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Abstract

This paper analyzes coalitions among self-interested agents that
need to solve combinatorial optimization problems to operate effi-
ciently in the world. By colluding (coordinating their actions by solv-
ing a joint optimization problem), the agents can sometimes save costs
compared to operating individually. A model of bounded rationality is
adopted, where computation resources are costly. It is not worth solv-
ing the problems optimally: solution quality is decision-theoretically
traded off against computation cost. A normative, protocol-independent
theory of coalitions among bounded rational (BR) agents is devised.
The optimal coalition structure and its stability are significantly af-
fected by the agents’ algorithms’ performance profiles (PPs) and the
unit cost of computation. This relationship is first analyzed theo-
retically. A domain classification including rational and BR agents
is introduced. Experimental results are presented in the distributed
vehicle routing domain using real data from 5 dispatch centers; the
optimal coalition structure for BR agents differs significantly from the
one for rational agents. These problems are NP-complete and the
instances are so large that, with current technology, any agent’s ratio-
nality is bounded by computational complexity.!
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1 Introduction

In many domains, self-interested real world parties (e.g. companies) need
to solve combinatorial optimization problems to operate efficiently. Often
they can save costs by coordinating their activities with other parties. Such
settings occur for example in distributed manufacturing among multiple com-
panies and in distributed vehicle routing among dispatch centers. When the
planning activities are automated, it is useful to also automate the coordi-
nation activities via a negotiating software agent representing each party. In
such automated negotiations among self-interested agents, the question of
coordination arises: what coalitions should the agents form, are they stable,
and how should costs be divided within each coalition? Coalition formation
includes three activities. One is coalition structure generation: formation of
coalitions by the agents such that agents within each coalition coordinate
their activities, but agents do not coordinate between coalitions. The second
is the solving of the combinatorial optimization problem of each coalition.
Conceptually this involves deciding how to distribute the tasks of the coali-
tion among the member agents and solving the optimization problem of each
agent (given its resources and the tasks it was distributed). The coalition’s
objective is to maximize monetary value: money received from outside the
system for accomplishing tasks minus the cost of using resources.? Third,
agents within each coalition have to agree on how to divide this value of the
generated solution. These activities interact. For example, the coalition that
an agent wants to join depends on the portion of the value that the agent
would be allocated in each potential coalition.

Coalition formation has been widely studied [12, 27, 18, 25, 30, 13], but
to our knowledge, only among rational agents. Let us call the entire set of
agents A. Say, that the lowest cost achievable by agents S C A working
together, but without any other agents, is cZ. This is the minimum cost
to handle the tasks of agents S with the resources of agents S. A coalition
game is defined by a characteristic function v, which defines the value of

2In some problems, not all tasks have to be handled. This can be incorporated by
assoclating a cost with each omitted task. Then problem solving also involves the selection
of tasks to handle. The theory of this paper applies to such cases but in our example
application, all tasks have to be handled, and no payments from outside the system are
received for them.



each coalition S:
v§ = —c§. (1)

The superscript R emphasizes that we mean the rational value of the coali-
tion, i.e. the maximum value that is reachable by the coalition given its
optimization problem. A rational agent can solve this combinatorial prob-
lem optimally without any deliberation costs such as CPU time costs or time
delay costs.

If the problem is hard and the instance is large, it is unrealistic to as-
sume that it can be solved without deliberation costs. This paper adopts a
model of bounded rationality [26, 10], where each agent has to pay for the
computational resources (CPU cycles) that it uses for deliberation. A fixed
computation cost ceomp > 0 per CPU time unit is assumed.> The domain
cost associated with coalition S is denoted by cg(rs) > 0, i.e. it depends
on (decreases with) the allocated computation resources rg, Fig. 1. The
functions cg(rs) can be viewed as performance profiles (PPs) of the problem
solving algorithm. They are used to decide how much CPU time to allocate
to each computation. With this model of bounded rationality, the value of a
coalition with BR agents can be defined. Each coalition minimizes the sum
of solution cost and computation cost:

'U.S'(ccomp) - - II}in[cS(rS) + Ccomp * TS]-4 (2)

The coalition value decreases as the CPU time unit cost cqomp increases,
Fig. 1. Our model also incorporates a second form of bounded rationality:
the base algorithm may be incomplete, i.e. it might never find the optimal
solution. If it is complete, the BR value of a coalition when ccomp = 0 equals
the rational value (vs(0) = v§). In all, the bounded rational value of a

coalition is determined by three factors:

3In practice, CPU time can already be bought on supercomputers. Similarly, the
developing infrastructure for remotely executing agents provides an equivalent setting.
For example in Telescript [9], the remotely executing agents pay Teleclicks for CPU time
to the owner of the host machine. In this paper, the market for CPU time is assumed
to be so large that the demand of the agents we are studying does not impact the price
of a CPU time unit. It is also assumed that this price is common to all agents, which
corresponds to an open CPU cycle market.

“Throughout the paper, min-operators are used due to their familiarity, although
strictly speaking the value of such a min-operator may be undefined because cs(rs) need
not be continuous. Thus, to be precise, infoperators should be used.



o The domain problem: tasks and resources of the agents. Among ratio-
nal agents this is the only determining factor.

o The ezecution architecture on which the problem solving algorithm is
run. Specifically, the architecture determines ceomp.

o The problem solving algorithm. We make no restrictive assumptions as
to how effectively the algorithm uses the execution architecture. This
is realistic because in practise it is often hard to construct algorithms
that optimally (in some sense) use the architecture.
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Figure 1: Ezample ezperiment (from the vehicle routing domain) with agents
1, 2, and 3. Left: performance profiles, 1.e. solution cost as a function of
allocated computation resources. The curves become flat when the algorithm
has reached a local optimum. Right: BR coalition value as a function of
computation unit cost. The value of each coalition is negative because costs
are positive. The curves become flat at a ccomp that s so high that it is not
worth to take any iterative refinement steps: the initial solutions are used

(their computation requirements are assumed negligible).

