing environment. �

The public good example of Section 3 is an example where the (singleton) social choice set
satisfies single crossing, strict EPIC and interiority. The idea of the proof is that with strict ex post
incentive compatibility, the set of allocations which are dominated by the social choice function
is locally (around f (θ)) determined by the preferences of the agents with type profile θ . The
situation is represented in Fig. 3.

If the ex post incentive constraint only holds as an equality for some types, say θi and θ ′
i ,

then the set of allocations dominated by the social choice function is determined locally (around
f (θ)) by the preferences of both types. In this case, the hypothesis of Maskin monotonicity may
be satisfied and hence become a constraint. The second situation is represented in Fig. 4.

A recent contribution by Arya et al. (2000) explores in the private value environment the
relationship between Maskin and Bayesian monotonicity and the single crossing condition. Inter-

Fig. 3. Ex post monotonicity with strictness.

Fig. 4. Failure of strict ex post incentive compatibility
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estingly, their sufficiency result regarding Bayesian monotonicity, also requires that the incentive
compatibility conditions in the direct mechanism are satisfied as strict inequalities. They also
present an example which shows that weak incentive compatibility and the single crossing con-
dition alone do not guarantee Bayesian monotonicity. Incidentally, and for the same reason as in
Arya et al. (2000) for the Bayesian incentive constraints, the strict ex post incentive compatibility
condition actually allows a slightly stronger statement than actually stated in Proposition 4. The
single crossing and strict ex post incentive constraints also imply a strict ex post monotonicity
condition, where all the weak inequalities are replaced by strict inequalities.

The role of the interior assumption for the monotonicity condition has already been empha-
sized in work by Hurwicz et al. (1995). They presented an example of a Walrasian social choice
correspondence where the Walrasian allocation for a given preference profile is on the boundary
of the feasibility set. Naturally then, the indifference curves generated by a second and distinct
set of preferences, intersect at the boundary. The crucial implication of the intersection at the
boundary is that the set of allocations for which the Maskin monotonicity hypothesis fails is
outside the feasible set, and hence Maskin monotonicity fails to hold.

6. Direct mechanisms

In general, the ex post monotonicity conditions guarantee the existence of an incentive com-
patible reward. With the preference reversal environment and the strict ex post incentive con-
straints, we established that local changes in the report of the types are sufficient to establish the
ex post monotonicity conditions. This in fact suggests that preference reversal and strictness of
the ex post incentive constraints jointly guarantee implementation in the direct mechanism. We
pursue this insight and show that in many economically important circumstances ex post imple-
mentation can be achieved in the direct mechanism. In consequence, the implementation does
not have to rely on the augmentation on which much of the positive implementation results in
the literature rest.

By definition, a direct mechanism cannot coordinate the selection of a particular social choice
function f from a set F . Hence, we restrict our attention in this section to the implementation of a
given social function f . The basic problem of implementation in the direct mechanism is that an
agent must be able to claim the reward y by a report, possibly a misreport, of his type. A sufficient
condition for direct implementation is therefore that for every allocation in the reward set Yi(θ−i )

of agent i, another allocation y′ which is weakly preferred to y by agent i can be obtained by an
appropriate report of agent i′s type. In particular, if agent i can induce the choice of every y by
the social choice function f through an appropriate reward, then the direct mechanism offers all
the feasible rewards.

Definition 16 (Full Range). Social choice function f satisfies full range if for all i, all θ−i ∈ Θ−i

and y ∈ Y , there exists θ̂i such that f (θ̂i , θ−i ) = y.

Obviously, the full range condition is a very strong condition, but we shall now show that
much weaker conditions will suffice in many environments. A common feature of many mecha-
nism design models is that the allocation problem has two dimensions, the first is the assignment
of the object and the second the monetary or quasi-monetary transfer. Within this two di-
mensional framework we can obtain positive results for ex post implementation in the direct
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mechanism. We thus suppose for the moment that the utility function of each agent permits the
following representation:

ui(y, θ) = ûi (y0, yi, θ), (11)

where ûi is strictly increasing in yi , generalizing the monetary aspect in the quasilinear model. In
the remainder of this section we hence investigate the implementation of a given social function
f with f = (f0, f1, f2, . . . , fI ), where the pair (f0, fi) represents the relevant two dimensions
of the allocation problem for agent i with Yi ⊂ R for every i. We can now restrict the full range
condition to the single dimension of every agent i.

Definition 17 (One-Dimensional Full Range). Social choice function f satisfies one-dimensional
full range if for all i, y0 ∈ Y0, θ−i ∈ Θ−i , there exists θ̂i such that f0(θ̂i , θ−i ) = y0.

With the monotone utility ûi in yi and the one dimensional full range condition we can indeed
guarantee direct implementation.

Proposition 1 (Direct Implementation with One-Dimensional Full Range). If f satisfies (EPIC),
(EM) and one-dimensional full range, then direct ex post implementation is possible.

Proof. We defined the reward set as:

Yi(θ−i ) = {
y: ui

(
f

(
(θ ′

i , θ−i )
)
, (θ ′

i , θ−i )
)
� ui

(
y, (θ ′

i , θ−i )
)

for all θ ′
i

}
,

and we define the set of allocations attainable for i in the direct mechanism by:

Y ∗
i (θ−i ) = {

y: y = f (θ ′
i , θ−i ) for some θ ′

i

}
.

We now want to show that y ∈ Yi(θ−i ) ⇒ ∃y′ ∈ Y ∗
i (θ−i ) such that ui(y

′, θ) � ui(y, θ) for
all θ . To do this, fix any y ∈ Yi(θ−i ). By one-dimensional full range, there exists θ ′

i such that
f0(θ

′
i , θ−i ) = y0. If fi(θ

′
i , θ−i ) < yi , then ui(y, (θi, θ−i )) > ui(f (θ ′

i , θ−i ), (θ
′
i , θ−i )), contradict-

ing y ∈ Yi(θ−i ). So fi(θ
′
i , θ−i ) � yi . So ui(f (θ ′

i , θ−i ), θ̂ ) � ui(y, θ̂) for all θ̂ .

The full range condition together with the monotonicity in the utility essentially guarantees
that the agent can make a sufficiently large misreport to find an appropriate reward. The public
good example on Section 3 satisfies the monotonicity condition and the one-dimensional full
range condition if Θi = R+. If we replace the monotonicity condition by the single crossing
condition, then a local change in the report is sufficient to guarantee the reward to the whistle-
blower. The type space Θi for every agent i now has to be an open set so that a local change in
the report is always feasible.

Proposition 2 (Direct Implementation with Single Crossing). In a single crossing environment,
if Θi is an open set for every i, and f is interior, continuous in θ , and satisfies strict EPIC, then
f can be ex post implemented in the direct mechanism.

Proof. We first observe that with continuity, strict ex post incentive compatibility, and
monotonicity in the second argument, it must be the case that for all θi, θ

′
i and θi 	= θ ′

i

f0(θi, θ−i ) 	= f0(θ
′
i , θ−i ). Suppose not, then by strict ex post incentive compatibility the allo-

cations have at least to differ in the second dimension, or, fi(θi, θ−i ) 	= fi(θ
′
i , θ−i ). But since

ui(·) is strictly increasing in yi , it follows that this would violate the ex post incentive constraint
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for either θi or θ ′
i . It now follows from continuity that f0(θi, θ−i ) must be monotone in θi for

every θ−i .
We next show that the inequalities of ex post monotonicity can be satisfied for all θ, θ ′ and

that a reward y can always be obtained by means of an allocation which is generated by the social
choice function for some report θ̃i of agent i. Thus consider the indifference curve for θ and θ̂

at f (θ). Since the preferences are single crossing, there is a sequence of allocations {yn}∞n=1 with
limn→∞ yn = f (θ) such that for all yn along the sequence

ui

(
f (θ), θ

)
> ui(yn, θ),

and

ui

(
f (θ), θ̂

)
< ui

(
yn, θ̂

)
. (12)

As in the earlier argument, we now argue that there exists an N such that for all n � N and all yn,
we have

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
yn, (θ

′
i , θ−i )

)
. (13)

The proof is by contrapositive. Suppose now that (13) were not to hold, and that there exists θ ′
i

such that for all N , we can find n � N and yn such that:

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
< ui

(
yn, (θ

′
i , θ−i )

)
,

then it would follow from continuity of the utility function that:

ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
f (θi, θ−i ), (θ

′
i , θ−i )

)
.

But this violates the hypothesis of strict ex post incentive compatibility. We have thus shown that
for an appropriately chosen subsequence of {yn}∞n=1, converging to y = f (θ), all the elements
satisfy (12) and (13).

By continuity and monotonicity of f (·), it follows that we can find a type θ̂i of agent i an
element ŷ � yn, such that f0(θ̂i , θ−i ) = ŷ0. By monotonicity of ui(·) in yi and the validity of (13),
it follows that the corresponding component satisfies fi(θ̂i , θ−i ) � ŷi . Again by monotonicity of
ui(·) in yi , it now follows that f (θ̂i , θ−i ) is at least as desirable for agent i as ŷ. Thus agent i

weakly prefers to claim f (θ̂i , θ−i ) toŷ. But now it follows that agent i can claim the reward
simply by reporting θ̂i in the direct mechanism without appealing to the augmented mechanism
where he would claim ŷ. �

The public good example on Section 3 satisfies the condition of Proposition 2 provided the
type space Θi is open for every i. The openness condition on the type space Θi simply guaran-
tees that agent i can always “downward” and “upward” misreport and obtain a suitable reward y.
It follows that we can easily relax the openness condition and obtain a quasi direct implemen-
tation by means of the following construction. For any given type space Θi , if we can find an
open set Θi such that Θi ⊆ Θi and the single crossing conditions extend to Θi , then we can
directly apply the argument of Proposition 2 to the extended space Θ = ×I

i=1Θi . Moreover, in
equilibrium the agents will report only types θ ∈ Θ belonging to the original type space.

7. Single unit auction

We consider the efficient social choice rule in the single unit auction with interdependent val-
ues as in Dasgupta and Maskin (2000). The auction model presents an interesting environment
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as it fails both the strict ex post incentive compatibility condition as well as the interiority con-
dition. The assignment of the object among the agents changes only at pivotal types. As it stays
constant for many reported types, it satisfies weak but not strict ex post incentive compatibil-
ity. The efficient assignment problem is also a canonical example of an exterior social choice
function as for almost all preferences profiles, one agent receives the object with probability one
and all other agents receive the object with probability zero. Despite the failure of the model
to satisfy the conditions of Theorem 4, we will show that the local violations of strict ex post
incentive compatibility and interior allocation can be overcome to establish implementation in
ex post equilibrium, in particular by the direct mechanism. Incidentally, the local failure of these
conditions leads to a failure of Maskin monotonicity when ex post monotonicity is still guaran-
teed.

7.1. Model

The utility function of agent i in the assignment problem is given by:

ui(xi, ti , θ) = xivi(θ) + ti ,

where xi is the probability that agent i receives the object, ti is his monetary payment and vi(θ)

is his interdependent valuation. We assume that vi(θ) is continuously differentiable in θi and
that:

∂vi(θ)

∂θi

> 0 and
∂vi(θ)

∂θj

	= 0. (14)

The first condition simply says that a higher signal by i leads to a higher value of i and the second
condition guarantees that we are in an interdependent rather than private value environment. The
single crossing condition is, as in Dasgupta and Maskin (2000), that for all i, j and θ , if

vi(θ) = vj (θ) = max
k

{
vk(θ)

}
,

then
∂vi(θ)

∂θi

>
∂vj (θ)

∂θi

. (15)

We restrict our attention to a symmetric environment and a compact type space Θi = [0,1]. We
consider the efficient allocation rule and in case of a tie at the top, we assign the object with
equal probability among the agents with the highest valuation. The ex post incentive compatible
transfer rule is of the form:

ti (θ) = −vi( θ i, θ−i ), (16)

where θ i is determined by:

θ i = min
{
θ ′
i ∈ Θi | vi(θ

′
i , θ−i ) � vj (θ

′
i , θ−i ), j 	= i

}
.

The efficient direct mechanism satisfying (16) is the generalized Vickrey–Clark–Groves (VCG)
mechanism.

7.2. Monotonicity and the VCG mechanism

We present three results in this subsection. We first show that the generalized VCG mecha-
nism satisfies the ex post monotonicity condition. In fact the positive result is strengthened to
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obtain ex post implementation in the direct mechanism. We then show that even though ex post
monotonicity is satisfied, Maskin monotonicity fails.

Proposition 3 (Ex Post Monotonicity).

(1) For I � 3, the generalized VCG mechanism satisfies ex post monotonicity.
(2) For I � 3, the direct generalized VCG mechanism has a unique pure ex post equilibrium.