Conceptually the agents use design-to-time algorithms [7, 29, 8]: once an
agent has decided how much CPU time rg it will allocate to a computation,
it can design an algorithm that will find a solution of cost cg(rg). The
design-to-time framework is used instead of the anytime framework [21, 6,
4, 11, 29] because to devise a theory of self-interested agents, the possibility
that they design their algorithms to time has to be accounted for. With
deterministic PPs, for any desired computation time allocation or solution

4



quality, a noninterruptible design-to-time algorithm can be constructed that
performs no worse than an interruptible anytime algorithm. We assume that
the PPs exactly predict the solution cost attained for a given CPU time
allocation. So, we have relaxed the assumption that the base level algorithm
is optimal (complete and costless), but instead we assume that the meta-level
deliberation controller is optimal (exact and costless). Assuming optimality
of the meta-level is more realistic than assuming optimality of the base level,
but it still does not match reality exactly. In practice there is uncertainty
in each PP: the meta-level is not exact.® Secondly, the PP depends on
several features of the problem instance, and computing the mapping from
the instance to the PP [21] may take considerable time, thus making the
meta-level itself costly. In the limit, the base algorithm would be run at
the meta-level to determine what it would achieve for a given time setting.
Assuming an optimal meta-level enables analyzing bounded rationality at
the base level in isolation from uncertainty of the PPs. It also allows us
to sidestep the problem of having a meta-meta-level controlling the meta-
level, a meta-meta-meta-level controlling the meta-meta-level, and so on ad
mfinitum.

We assume that the problem instances (tasks and resources) of all agents
are common knowledge. This is somewhat unrealistic in open environments
with a large number of agents. In practice it is often necessary to learn
the other agents’ characteristics from previous encounters. Alternatively, the
agents can be made to explicitly declare their tasks and resources, but they
may lie in order to gain monetarily. Rosenschein and Zlotkin [19] analyze
when rational agents are motivated to declare truthfully. Unfortunately that
work assumes only two agents and that they can optimally solve exponen-
tially many NP-complete problems without computation costs. Even under
these assumptions, in most cases, truth-telling is not achieved. The effect of
bounded rationality on truthful revelation is unknown.

For now—this is relaxed in Section 5—we assume that the agents solve the
combinatorial optimization problems equally well and that this is common

SIf the PPs are only probabilistically known, anytime algorithms may be desirable due
to their flexibility with respect to termination time. In general, for optimal meta-reasoning,
the remaining part of a probabilistic PP should be conditioned on the algorithm’s perfor-
mance on that problem instance on previous CPU time steps [21, 29]. Such conditioning,
anytime algorithms, and their integration to coalition formation are part of our current
research.



knowledge. For any coalition’s problem and for any setting of CPU time, the
cost of the solution potentially generated by each agent is the same. The
agents need not generate the same solutions, only the same quality.

With such shared deterministic PPs, each agent knows the value vg(ceomp)
of each potential coalition S upfront. Therefore coalition formation will take
place before any computation. After collusion, each coalition computes its
solution using the optimal amount of CPU time rg as defined by Equation 2.
Because in our model, rationality is bounded by CPU time cost, it costs the
same for one agent to use nt CPU time units as it costs n agents to use ¢
units. Therefore, it is best if a coalition’s optimization problem is solved by a
single agent. This is trivially true since an agent could simulate distributed
problem solving among n agents for time ¢ by using a local algorithm for
nt. Conversely, it is not always possible (due to redundancy etc.) for n
agents solving the problem for time ¢ to reach a solution of the same quality
as one agent using nt can reach. The computing agent can be arbitrarily
chosen from within the coalition, and the coalition pays that agent its true
cost for computing. This cost along with the domain solution cost contribute
to vs(Ceomp), which is divided among the agents in the coalition as will be
presented later.

In general, the value of a coalition may depend on the actions of nonmem-
ber agents due to positive and negative interactions of the agents’ solutions.
Such settings can be modeled as normal form games (NFGs), Fig. 2. Coali-
tion formation is usually studied in characteristic function games (CFGs),
where the value of each coalition S is given by the characteristic function
v, and is thus not a function of the actions of nonmembers. CFGs are a
strict subset of NFGs. The two are equivalent in constant-sum games with
unrestricted side-payments and perfect communication. In such games, the
characteristic function value of a coalition is its minimax value from the nor-
mal form game [27]. The equivalent of CFGs among BR agents are BRCFGs
(Fig. 2) where the value of each coalition S is defined by vg(ccomp). This
paper mainly studies BRCFGs. Non-BRCFGs are addressed in Section 5.
There exist BRCFGs that are not CFGs. This is due to the fact that one
can construct games where the domain cost of the actual solution (for any
coalition) attained by the algorithm of a BR agent may be independent of
the actions of nonmembers even though the domain cost of the best solution
attained by a rational agent depends on the actions of nonmembers. For ex-
ample, in some domains it is possible to restrict oneself to using algorithms