Proof. By Theorem 1, ex post monotonicity is a necessary condition for ex post implemen-
tation. It is therefore sufficient to show that the generalized VCG mechanism can be ex post
implemented. We show that the unique equilibrium in the direct mechanism is the truthtelling
equilibrium. Suppose not and there exists another ex post equilibrium. It follows that for some
agent i and some type profile θi , we have that si(θi) 	= θi . We define the highest possible type
across all agents for which we observe a report different from truthtelling:

θ = max
i∈I

sup
{
θi ∈ Θi | si(θi) 	= θi

}
. (17)

We suppose initially that

sup
{
θi ∈ Θi | si(θi) 	= θi

} = max
{
θi ∈ Θi | si(θi) 	= θi

}
,

for all i ∈ I , which we shall later relax.
Consider first θ < 1 and si(θ) < θ . We take agent i with θi = θ and si(θ) and consider

for all other agents j 	= i , a type profile θj = θ + ε for some arbitrarily small ε > 0 so that
si(θ) < θ < θj . At θj , we know from (17), that sj (θj ) = θj . It follows that at the type profile
(θi, θ−i ) and associated reports, all agents j 	= i receive the object with the same probability but
due to the misreport of agent i at a transfer tj (·) (per unit of the object)

tj
(
si

(
θ
)
, θj = θ + ε

)
> −vj

(
θi = θ, θj = θ + ε

)
, (18)

which is strictly below the value of the object for agent j . It follows that every agent j 	= i has
a unilateral profitable deviation by reporting a higher type θ ′

j > θj . With the higher report, he
will still pay the same transfer (per unit) by the VCG mechanism, but agent j will then receive
the object with probability one. By (18), the net utility of the transaction is strictly positive and
hence agent j strictly increases his payoff with the deviation.

Consider next θ < 1 and si(θ) > θ . We now take agent i at θi = θ with si(θ) and consider
for all other agents j 	= i , θj = θ + ε for some arbitrarily small ε > 0. At this profile θi = θ and
θj = θ + ε, agent i receives the object under the deception but at a transfer which is larger than
the value of the object to him:

ti
(
si

(
θ
)
, θj = θ + ε

)
< −vi

(
θi = θ, θj = θ + ε

)
. (19)

It follows that by reporting a sufficiently low type profile so that he will not receive the object and
receive a zero transfer, he can guarantee himself a zero net utility which is a strict improvement
about his candidate negative net utility as displayed in (19).

Consider next θ = 1, then si(θ) < θ has to hold. We observe first that at most one agent i can
offer a downward biased report in equilibrium. If more than one agent would downward report
at θj = 1, then each one of the downward reporting agents would have a strict incentive to report
the maximal type θj = 1, as the monetary transfer (per unit) would be strictly less than the value
of the object. It thus follows that all agents j 	= i report truthfully at θj = 1, for otherwise they
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would downward report and then agent i would always have a strict incentive to recover his bid
and report truthfully.

By the same argument, it also follows that no agent other than i can ever downward report at
any type profile θj ∈ Θj . Suppose to the contrary and that agent j downwards report at some θ ′

j

with sj (θ
′
j ) < θ ′

j . Consider then the true profile θ = (θj ,1,1, . . . ,1). With the downward report
sj (θ

′
j ) < θj , agent i would again have a strict incentive to report truthfully as the downward

report by agent j leads to a transfer payment strictly less than the true value of the object. It hence
follows that for all agents j 	= i we only have to consider truthtelling or upward deceptions.

With agent i downward reporting at θi = 1, we now argue that at least one agent j 	= i has to
consistently upward report for all θj ∈ (si(1),1). For suppose not, then we can find some type
profile θ−i with θj ∈ (si(1),1) for all j 	= i, such that all agents j report truthfully. But at such
a type profile agent i would loose with his report of si(1), when he values the object higher
than everybody else and would have to pay a transfer strictly less than the value of the object
to him. As this cannot be an equilibrium strategy profile, it follows that at least one agent most
consistently misreport upwardly.

We finally argue that this cannot be an equilibrium strategy profile for agent j either. To see
this consider the true profile θi = 0 for agent i. At θi = 0, agent i cannot downward report, at
least he has to report truthfully, and by the earlier argument all the other agents also report at
least truthfully. But now consider agent j with an upward report at some θ ′

j and sj (θ
′
j ) > θ ′

j .
Consider now the type profile θ = (θi = 0, θj = θ ′

j , sj (θ
′
j ), . . . , sj (θ

′
j )). In other words, at type

profile θ all agents but i and j have a true type exactly equal to the reported profile of agent j . It
follows that either agent j receives the object with positive probability at θ or that he looses out
as some other agent, say k, different from i and j also misreports upwardly. But in either case,
agent j or agent k will have to pay more than the object is worth to them. It follows that either
the candidate strategy of agent j or k offers a profitable deviation by sufficiently lowering the
report so that either j or k fails to get the object, receives a zero transfer and guarantees himself
a zero net utility. We thus have obtained a contradiction to a candidate equilibrium involving a
downward report at θ = 1.

It remains to consider the situation where

θ = max
i∈I

sup
{
θi ∈ Θi | si(θi) 	= θi

} 	= max
i∈I

max
{
θi ∈ Θi | si(θi) 	= θi

}
,

for some i. By definition of θ , for every ε > 0, we can then find an agent i and a type θi , such that
θ − ε < θi < θ , and si(θi) 	= θi . Now we can repeat the above arguments for θ < 1 with si(θ) < θ

or si(θ) > θ at the type profile θ = (θi, θ, θ, . . . , θ).
For θ = 1, we can still find for every ε > 0, an agent i and a type θi , such that 1 − ε <

θi < 1 , and si(θi) 	= θi . If for all such θi , we have si(θi) < θi , then the above argument goes
through without modifications. The remaining possibility is that for all ε > 0, and θi satisfying
1 − ε < θi < 1, we have si(θi) > θi . But this cannot be an equilibrium either because at profile
θ = (θi,1,1, . . . ,1), all agents j 	= i report by assumption truthfully, but with si(θi) > θi , every
agent j would pay a transfer strictly exceeding the value of the object. Thus, we have excluded
all other candidate ex post equilibria which involve misreporting for some agents at some type
profiles. �

The idea behind the proof is quite simply and relies essentially on interdependent rather than
private valuations. Essentially we used two reward schemes. We either gave a currently winning
agent the object with probability one at the current price or we released the current winner, i.e. did
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not give him the object and gave him a zero transfer. These rewards can be (implicitly) claimed
in the direct mechanism. If an agent k finds it profitable to receive the object with probability
one, then he can do so in the direct mechanism by slightly increasing his reported type. If an
agent k would like not to receive the object, then he could always guarantee this by lowering his
announced type profile.

This basic argument highlights the role of pivotal profiles at which an increase or decrease in
the reported type leads to a change in the allocation. At type profiles at which the auctioneer is
indifferent between assigning the object among two or more agents, the pivotal or competitive
profiles, two important things happened. First, the allocation rule is now in the interior as the
auctioneer awards the object to competitive bidders with the same probability. Second, even
though at the competitive profile, the ex post incentive constraints are only weak inequalities, in
any neighborhood of the competitive profile, we can find strict ex post incentive constraints. In
light of the earlier results on the single crossing environment, notably Theorem 4, we then find
that it is the existence of pivotal profiles which matters for ex post implementation rather than
the everywhere strictness of the ex post incentive constraints.

In this respect, we should point out that the role of the symmetric valuations is precisely to fa-
cilitate the location of pivotal profiles θ . The proof of Proposition 3 would go through unchanged
if we were to abandon symmetry everywhere except at the lowest and highest type profiles, or at
θ = (0, . . . ,0) and θ = (1, . . . ,1). In fact, the only property of the symmetry at the bottom and
the top we really need, is that for every type profile θi of agent i, there exists another agent j and
type profile θ−i such that j is competitive with respect to i at θ = (θi, θ−i ). Hence a different
sufficient condition for ex post implementation in the single unit auction model would be the full
range condition introduced in Section 5.

Despite the positive ex post implementation results, the generalized VCG mechanism fails
Maskin monotonicity. Indeed, the generalized VCG mechanism is an important example where
the two monotonicity notions fail to coincide.

Proposition 4 (Maskin Monotonicity). The generalized VCG mechanism fails Maskin monoton-
icity.

Proof. Consider a profile θ such that

vi(θ) > vj (θ), ∀j 	= i.

Then by the single crossing conditions (14) and (15) we can find θ ′ with

θ ′
i > θi, θ ′

j < θj

such that

vi(θ
′) > vi(θ), vj (θ

′) < vj (θ).

It then follows that

ti (θ) > ti(θ
′).

We now recall that a social choice function f is Maskin monotone, if for all θ, θ ′ ∈ Θ :

ui

(
f (θ), θ

)
� ui(y, θ) ⇒ ui

(
f (θ), θ ′) � ui(y, θ ′) (20)

for all i and y, then

f (θ) = f (θ ′). (21)
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We can verify that the implication (20) holds for all i and y, but the conclusion to be drawn,
f (θ) = f (θ ′), obviously fails as the transfers offered to agent i have to be different to guarantee
incentive compatibility. �

We should add that there are transfer rules which satisfy Maskin monotonicity, but neces-
sarily fail ex post incentive compatibility. For example, a constant transfer rule satisfies Maskin
monotonicity, but obviously is not ex post incentive compatible. Yet as Maskin monotonicity is
concerned with complete information environments, this may be less of a concern for the notion
of Maskin monotonicity.

The existence rather than ubiquitousness of the pivotal profiles also underlies the difference
between ex post and Maskin monotonicity. With ex post monotonicity we can search for a com-
petitive profile among all types of agent i given the type profile of the other agents, whereas
with Maskin monotonicity and the inherent synchronicity of complete information, we cannot
do that. In particular, the fact that for most type profiles we are at the exterior of the allocation
space is a problem for Maskin, but not necessarily for ex post monotonicity. Provided that the so-
cial choice function is at least sometimes in the interior we can use the single crossing condition
at the interior profiles.

7.3. Private versus interdependent values

We can now make an interesting observation regarding the implementation of the single unit
auction. Suppose we consider the Vickrey auction (for the private value model) and the gen-
eralized Vickrey–Clark–Groves mechanism (for the interdependent value model). With private
values, we have a failure of Maskin and ex post monotonicity. However with interdependent val-
ues, this coincidence ceases to exist and while Maskin monotonicity continues to fail, ex post
monotonicity can be reestablished. While it is well known that the second price auction cannot
be Nash implemented (see Saijo et al., 2004), the positive results here regarding interdependent
valuations are new in the literature.

The intuition for the divergence between private and interdependent values goes as follows. In
a private value model, if one agent submits the highest possible report and all other agents submit
the lowest possible report, then the former receives the object at the lowest possible price. Any
attempt to reward a whistle-blower will then inevitably violate the ex post incentive compatibility
constraint. In contrast, consider the exact same reporting strategy with interdependent valuations.
Now we can reward a loosing agent in all those instances where the loosing agents all report
the lowest value but in fact all have a higher valuation. We can reward every loosing agent by
giving him the object and asking him to pay only as much as the reported value would suggest.
This satisfies ex post incentive compatibility, but at the same time provides the reward to break
the undesired equilibrium. Yet, it is clear that the argument relies essentially on interdependent
rather than private values. The distinction in the ex post implementation result between private
and interdependent values continues to exist for any arbitrary small amount of interdependence.

The distinction between private and interdependent values also becomes apparent in the role
of the three or more agent condition in Proposition 3. In a recent paper, Birulin (2003) shows that
with two agents there is a continuum of inefficient undominated ex post equilibria in the single
unit auction model with the generalized VCG mechanism. In contrast, Chung and Ely (2001)
show that with two bidders, the efficient equilibrium is the only outcome which survives the
process of iterative deletion of ex post weakly dominated strategies. Birulin (2003) shows there
are other equilibria which involve monotone, but discontinuous, reporting strategies, which lead
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to inefficient equilibria. The idea behind the construction is that over an arbitrary interval of pro-
files, agent i overstates and agent j understates his type. The reporting strategies are constructed
precisely on the basis of the indifference conditions of i and j at the lower and upper end of the
interval where a misreport occurs. The deception strategy of agent i is basically determined by
agent j ’s true valuation and vice versa. This construction is not feasible anymore when there are
more than two agents. With more than two agents, the valuation of agent j will depend on the
type of agent i, j and k. In consequence the derivation of the deception strategy of agent i will
not only depend on agent j ’s critical type, but the exact type of agent k. But of course the strat-
egy of agent i cannot depend simultaneously on the type of agent j and k. In fact, Proposition 3
showed that there is no deception strategy which will lead to an equilibrium different from the
efficient equilibrium.

8. Social choice sets

In the initial discussion of ex post and Maskin monotonicity we argued that the notions di-
verge in two aspects: (i) the set of profiles at which rewards could be offered and (ii) the size
of the reward set. The single unit auction demonstrated the relevance of the first aspect. The
set of profiles at which the designer could offer a reward to the whistle-blower was larger with
ex post monotonicity. In consequence, we could satisfy ex post monotonicity yet fail Maskin
monotonicity. This section considers the reverse case, in which Maskin monotonicity is sat-
isfied but ex post monotonicity fails. At the end of this section, we shall also discuss the
relationship between functions, correspondences and sets in the context of ex post implemen-
tation.