Normal form game (NFG)
BR characteriaic 777777777777777777 —_———
function game (BRCFG) ( Worth Oriented Domain \
I StateOriented Domain N }
(" Characteristic function game (CFG) ; } [ N
| [
" BR weak (BRC # @) o ™ p
(~  Grand coalition game (CSR* ={A}) | | N Pl
(" Spaaditive T e oenabaran oo ) | | |
L | /"~ SubadditiveTOD _ Loy
;! ! /7 ConcaveTOD Y, | Loyl
BR subadditive R }1 A
} |
(Weak @), | | 11 _______ il T N
M x| M x I, 1, ! (“Modular TODY, | ! L
LH x| LH' x R 1T ||| Subadditive,
BR grand coalition Pyt b I } ‘ ; ;
game (CS™ ={A}) } I } I } } Ly byl
Lgx|Lg x TR H Ll
L Ll [ | J
| ] ; | ; - j ! ]
BR superadditive | } I } I !
| [ [ P!
| } [ I I j . ‘
Ly b . ‘
45 by } \_ _ S— =
x Ly 1y \ I | J
X 1 ) 1 ) : ] ] T |
45 L L Il Il
| | | Ml
\\ —— J o
- J

Figure 2: Venn diagram of negotiation domains. Normal lines show the clas-
stfication for rational agents. Bold lines show our new classification for BR
agents, and how it relates to the rational case. Dotted lines show the ratio-
nal agent domain classification of Rosenschein and Zlotkin [19]. They use
“Subadditive” to mean that an agent’s cost for handling tasks is subadditive
in tasks. We use subadditive to refer to coalition value functions that are
subadditive in agents. The figure does not reflect the fact that Rosenschein
and Zlotkin do not allow sidepayments.

that only consider solutions whose value is not affected by nonmembers.
There also exist CFGs that are not BRCFGs. For example, the agents may
have different performance profiles and therefore the bounded rational value
of a coalition may depend whether nonmembers are willing to do the com-
putation for the coalition. There is also another reason why some CFGs are
not BRCFGs. The algorithms that the agents use may produce solutions
whose values depend on the actions of nonmembers although the value of
the optimal solution would not.

The paper is organized as follows. Section 2 studies the optimal coali-
tion structure for BR agents, and Section 3 analyzes its stability. Section 4



presents experimental results in the distributed vehicle routing domain with
real data. Section 5 discusses agents with different problem solving capa-
bilities. Section 6 presents related research, and 7 concludes and describes
future research.

2 Optimality: BR superadditivity

Any outcome of a game can be analyzed with respect to social welfare, which
is defined as the sum of the agents’ payoffs. The payoff that agent i gets is
called z; € R. The sum of the agents’ z;’s has to equal the sum of the values
of the coalitions in the coalition structure (CS) that formed: no wealth is
generated from nothing and no wealth disappears. With bounded rational
(BR) agents, these coalition values incorporate the computation costs.

A game is superadditive if the value of one coalition plus the value of
another coalition is never more than the value of these coalitions joined into
one coalition:

Definition 2.1 ® A game is superadditive if (VS,T C A, SNT = 0),vE ; >
'ug —I—vIE. See Fig. 2.

When computation cost is ignored, this is almost always the case, because at
worst, the agents in the composite coalition can use the solutions that they
had when they were in separate coalitions. A game can be non-superadditive
only if the collusion process itself involves some cost, e.g. anti-trust penal-
ties. All superadditive games are grand coalition games, i.e. the agents are
best off—from a social welfare viewpoint—by forming the grand coalition
(CSB* = {A}). Some non-superadditive games are subadditive, Fig. 2:

Definition 2.2 A game is subadditive if (VS,T C A,SNT = 0),vE,r <
R, R
vg + v

In subadditive games, the agents are best off by operating alone, i.e. C.S®* =
{{a1},{az2}, ..., {aj4)}}. Some games are neither superadditive nor subaddi-
tive, because the characteristic function fulfills the condition of superaddi-
tivity for some coalitions and the condition of subadditivity for others. In
such cases, the social welfare maximizing coalition structure varies.

6Definitions 2.1, 2.2 and 3.1 are from game theory.



Now we present a new concept for BR agents that is analogous to super-
additivity among rational agents. A game is bounded rational superadditive
(BRS) if the best value that one coalition can reach given the computation
cost plus the best value that another coalition can reach given the computa-
tion cost is never greater than the best value that these coalition can reach
as a composite coalition given the computation cost:

Definition 2.3 A game is bounded rational superadditive (BRS) for
computation unit cost ceomp of (VS, T C A, SNT = 0), vsur(Ceomp) = Vs(Ceomp)+

vr ( ccomp) .

Every BRS game is a bounded rational grand coalition game, Fig. 2. In
such games, BR agents are best off—from a social welfare viewpoint—by
forming the grand coalition (CS* = {A}). BR superadditivity does not
always coincide with superadditivity. In general, for a given ccomp, a game
can be superadditive, BRS, both, or neither. Only some non-BRS games are
BR subadditive, Fig. 2:

Definition 2.4 A game is bounded rational subadditive for computation
unit cost ceomp if (VS, T C A, SNT = 0),vs5u1(Comp) < v5(Ceomp) + VT (Ceomp) -

If the game is BR subadditive, agents are best off alone, i.e. by colluding with
nobody (CS* = {{a1},{az},...,{aa}}). In games that are neither BRS nor
bounded rational subadditive, the optimal CS varies, and several CSs may
be equally good wrt. social welfare. We will denote any one of these best
CSs by C'5*.

The rest of this section analyzes the relationship between the shape of
the performance profiles and the class of the game.

BR superadditivity depends on the performance profiles and the unit cost
of computation. The next theorem states a natural condition on the PPs. If
the condition holds, the game i1s BRS for any comp.