8.1. Pareto correspondence

Maskin (1999) observes that many prominent social choice correspondences, among them
the Pareto, the Condorcet and the Walrasian correspondences, satisfy the complete informa-
tion monotonicity notion. We now show with a specific Pareto correspondence that ex post
monotonicity fails to share this property. Similar examples can be constructed for the Condorcet
and the Walrasian correspondence. As we would expect, the divergence between the two notions
arises from the difference in the respective reward sets.

The Pareto correspondence is generally defined by:

PO(θ) = {
y ∈ Y | ∀z ∈ Y,∃i s.t. ui(y, θ) � ui(z, θ)

}
.

We consider an example with three agents, i = 1,2,3 and each agent has two possible types:
θi ∈ Θi = {0,1}. A type profile is then given by θ = (θ1, θ2, θ3) ∈ Θ = ×3

i=1Θi . The set of
allocations, Y , has the same cardinality as the type space, Θ . For simplicity, allocations and type
profiles carry the same labels, but allocations are described as strings rather than vectors:

Y = {000,001,010,011,100,101,110,111}.
The payoffs of the agents are described for every true type profile θ = (θ1, θ2, θ3) below. In each
matrix, each cell identifies the utility from a specific allocation. As the type set coincides with the
allocation set, the described utilities also represent the payoffs arising in the direct mechanism
for any reported type profile by the agents:
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θ = (0,0,0) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 3,0,0 0,0,0 θ1 = 0 0,0,0 0, ε,0
θ1 = 1 1,1,1 0,0,0 θ1 = 1 0,0,0 ε, ε, ε

θ = (0,0,1) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 0,0,0 0,0,0 θ1 = 0 0,3,0 1,1,1
θ1 = 1 0,0,0 ε, ε, ε θ1 = 1 0,0,0 ε,0,0

θ = (0,1,0) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 1,1,1 0,3,0 θ1 = 0 0,0,0 0,0,0
θ1 = 1 0,0, ε 0,0, ε θ1 = 1 ε, ε, ε 0,0,0

θ = (0,1,1) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 ε,0,0 1,1,1 θ1 = 0 0,0,0 0,0,3
θ1 = 1 ε, ε, ε ε, ε,0 θ1 = 1 0,0,0 0, ε,0

θ = (1,0,0) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 0,0, ε ε,0, ε θ1 = 0 0,0,0 ε, ε, ε

θ1 = 1 0,3,0 1,1,1 θ1 = 1 0,0,0 ε,0,0

θ = (1,0,1) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 ε,0,0 ε, ε, ε θ1 = 0 0,0,0 0,0,0
θ1 = 1 1,1,1 0,0,0 θ1 = 1 0,0,3 0,0,0

θ = (1,1,0) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 0,0,0 0, ε,0 θ1 = 0 ε, ε, ε ε, ε,0
θ1 = 1 ε,0,0 0,0,1 θ1 = 1 0,0,0 1,1,1

θ = (1,1,1) :
θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 ε, ε, ε 0, ε,0 θ1 = 0 0,0,0 1,1,1
θ1 = 1 0,0, ε 0,0,0 θ1 = 1 0,0,0 3,0,0

The above example has the property that in every state θ , there exist exactly two Pareto ef-
ficient allocations. The first Pareto allocation corresponds to the true state: y = θ and it favors
one agent with payoff 3 and leaves the remaining two agents with payoff 0. The identity of the
favored agent is determined by 1 + ∑

i θi(mod 3). The second Pareto allocation generates a uni-
form payoff of 1 across agents. The remaining allocations are all Pareto inferior. Besides the
Pareto allocations, there is one more important allocation in this example, given by y = θ ′ with
θi 	= θ ′

i for all i. It generates a payoff of ε for all agents in all states and is obviously Pareto dom-
inated. Yet, we will show that it can be obtained as an ex post equilibrium under the deception
α(θ) = θ ′. The remaining payoff vectors are combination of 0 and ε entries. In each one of the
vectors, the 0 entries serve to support (always) truthtelling and (always) misreporting as ex post
equilibria in the direct mechanism, whereas the ε entries serve to shrink the ex post reward set.

In this example, the Pareto correspondence is described by PO : Θ → Y :

θ3 = 0 θ2 = 0 θ2 = 1 θ3 = 1 θ2 = 0 θ2 = 1
θ1 = 0 {000,100} {010,000} θ1 = 0 {001,011} {011,010}
θ1 = 1 {100,110} {110,111} θ1 = 1 {101,010} {111,011}

(22)

The matrices describe the set of Pareto efficient allocations as a function of the true type profiles
of the agents. The corresponding social choice set F is the set of all functions which satisfy
f (θ) ∈ PO(θ) for all θ ∈ Θ .
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Maskin Monotonicity Maskin (1999) showed that the Pareto correspondence satisfies
complete information monotonicity. For a better grasp of the difference between Maskin and ex
post monotonicity, it may be instructive to see how these differences play out in this example. We
therefore verify first that the Pareto selectionf (θ) = θ for all θ ∈ Θ , which assigns asymmetric
utilities, is Maskin monotone. The only relevant deception is the complete deception with:

αi(θi) 	= θi, ∀i,∀θi .

Without loss of generality we may consider θ = (0,0,0) and α(0,0,0) = (1,1,1). By setting
y = 000 and i = 1, we clearly satisfy Maskin monotonicity as:

3 = u1
(
y, (0,0,0)

)
> u1

(
f

(
α(0,0,0)

)
, (0,0,0)

) = ε,

and

3 = u1
(
f

(
α(0,0,0)

)
, α(0,0,0)

)
� u1

(
y,α(0,0,0)

) = ε.

Ex Post Monotonicity We continue with ex post monotonicity and again consider θ =
(0,0,0) and α(0,0,0) = (1,1,1). We first observe that the candidate allocation y = 000, which
we used in the complete information setting is not in the ex post reward set Y1(θ−1) anymore.
More precisely, if the true type of agent 1 is θ1 = 0, then agent 1 has an incentive to claim the
reward y = 000 given the true type profile of the remaining two agents is θ−1 = (1,1), or:

0 = u1
(
f

(
0, α−1(0,0)

)
,
(
0, α−1(0,0)

))
< u1

(
000,

(
0, α−1(0,0)

)) = ε.

At the true profile θ = (0,0,0) and deception α(0,0,0) = (1,1,1), the designer could alterna-
tively offer the reward y = 100, which is the second Pareto allocation. For every agent i, this
allocation satisfies the reward equality:

1 = ui

(
100, (0,0,0)

)
> ui

(
f

(
α(0,0,0)

)
, (0,0,0)

) = ε.