Theorem 2.1 BRS (sufficient condition). [(VS,T C A, SNT = 0,Vrg >
0,Vrr > 0), csur(rs + rr) < cs(rs) + er(rr)] = Game is BRS Yceomp-

Proof. Let us analyze two arbitrary potential coalitions S and T', where
S, T C Aand SNT = (. The conditions in the theorem state

Vrs > 0,Vrr > 0, csur(rs + rr) < cs(rs) + er(rr)



and obviously
Irg,rp > 0 s.b. cs(rg) + Ceomp * 75 + c7(PF) + Coomp * T
- H}"in[CS(T') + Ccomp * 'I"] + H}"in[CT(T) + Ccomp * 'I"]
It follows that
Irg,rp > 0 s.b. csur(rs + 77) + Ceomp * (Ts + 77)
S mrin[cs('r) + Ceomp * 'I"] + H}"in[CT(T) + Ceomp * 'I"]
& Ir' >0 s.t. esur(r') 4 ceomp - 7’

< min[eg(r) + Ceomp - 7] + minfer(r) + ceomp - 7]

T

H}"in[cSUT(r) + Ccomp * 'I"] S H}"in[CS(T') + Ceomp * 'I"] + H}"in[CT(T) + Ceomp * 'I"]
= 'USUT(Ccomp) Z 'U.S'(ccomp) + 'UT(ccomp)

a

The condition states that the domain cost for coalition S after allocat-
ing a certain amount rg of computation plus the domain cost to another
coalition T after allocating a certain amount rr of computation is never less
than the domain cost of these coalitions combined after allocating rg + rr.
This is always achievable in theory because in the worst case, the algorithm
can allocate rg on the problem of S and then do the problem of T using
rr separately. Given a large coalition, it is difficult to intelligently guess an
efficient decomposition of this type. To be sure of BR superadditivity, the al-
gorithm would need to solve each agent’s problem separately—thus ensuring
superadditivity trivially by additivity.

Usually, the algorithm that is used on the composite problem does not
apply this type of problem decomposition. The real desideratum is not nec-
essarily to generate algorithms that guarantee BR superadditivity (and thus
the superiority of the grand coalition over other coalition structures), but
algorithms that provide the highest social welfare (for the best coalition
structure, which need not be the grand coalition). Sometimes these goals
are conflicting. Whether the algorithm’s PPs actually satisfy the conditions
for BR superadditivity without using a decomposition method depends on
the problem, the specific instances under study, and the algorithm itself.

In general, the game can be BRS Vc omp even if the above condition does

not hold on the PPs:

10



Theorem 2.2 [(VS, T C A, SNT =0,Yrs > 0,Vrr > 0),csur(rs + rr) <
cs(rs) + er(rr)] & Game is BRS Yceomp.

Proof. Counterexample. Let us analyze a 2-agent game where A =
{1,2}. Let the performance profiles of the algorithms be

I Lrifo<r<i
cuy(r) = ep(r) = {5 2 st
1 Hfo<r<li
ciop(r) = 2—7r fl<r<2
0 ifr>2

and

Thus (see also Figure 3),

Cry(r) = ciz(r)

1 -1
0.5 -05
r Ccomp
0 0
1 2 1 2

C(li(r) V{13(Ccomp) = V{2}(Ccomp)
1+ 1
0.54 -0.5
> r Ccomp
0 0
1 2 1 2

V1,2}(Ccomp)

Figure 3: Performance profiles and value functions of the counterezample.

: —Ccom lf Cecom, < L
'Ul(Ccom):vz(Ccom):_mln[CZ(r)‘l'ccom ’I"]:{ 1 P p_%
{1} P {2} P L {2} P ~1 if Coomp > 1
—2¢ if ¢ <1
and v Ceomp) = — min|cqy 23(7) + Ceomp * 7] = comp T omP — 2
{1,2}(Ceomp) ineq1,03(7) p 7] { 1 i coomy > 1
So when ceomp < %,
'U{l,Z}(ccomp) - _2ccomp = —Ccomp + —Ceomp = 'U{l}(ccomp) + 'U{Z}(Ccomp)

and when ceomp > %,
1 1
’U{l,Z}(Ccomp) =-1= _5 + _5 = 'U{l}(ccomp) + 'U{Z}(Ccomp)
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Thus, (Veeomp, VS, T C A, SNT = 0), vsur(ceomp) = vs(Ceomp) + 1 (Ceomp), 1-€.
the game is BRS for all c.omp. But C{l,g}(%+%) =1> i—l—i = 0{1}(%)—|—C{2}(%).
O

It is reasonable to assume that the PP cg(r) is decreasing in r if the agent
can inexpensively store the best solution it has arrived at so far. Furthermore,
cs(r) is often convex in r: greater savings are achieved in the early stages
of computation and the savings per time unit decrease as problem solving
proceeds. We conjecture that PPs of design-to-time algorithms are almost
always convex. On the other hand, PPs of anytime algorithms are typically
not convex at points where the base algorithm switches from one approach
to another. One example is completing an iterative refinement algorithm
by running an exhaustive complete algorithm after the refinement phase.
Another example is switching from using one refinement operator (e.g. 2-
swap in TSP [15, 20]) to using another refinement operator (e.g. 3-swap
in TSP). Furthermore, refinements often decrease solution cost in a step-
wise, noncontinuous manner rendering the PPs locally nonconvex—as in our
experiments (Fig. 1 left). If the algorithm is stochastic, these step-related
nonconvexities are reduced as the PP is averaged over multiple runs. The PPs
in our experiments exhibited an overall convex nature, but also had true local
nonconvexities (because the design-to-time algorithms were constructed from
anytime algorithms, and were not tailored for each time setting separately,
Sec. 4). Convexity is significant because with convex PPs, a domain is BRS
for all computation unit costs if and only if the condition of Theorem 2.1 on

the PPs holds:

Theorem 2.3 BRS (necessary and sufficient condition). Let us re-
strict ourselves to such performance profiles that YU C A, cy(r) is decreas-
ing and convex in r. Now, [(VS,T C A,SNT = 0,Yrsg > 0,Yry >
0), csur(rs + r7) < cs(rs) + er(rr)] & Game is BRS Yeeomp.

The proof of Theorem 2.3 relies on the following Lemma:

Lemma 2.1 Let f(z) be a decreasing, convez function. For any given z*,
de > 0 s.t.

min[f(z) + ce] = f(a") + co”

12



Proof. (Lemma 2.1). Let us define 2’ = argmin_|[f(z)+cz]. Assume—for
contradiction—that dz* s.t. Ve > 0,

minlf(z) +ex] # f(o*) +eat
& f(@)+ez' # f(z¥)+ cz*

Because f(z) is convex,

flz*) <

< lim

= lim
T §-0 )

550 )

Thus ¢ > 0 1s well-defined when chosen as follows:

m L&) S0

§—0 ) - T -0 )

Now there are two cases:
Case 1: z' < z*:

r <
& argmzin[f(m) +ez] < z*
@f(argrrtin[f(m)—l—cm]) —|—c-argmzin[f(ac)—|—cm] < f(z*) + cz”
& f(@)+ez' < f(z*)+ cz*
S fle*—€e) +e-(2"—€) < f(z*)+cz”
& flz*) — f(z* —€) > —ce
WS
LS, S-S

This violates convexity. Contradiction.
Case 2: z' > z*:
!

z > z*

& argn;in[f(m) +ez|] > z

13



& flargmin[f(2) + ca]) + ¢ - argmin[f(x) + cz] < f(a') + cz®

& f(2')+ez' < f(z*) 4+ cz’
St te- (e < fla)+eat

ot -0~ fe)
L)y S ) S

This also violates convexity. Contradiction. Because both cases lead to a
contradiction, the original assumption is false. a

Proof. (Theorem 2.3). The ifpart was proven in Theorem 2.1. Now the
only if-part is proven.

=
=

Game is BRS Veeomp

(Vecomp, VS, T C A, SNT = 0),vsur(Ceomp) > V5(Ceomp) + V7 (Ccomp)
(Veeomp, VS, T C A, SN T = 0),

min[csur(r) + Ceomp * 7] < minfes(r) + ceomp 7] + minfer(r) + ceomp - 7]
(Veeomp, VS, T C A, SNT = 0,Vrg,rr > 0),

H}"in[cSUT(r) + Ccomp * 'I"] S CS(TS) + Ceomp * TS + CT(TT) + Cecomp * TT

Now, by Lemma 2.1, for any rs + r7 > 0, Jccomp > 0 s.t. min,[csur(r) +
Ceomp * 'I"] == CSuT(TS + 'l"T) + Ccomp * ('I"S + 'I"T). Thus,

(VS, TC A, SNT =0,Vrg,rr > 0, Iccomp > 0),
esur(rs +71) + Ceomp - (75 + 77)

< ¢g(rs) + Ceomp - s + 7 (rT) + Ceomp - T
(VS, TC A, SNT =0,Vrg,rr > 0, Iccomp > 0),
csur(rs +rr) < cs(rs) + er(rr)

(VS, T C A SNT =0,Yrs,rr > 0),csur(rs + rr) < cs(rs) + er(rr)

a

Analogous to Theorem 2.1, there is an easy sufficient condition on the

PPs that guarantees that the game is BR subadditive for all computation
unit costs:

14



Theorem 2.4 Bounded rational subadditivity (sufficient condition).
[(VS,T g A, SﬂT = @,V'I“s Z O,VTT Z 0),CSUT(7°S‘|"’°T) > CS(TS)—I—CT(’PT)] =

Game is bounded rational subadditive Vceomp.

Proof.

(VS, TCA,SNT =0,Vrg,rr > 0),

csur(rs +rr) > cs(rs) + er(rr)
& (VS,TCASNT =0,Yrs,rsur > 0),

esur(rsur) > cs(rs) + er(rsur — 7s)
& (Veeomp, VS, T C A, SNT = §,VYrs, rsur > 0),

esur(rsur) + Ceomp * TSUT

> cg(rs) + Ceomp - Ts + cr(rsur — 7s) + Ceomp - (TsuT — T5)
= (VYeeomp, VS, T C A, SNT = 0,Yrs,rsur > 0),
min[esur(r) + Ceomp 7]
> cg(rs) + Ceomp - Ts + cr(rsur — 7s) + Ceomp - (TsuT — T5)
> min(cs(r) + Ceomp * 7] + minfer(r) + Ceomp * ()]
(Veeomps VS, T C A, SNT = 0), v501(Coomp) < V5(Ceomp) + VT (Coomp)