It also satisfies the ex post incentive compatibility at the true type profile α(0,0,0) = (1,1,1)

for agent 1 and 2, but fails for agent 3, as:

0 = u3
(
f

(
α(0,0,0)

)
, α(0,0,0)

)
< u3

(
100, α(0,0,0)

) = ε.

Moreover, for agent 1 and 2, it fails to be satisfied at θ ′
i 	= θi with:

0 = u1
(
f

(
0, α−1(0,0)

)
,
(
0, α−1(0,0)

))
< u1

(
100,

(
0, α−1(0,0)

)) = ε,

and

0 = u2
(
f

(
0, α−2(0,0)

)
,
(
0, α−2(0,0)

))
< u2

(
100,

(
0, α−2(0,0)

)) = 1.

By construction, the same argument goes through at every type profile and in consequence, ex
post monotonicity fails in this example. The failure of ex post monotonicity comes as the reward
set Yi(θ−i ) is strictly smaller than Yi(θ) and in particular, eliminates all rewards which could
satisfy the reward inequality.15

15 The example is complicated as the Pareto correspondence is a set rather than a point everywhere. Yet, to display a
difference between ex post and Maskin monotonicity, this appears to be necessary. First, observe, that if the payoffs were
symmetric, then (generically) a Pareto efficient allocation would also constitute a strictly Pareto dominant allocation.
The strictly dominant allocation clearly constitutes an ex post equilibrium and every deception α could be fended off
by simply reestablishing the social choice allocation. The same argument continues to go through without symmetry if
there is a unique Pareto allocation in every state. It follows that for a (generic) discrepancy between ex post and Maskin
monotonicity, we need multiple Pareto efficient allocations, which (generically) have to display some asymmetries in the
way they affect the utilities of the agents.
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8.2. Functions, sets and correspondences

The Pareto set is an example of a social choice set rather than a social choice function. This
naturally leads us to inquire the relationship between functions and sets in the context of ex post
implementation. In particular, we can ask whether implementation of a social choice set F is
equivalent to the implementation of every social choice function f ∈ F separately. The obvious
direction is that if every f ∈ F can be (ex post) implemented, then the social choice set F can be
implemented. The more difficult direction is easy to understand with the following example. Let
the social choice set F be the set of all ex post incentive compatible plans, i.e. mappings from
profiles to allocations. By construction, it follows that F is ex post monotone and can be ex post
implemented. But of course a single element f ∈ F may not be ex post implementable by itself
as there might be multiple equilibria under the social choice function f which do not correspond
to f under some profiles. By the revelation principle, any such distinct equilibrium will also be
an equilibrium under the corresponding direct mechanism. Hence a deception α which forms an
equilibrium in f is an element in F and by contrast would not harm the implementability of F .
It follows more generally that the implementation of a social choice set F does not imply that
every social choice function f ∈ F can be implemented separately.

The Pareto set was defined as a correspondence from the set of profiles to the set of allocations.
On the basis of the Pareto correspondence, we naturally defined an associated social choice set.
More generally, given a social choice correspondence φ : Θ → Y , we can define an associated
social choice set F = {f | f : Θ → Y } by including all social choice functions f which select at
all profiles allocations in the image of the correspondence:

F = {
f | f (θ) ∈ φ(θ),∀θ ∈ Θ

}
.

Similarly, we can start with a social choice set F and define an associated social choice corre-
spondence by including all allocations y at a profile θ which can be obtained by some selection
f at θ from the social choice set F :

φ(θ) = {
y | y = f (θ), f ∈ F

}
.

With the above associations, we can then relate ex post implementation of sets and correspon-
dences. For the purpose of this discussion, it might be useful to keep in mind the class of social
choice problems in which a designer faces agents with quasilinear utility and wishes to imple-
ment the social efficient allocation without any balanced budget considerations. The social choice
set of efficient and ex post incentive compatible allocations is then very large as the transfers to
the agents are essentially only determined up to a constant. However if we consider the associated
social choice correspondence, then we will typically loose the ex post incentive compatibility as
arbitrary combinations of transfers across profiles will not satisfy ex post incentive compatibil-
ity. For this reason, incomplete information implementation typically considers sets rather than
correspondences and even though we analyze ex post rather than Bayesian equilibrium, social
choice correspondences typically still lack ex post incentive compatibility.

9. Mixed strategy implementation

Finally we extend the ex post implementation results to cover pure as well as mixed strategy
equilibria. In the process we shall also propose significantly weaker sufficient conditions for ex
post implementation. The proof strategy follows the argument for complete information imple-
mentation with mixed strategies presented in Maskin (1999) and refined in Maskin and Sjostrom
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(2004). The idea of their proof is to enlarge the strategy space of each agent by allowing him to
make a contingent rather than deterministic reward proposal. In addition, they allow the agent
to quote integers in the augmented mechanism to prevent the possibility of further equilibria
arising in the augmented mechanism. We shall use the same basic idea but in addition use the
integers to create lotteries in the augmented mechanism. The introduction of lotteries is natural
in an environment which allows for mixed strategies. We then show that the use of lotteries has
the additional advantage that we can dispense with the ex post monotonicity no veto hypothesis
as a sufficient condition and replace it by a much weaker condition, called value distinction.16

The idea of using lotteries to weaken the sufficient condition also appears in a recent contribu-
tion by Benoit and Ok (2004). In the complete information environment, they show that by using
simple lotteries the no veto condition can be replaced by a much weaker top-coincidence notion.
As they focus on pure strategy implementation, their augmented mechanism makes use only of
modulo rather than integer games. In sum, the use of random mechanism allows us to extend the
earlier implementation result from pure to mixed strategy implementation and to substantially
weaken the sufficiency conditions.

A mixed strategy for agent i is σi : Θi → Δ(Mi) and we denote the probability that type θi

sends message mi under strategy σi by σi(mi | θi). The set of feasible allocations Y is now
understood to be the set of all lotteries over a set of finite deterministic outcomes Y , or Y = �(Y).

Definition 18 (Ex Post Equilibrium in Mixed Strategies). A mixed strategy profile σ ∗ =
(σ ∗

1 , . . . , σ ∗
I ) is an ex post equilibrium if∑

m∈M

ui

(
g(m), θ

)
σ ∗(m | θ) �

∑
m−i∈M−i

ui

(
g(m′

i ,m−i ), θ
)
σ ∗−i (m−i | θ−i ),

for all i, θ and m′
i ∈ Mi .