Game is bounded rational subadditive Veeomp

Tt ¢

3 Stability: bounded rational core

In the previous section we presented conditions on the PPs that describe
what CS the agents are best off forming from the social welfare viewpoint.
In this section we analyze the stability of that CS. Can the social good be
distributed among the agents so that each agent is motivated to stay with
C SB* (individual rationality)? Furthermore, can it be distributed so that
every subgroup of agents is better off with C'SE* than by forming a coalition
of their own (coalition rationality)? The core (C) is the solution concept
that satisfies both of these conditions [12, 27, 18]. The core of a game is a
set of vectors &, where each ¥ is a vector of payoffs to the agents in such a
manner that no subgroup (individual agents and the group of all agents are
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also subgroups) is motivated to depart from C'S®*. Given payoffs according
to Z, the value of each subgroup is less than or equal to the sum of the payoffs
that the agents of that subgroup get under C'S®*. Obviously, only CSs that
maximize welfare can be stable in the sense of the core, because from any
other CS the group of all agents would prefer to switch to a C'S®*. Formally,

Definition 3.1 Core C = {Z|VS C A, Yics®: > vE and Y 2 =
Y jecsme VE }-

The core is the strongest solution concept used for coalition formation. It
is often too strong: in many cases it is empty, i.e. the social good cannot
be divided so that the individual and coalition rationality conditions are
satisfied [12, 27, 18]. A lesser problem is that the core may include multiple
#’s and the agents have to agree on one of them. An often used solution is to
pick the nucleolus which is, intuitively speaking, the center of the core [12,
27, 18]. Games with non-empty cores are called weak, Fig. 2.
Now we introduce the analog of the core for BR agents.

Definition 3.2 The bounded rational core (BRC) for computation unit
08t Ceomp 18 BRC (Ceomp) = {Z|VS C A, Y ics @i > vs(Coomp) and Y jcq i =
Zjecs* ij(CCOMP)}'

If the BRC 1s not empty, BR agents can divide the social good among them-
selves in a way that no subgroup is motivated to break away from CS*.
Sometimes the BRC is empty, but this does not always coincide with the
core being empty. There are games, where the BRC and the core exist,
games where either one of them exists separately, and games where both are
empty, Fig. 2. If the agents are best off working separately, the CS with
separate agents is stable, Fig. 2:

Theorem 3.1 Bounded rational subadditive core. Game is bounded
rational subadditive for some ceomp = BRC (Ceomp) 7 0.

Proof. Let us analyze a game that is bounded rational subadditive for
SOMeE Ceomp, 1-€. (VS, T C A, SNT =0),vsur(ceomp) < Vs(Ceomp) + V7 (Ceomp)-
Let us study a coalition structure C'.S* = {{1}, {2}, ..., {|A|}}. Let us choose
Zs.t. Vi€ A,z = vp(Ceomp). Now,

Yoz =D vip(Ceomp) = Y Vs;(Coomp)

i€A i€CA JjECS*
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and
VS C A) Zmz = Zv{i}(ccomp) Z 'U.S'(ccomp)
€S €S

Thus & € BRC(ceomp) which implies BRC (ceomp) # 0. a

In domains that are not BR subadditive, the BRC is sometimes empty.
The condition C' # @ can be converted into necessary and sufficient con-
ditions on the vE¥’s in games where the grand coalition maximizes social
welfare [24, 5]. We convert the condition BRC(ceomp) # @ into conditions
on the vg(ceomp)’s analogously. Let By, ..., B, be distinct, nonempty, proper
subsets of A. The set B = {By, ..., Bp} is called balanced if there are positive
coefficients Ay, ..., A, such that Vi € A, > riep;3 Aj = 1. A minimal balanced
set includes no other balanced sets.

Theorem 3.2 Bounded rational core in grand coalition games. In

games where CS* = {A} for some ceomp, BRC(Ceomp) # O iff for every
manimal balanced set B = { By, ..., Bp}, >2%_1 VB, (Ceomp) < Va(Ceomp)-

Proof. Shapley [24] proved the following fact (his Theorem 2) for rational
agents. In games where CS®* = {A}, C # 0 iff for every minimal balanced
set B ={Bx,..., Bp},>5_; )\j'ug]_ < v®. Theorem 3.2 follows by analogy. O

Example. In any 3-agent game where CS* = {A} for some ceomp,
BRC (ccomp) 7 O iff vi1}(ceomp)+v42,31(Ccomp) < v41,2,3}(Ceomp) and 42} (Ceomp) +
v{1,3}(Ccomp) < V{1,2,3}(Ceomp) and v{z}(Coomp) + Vi1,21(Ccomp) < {1,2,3}(Ccomp)
and v{1}(Ceomp) +v{2}(Ccomp) + (3} (Coomp) < V{1,2,3}(Ceomp) and 5011,2}(Comp) +
%v{l,g}(cwmp) + %’u{g,g}(cwmp) < v{1,2,3}(Ccomp). All but the last inequality are
implied by the fact that C'S* = {A}.

Example. In any 4-agent game where CS* = {A} for some ceomp,
BRC(Ceomp) # 0 iff the 41 inequalities of Table 1 hold. Constraints 1, 2,
3 and 5 correspond to partitions of A (all A’s are 1). They are thus implied
by the fact that CS* = {A}.

In BRS games, a subset of the above inequalities suffices. Let us call a
minimal balanced set proper if no two of its elements are disjoint.