The mixed strategy ex post equilibrium maintains all the features of the pure strategy ex post
equilibrium. In particular, we observe that the no regret property is maintained conditional on the
true type profile (but not conditional on every possible realization of messages). The notions of
ex post monotonicity and ex post implementation remain unchanged with the understanding that
the allocation y is possibly a lottery.

The necessary conditions for ex post implementation clearly remain necessary with the ex-
tension to mixed strategy equilibria and stochastic mechanisms. The focus of the remainder of
this section is therefore on the sufficiency conditions. The no veto condition on the social choice
set is replaced by a very weak condition on the preferences of the agents, referred to as value
distinction.17

Definition 19 (Value Distinction). The environment satisfies value distinction if for all θ ∈ Θ and
all y, y′ ∈ Y , there exists i such that ui(y, θ) 	= ui(y

′, θ).

16 We would like to thank Andy Postlewaite and Phil Reny for comments during a Cowles Foundation Conference on
“Robust Mechanism Design” which prompted us to pursue this argument.
17 The notion of value distinction is different from value distinguished types as defined by Palfrey and Srivastava
(1989b). Their notion requires that for every pair, θi and θ ′

i
, by agent i, there exists an allocation y which is valued

differently by the two types, θi and θ ′
i
.
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The basic novelty is the introduction of a contingent reward in the augmented mechanism.
Each agent sends a message of the form mi = (θi, fi, zi , yi), where θi ∈ Θi , fi : Θ → Y is
the social choice function suggested by i, zi ∈ N = {1,2, . . .}, and yi ∈ Y . The set of feasible
messages for agent i is given by

Mi = (Θi ×F × N ×Y). (23)

A strategy profile in this game is a collection σ = (σ1, . . . , σI ), with σi : Θi → �(Mi).
The proposal is required to satisfy:

fi(θ) ∈ {
y′ ∈ Y | ui

(
f (θ ′

i , θ−i ), (θ
′
i , θ−i )

)
� ui

(
y′, (θ ′

i , θ−i )
)
,∀θ ′

i ∈ Θi

}
. (24)

The outcome function g : M → Y is defined by three rules:

Rule 1. If at m (and reported type profile θ ), we have for all i, fi = f for some f ∈ F , then

g(m) = f (θ). (25)

Rule 2. If at m (and reported type profile θ ), there exists j ∈ N such that fi(θ) = fk(θ),∀i, k 	= j

and fi(θ) 	= fj (θ), then

g(y | m) =

⎧⎪⎨
⎪⎩

1 − 1
zj +1 if y = fj (θ),

1
zj +1 if y = fi(θ),

0 if otherwise.

(26)

Rule 3. In all other cases, the agent j with the highest integer zj is the winner (and, in the event
of a tie, the agent with the highest label), and with probability (1 − 1

zj +1 ) pick yj , and with

probability 1
#Y

1
zj +1 pick y ∈ Y , or

g(y | m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − #Y−1
#Y

1
zj +1 if y = yj and zj > zi,

1 − #Y−1
#Y

1
zj +1 if y = yj and zj = maxi 	=j zi and ∀i

s.th. zi = zj , j > i,
1

zj +1
1

#Y
otherwise.

(27)

The randomization in Rule 3 is simply a uniform randomization over the set of deterministic
outcomes, and #Y is the cardinality of the set of deterministic outcomes.

We refer to the mechanism described by the message space M = ×I
i=1Mi , described by (23),

and the outcome function g : M → Y , described by (25)–(27), as the augmented mechanism. In
contrast to the augmented mechanism presented in Section 4, the integer game is now defined on
the natural numbers rather than a finite set of numbers.

Theorem 5 (Mixed Strategy Implementation). For I � 3, if the environment satisfies value-
distinction and F satisfies (EPIC) and (EM), then F is ex post implementable.

Proof. We use the augmented mechanism described by (23)–(27).

Claim 1. Every f ∈ F can be realized as an ex post equilibrium with

σi(mi | θi) > 0 ⇒ mi = (θi, f, · , ·) for all θi ∈ Θi and all i.
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Thus suppose that all agents but j pursue the above “truthtelling” strategy: σi(mi | θi) > 0 ⇒
mi = (θi, f, · , ·), for all i 	= j . By (EPIC), it follows that given fj = f , truthtelling for agent j ,
is a best response. It remains to argue that it remains a best response if the restriction of fj = f

is removed. But by definition of fj (θ) and Rule 2, a deviation to fj (θ) 	= f (θ) does not increase
the utility of agent j , and may even decrease the utility of agent j , and hence it follows that every
f ∈ F can be realized as an ex post equilibrium.

Claim 2. In any ex post equilibrium with fi = f,∀i,∀θ, g(m) = f (θ) for some f ∈ F .

Suppose not, then by ex post monotonicity, there exists an agent i, a type profile θ , and an
allocation y which strictly improves the utility of agent i, and under Rule 2, he can obtain this
improvement with arbitrarily large probability.

Claim 3. In any ex post equilibrium, σi(mi | θi) > 0 ⇒ mi = (· , f, · , ·).

Suppose not and hence there exists an ex post equilibrium with σj (· , f, · , · | ·) < 1 for some j

at some θ ∈ Θ and σi(· , f, · , · | ·) = 1 for all other i. Then with positive probability the allo-
cation will be either fi(θ) or fj (θ). By value distinction, there exists an agent k who assigns
different utilities to these two different allocations. If k happens to be j , then by proposing a
sufficiently large integer zj , he guarantees himself a higher payoff. If k 	= j , then k can make a
proposal fk(θ) 	= f (θ) such that Rule 3 will be applied in which k can guarantee himself to be
the winner with arbitrarily high probability, and thus lower the probability of receiving the low
utility arbitrarily close to zero.

Consider finally an ex post equilibrium with i, j such that for fi, fj 	= f :

σi(·, fi, ·, · | ·)σj (·, fj , ·, · | ·) > 0.

Now the above argument applies again and it follows that there cannot exist an ex post equilib-
rium where Rule 3 is applied with positive probability. �

Benoit and Ok (2004) show that by using “simple” stochastic mechanisms, the sufficient con-
ditions for Nash implementation in pure strategies can be substantially weakened. In particular,
the no veto condition of the social choice set can be replaced by much weaker conditions on (i)
the social choice function, namely weak unanimity and (ii) the preferences, namely a top co-
incidence condition. Our Theorem 5 does not require weak unanimity and the value distinction
condition is strictly weaker than their top coincidence condition. Their top coincidence condition
says that if for every profile θ and every i there exists at most a single allocation z such that:

uj (z, θ) � uj (y, θ), ∀j 	= i,∀y ∈ Y. (28)

To see why value distinction is (strictly) weaker, fix any arbitrary θ and i, and suppose that there
does not exist an allocation z which is the preferred allocation for all agents j 	= i. Then there
exist at least two agents, j and k, which differ in their most preferred allocation, call them yj , yk ,
respectively. In consequence, for at least one of the agents, say j , we have uj (yj , θ) 	= uj (yk, θ).
The same argument goes through if there does exist a single allocation z satisfying (28). By
implication, there must exist another allocation y which is not the most preferred allocation for
all j 	= i. For the allocation y and a particular agent j , we then have value distinction again:
uj (z, θ) 	= uj (y, θ). It is further immediate that the two conditions, top coincidence and value
distinction, do not coincide, which establishes the strict implication.
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We can replace top coincidence by the weaker value distinction condition because we allow
for more than “simple” stochastic allocations. In the augmented mechanism of Benoit and Ok
(2004), the whistle-blower i claims the reward by choosing a lottery which selects the reward y

and the social choice f (θ) with equal probability, the “simple” stochastic allocation. As y 	=
f (θ), the top coincidence condition then implies that there will be another agent j who has a
strict preference between y and f (θ), and can impose his choice by appealing to Rule 3. In our
augmented mechanism, the whistle-blower i can always increase the probability of receiving the
reward by increasing the integer zi , and hence it suffices that for the pair of allocations, y and
f (θ), there exists an agent who values the two allocations differently. The second condition in
Benoit and Ok (2004), weak unanimity, is not necessary in our augmented mechanism either.
The use of random allocations in Rule 3 excludes the possibility of equilibria with a strategy
profile in which Rule 3 applies. Consequently, we can use the condition of value distinction as
in Theorem 5 to obtain an even more permissive result for Nash implementation with mixed
strategies, which we simply report here.

Corollary 2 (Nash Implementation with Mixed Strategies). For I � 3, if the environment satisfies
value distinction and if F satisfies Maskin monotonicity, then F is Nash implementable in mixed
strategies.

10. Conclusion

In this paper we reported a comprehensive set of results on the possibility of ex post imple-
mentation. The general necessary and sufficient conditions for ex post implementation have a
similar structure as the well-known conditions for Nash and Bayesian Nash implementation. Ex
post equilibrium requires that every strategy profile remains an equilibrium choice even if a given
agent would know the true type profile of all the remaining agents. The informational assump-
tions underlying the notion of an ex post equilibrium are hence closer to complete information,
i.e. Nash implementation. In consequence, we pursued a close comparison of the conditions for
Nash and ex post implementation. We showed that the respective necessary and sufficient condi-
tions are not nested, and that neither Nash nor ex post notions imply the other.

However, in the important class of single crossing environments, we showed that ex post
monotonicity is given virtually for free as it is known to be true for Maskin monotonicity. Yet
in the single crossing environment, for Maskin monotonicity to hold , the social choice function
must be everywhere in the interior of the set of feasible alternatives. Ex post monotonicity how-
ever can already be guaranteed even if the social choice function is rarely in the interior of the
feasible set. As an important example we showed that the single unit auction with interdependent
values can be ex post, but not Nash implemented. Interestingly, the positive implementation re-
sults relied on interdependent values and do not hold for private values. Additionally, we showed
that in the single crossing environment ex post implementation is possible in the direct mech-
anism and does not have to rely on the augmented mechanisms which have been frequently
criticized for various unrealistic features, such as modulo or integer games.
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Appendix A

A.1. Private values

The analysis of this paper applies to interdependent value environments. In the special case of
private values, ex post incentive compatibility implies dominant strategy incentive compatibility,
under which dominant strategy implementation (and thus ex post implementation) is trivially
possible in the direct mechanism. In this section, we very briefly state without proof the simple
connections between the properties described in this section in the special case of private values.

Definition 20 (Private Values). There are private values if

ui

(
y, (θi, θ−i )

) = ui

(
y, (θi, θ

′−i )
)

for all i, y, θi , θ−i and θ ′−i .

Definition 21 (Dominant Strategies Incentive Compatibility). Social choice set F is dominant
strategies incentive compatible if for every f ∈ F :

ui

(
f (θ), θ

)
� ui

(
f (θ ′), θ

)
,

for all i, θ , θ ′.

Lemma 2. Under private values, F is ex post incentive compatible if and only if F is dominant
strategies incentive compatible.

Definition 22 (Strict Dominant Strategies Incentive Compatibility). Social choice set F is strictly
dominant strategies incentive compatible if for every f ∈ F :

ui

(
f (θ), θ

)
> ui

(
f (θ ′), θ

)
,

for all i, θ and θ ′ with θ ′
i 	= θi .

Lemma 3. Under private values, F is strictly ex post incentive compatible if and only if F is
strictly dominant strategies incentive compatible.

Lemma 4. Under private values, if F satisfies strict dominant strategies incentive compatibility,
then F satisfies ex post monotonicity.

A.2. Ex post monotonicity no veto for sets

We now state the ex post monotonicity no veto condition (EMNV) for the case of a social
choice set rather than social choice function. Given a social choice set F and a deception α, we
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define for each f ∈ F and i a set Φ
f
i ⊆ Θi and let Φf = ×I

i=1Φ
f
i ⊆ Θ . The set Φf represents

the set of profiles at which the agents all agree to implement the selection f ∈ F . The no veto
power condition is now imposed on the complement set to the union of the sets Φf :

Φ �
⋃
f ∈F

Φf .

Definition 23 (Ex Post Monotonicity No Veto (For Sets)). F satisfies ex post monotonicity no
veto if for any deception α and any product set Φ ⊆ Θ the following holds. If the environment
is non-economic at each θ ∈ Θ − Φ , then

(1) there exists f̂ ∈ F which satisfies no veto power on Θ − Φ and
(2) if f (α(θ)) 	= f̂ (θ) for some f and some θ ∈ Φf then there exists i, θ ∈ Φf and y such that

ui(y, θ) > ui

(
f

(
α(θ)

)
, θ

)
,

while

ui

(
f

(
θ ′
i , α−i (θ−i )

)
,
(
θ ′
i , α−i (θ−i )

))
� ui

(
y,

(
θ ′
i , α−i (θ−i )

))
, ∀θ ′

i ∈ Θi.

The proof of Theorem 3 now goes through simply by extending the argument from the a single
set Φf to the union of sets

⋃
f ∈F Φf . We simply record it is a corollary.

Corollary 3 (Sufficiency for Social Choice Sets). For I � 3, if the social choice set F satisfies
(EPIC) and (EMNV), then F is ex post implementable.
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