Theorem 3.3 BRS bounded rational core. In a game that is BRS
for some ceomp, BRC (Ceomp) # O iff for every proper minimal balanced set
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Id | Constraint

1 ’U{l,Z}(Ccomp) + 'U{3,4}(Ccomp) S 'U{l,2,3,4}(ccomp)

2 ’U{l,2,3}(ccomp) + 'U{4}(Ccomp) S ’U{l,2,3,4}(

3 'U{l,Z}(ccomp) + 'U{3}(ccomp) + 'U{4}(ccomp) < 'U{l,2,3,4}(ccomp)
4

5

Ceomp )

D O o w3k

%v{1,2,3}(ccomp) + %v{1,2,4}(ccomp) + %’U{3,4}(Ccomp) S 'U{l,2,3,4}(ccomp)
'U{l}(ccomp) + 'U{Z}(Ccomp) + 'U{3}(Ccomp) + 'U{4}(Ccomp)

S ’U{l,2,3,4}(ccomp) 1
6 %’U{lyz}(cwmp) + %’U{l,3}(ccomp) + %U{z,g}(cwmp)

‘|"U{4}(Ccomp) S v{1,2,3,4}(ccomp) 4
7 %’U{lyzﬁ}(cwmp) + %’U{l,4}(ccomp) + %’U{ZA}(ccomp)

+%"’{3}(ccomz1) < v{1,2,3,4}(ccomp) 12
8 %v{1,2,3}(ccomp) + %’U{l,4}(ccomp) + %’U{ZA}(ccomp)

—I_%’U{?’A}(Ccoml’) < ’U{l,2,3,4}(ccomp) 4
9 %v1{1,2,3}(ccomp) ‘I’ %’0{1,2,4}(cwmp) —|— %1}{1,3,4}(060"11,)

+§v{27374}(050m1’) S v{1,2,3,4}(ccomp) 1

Table 1: Conditions for existence of the BRC in a 4-agent grand coalition
game. Last column shows the number of constraints generated from that
constraint by permuting the agents (including the presented permutation).

B = {Bi, ..., Bp}, 51 AjuB;(ccomp) < va(Ceomp). Furthermore, this set of
wnequalities 1s minamal: no smaller set is sufficient.

Proof. Shapley [24] proved the following fact (his Theorem 3) for rational
agents. In a superadditive game, C # () iff for every proper minimal balanced
set B={B1,..., Bp}, 25—, )\j'ug]_ < vE. Charnes and Kortanek [5] proved that
this set of inequalities is minimal. Theorem 3.3 follows by analogy. O

Example. In a 3-agent game that is BRS for some ccomp, BRC(Ceomp) 7 0
lﬂ %vS{l'z}(Ccomp) —I_ %’U.S'{l'_g}(ccomp) —I_ %vs{z,s}(cwmp) S v5{1,2,3} (ccomp)-

Example. In a 4-agent game that is BRS for some ceomp, BRC(Ccomp) 7#
() iff the 11 conditions acquired from Table 1’s constraints 4, 8 and 9 are
satisfied.

Next we present conditions on the PPs that are sufficzent to guarantee
that the BRC exists. According to Theorem 3.1, the conditions on the PPs
that guarantee BR subadditivity (Theorem 2.4) form one such set of condi-

18



tions. The following set suffices for games where CS* = {A4}:

Theorem 3.4 BRC in grand coalition games (sufficiency). In games
where CS* = {A} for some ceomp, [for every minimal balanced set B =
{Bl, e Bp}, (VB € B,Vrg > 0) Z?zl )\jCB].('I"B].) > cA(Z?:l )\j'l"B].)] =

BRC (Ceomp) # 0.

Proof. Let us analyze an arbitrary minimal balanced set B = {By, ..., Bp}.

p p
(VB € B,V'I"B Z 0), Z)‘jcB]-(TB]-) Z CA(Z )\j'l"B].)

= (Yeeomp, VB € B,¥rg > 0,3r, > 0),

p p
> Aicn;(TB;) + Coomp (=74 + D Ajre;) > ca(ra)

j=1 j=1
& (Yeeomp, VB € B,¥rg > 0,3r, > 0),
p p
Z AjcB]' (TB]') + Ceomp * Z Aj"nB]' Z CA(TA) + Cecomp " TA
7=1 7=1

& (Yecomp, VB € B,Vrg > 0),

p p
Z AjcB]' (TB]') + Ceomp * Z Aj"nB]' Z H}"in[CA(T') + Cecomp * 'I"]

7=1 7=1
& (Yeeomp, VB € B,¥rg > 0),
b
Z A] [CB]' (TB]') + Ccomp * TB]'] Z H}"in[CA(T') + Ccomp * 'I"]
7=1
& (Yeeomp)s
b
Z Aj Iqin[ch (r%j) + Ceomp * r%j] > minfca(?) + Ceomp * 7]
=1 "Bj i
& (Yeeomp)s
b
Z Aj'UB]'(ccornp) S 'UA(ccomp)
7=1

Since this holds for an arbitrary minimal balanced set, it has to hold for
every minimal balanced set. Thus, by Theorem 3.2, BRC (ccomp) # 0. a

If CS* = {A} for all ccomp(> 0), the above conditions guarantee existence
of the BRC (¢ceomp) for all ccomp(> 0). In BRS games, fewer conditions suffice:
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Theorem 3.5 BRC in BRS games (sufficiency). In a game that
is BRS for some ceomp > 0, [for every proper minimal balanced set B =
{Bl, e Bp}, (VB € B,V'I"B > 0) Z?zl )\jCB]. ('I"B].) > cA(Z?:l )\j'l"B]-)] =

BRC (Ceomp) # 0.

Proof. Analogous to the proof of Theorem 3.4, except that now an arbitrary
proper minimal balanced set is considered. Furthermore, the reference to
Theorem 3.2 should be changed to a reference to Theorem 3.3. O

Again, if the game is BRS for all ccomp(> 0), the above conditions guar-
antee existence of the BRC (ceomp) for all ceomp(> 0).

Example. In a 3-agent game that is BRS Vccomp, [(V7{1,2) > 0, V7133 >
0, V7“{2,3} > 0); %0{1,2}(7{1,2}) + %0{1,3}(7{1,3}) + %0{2,3}(7{2,3}) > C{1,2,3}(%"°{1,2} +
%"'{1,3} + %'I"{g,g})] = VCcomp, BRC(Cwmp) 7£ 0

4 Experimental results: vehicle routing

BR coalition formation was tested in the vehicle routing domain using one
week real-world vehicle and order data from 5 geographically distributed
dispatch centers. Each center had its own vehicles and delivery tasks. In
all, they had 771 deliveries to make with 77 vehicles. Each vehicle had to
begin and end its tour at the depot of its center, but neither the pickup
nor the drop-off locations of the orders were at the depot. The vehicles had
heterogeneous maximum load weight and maximum load volume constraints.
All vehicles had the same maximum route length. The domain cost cg(rg) for
a coalition S was the sum of the route lengths of the vehicles of that coalition
(while handling all of its orders) in the solution that had been reached after
computation rg. The problem is NP-hard, because ATSP can be trivially
reduced to it. It is in NP, because the cost and feasibility of a solution can
easily be checked in polynomial time. Thus, the problem is NP-complete.
Moreover, the problem instances in our example are so large that even the
smallest ones are too hard to solve optimally. Therefore, rational coalition
formation algorithms for the vehicle routing problem [16] are unusable.

The rational value (vE) of each coalition S is defined by the tasks and
the resources (vehicles, depots) of the agents in the coalition. Specifically,
vE is independent of how nonmembers solve their optimization problems.
Therefore our problem is a characteristic function game (CFG), Fig. 2.
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Our problem is outside the domain classification of Rosenschein and
Zlotkin [19], Fig. 2, because agents do not have symmetric capabilities due to
heterogeneous fleets. If their definition were extended to allow asymmetric
capabilities, our domain would be in SOD \ TOD. Our domain would not
be a TOD because any one agent is not necessarily able to individually han-
dle all tasks of all agents. If we further dropped the maximum route length
constraint (this experiment will also be presented), and restricted ourselves
to domains where each center has at least one sufficient vehicle to satisfy the
weight /volume constraints of any order of any center (not true in our data),
then the domain would be a TOD. The following simple example shows that
it would not be a “Subadditive TOD?” because the depots are geographically
distributed. Let us look at a game with just two agents (Al and A2), two
delivery tasks (T1 and T2), and two identical vehicles—one for each agent.
Say that the pickup site and the drop-off site of T1 are close to Al’s depot,
and T2’s pickup and drop-off are close to A2’s depot. Now say that the
depots are far from each other. Thus the sum of the route lengths when A1l
manages T1 and A2 manages T2 is lower than when either agent individually
manages both tasks.

To analyze a game we ran the same algorithm on the vehicle routing
problem of each subgroup of agents separately and thus acquired a PP for
each potential coalition. The algorithm first generates an initial solution by
giving each vehicle one long delivery and then, in order, giving each vehi-
cle the delivery that can be added to its route with the least cost without
violating the constraints. The second phase of the algorithm is based on
iterative refinement. At each step, a delivery (chosen from a randomly or-
dered circular list) is removed from the routing solution and inserted back
to the solution, but into the least expensive place while not violating the
constraints. The drop-off location of the delivery has to be inserted after
the pickup location into the same vehicle’s route, but not necessarily into
the same leg. We ran the refinement algorithm until no remove-insert oper-
ation enhanced the solution: a local optimum was reached. In the PPs we
ignored the time to construct the initial solution, and only viewed how the
solution cost decreased with more CPU seconds of iterative refinement, Fig. 1
left. The refinement algorithm is an anytime algorithm, but because the PPs
are exact (as explained, they are precomputed for experimental purposes by
running the base algorithm itself), the agents do not gain information from
execution on that instance so far. Therefore the algorithm is equivalent to a
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design-to-time algorithm for our purposes.

We analyzed all of the () = 10 3-agent games that can be acquired by
choosing 3 of the 5 dispatch centers. There are 7 subgroups of the 3 agents:
{1}, {2}, {3}, {1,2}, {2,3}, {3,1}, {1,2,3} and 5 coalition structures: {{1},
2} (3%, {0) {231 () 130h {03h (12}, {{123}}. Figure 1
shows the PPs with agents 1, 2 and 3. Each of our games is superadditive
for reasons that were explained in Section 2. Thus rational agents would
be best off by forming the grand coalition. Surprisingly, none of the games
were BRS for any ccomp, Fig. 4. For ceomp’s in the mid-range, the 3-agent
games were often BR subadditive (point M in Fig. 2), while in the low and
high ranges (point LH in Fig. 2), they were often neither BRS nor bounded
rational subadditive. In some of these mixed games, for low ccomp, the grand
coalition was the best coalition structure (point Lg in Fig. 2). Existence of
the core for rational agents is unknown for our games: the points M, LH,
and Lg might really be M’, LH’, and Lg’. The BRC was non-empty in all
3-agent games for all values of ccomp. So, rational agents would be best off
forming the possibly unstable grand coalition, while BR agents should form
varying coalition structures (the grand coalition for some low comp’s), which
are always stable. We also reran the experiments without the maximum
route length restriction, and these results prevailed, Fig. 4.

Centers 2, 3 and 5 were located near each other, while 1 and 4 were
far from each other and the other centers. Centers 1, 3, 4 and 5 transported
heavy low volume items, while 2 transported light voluminous items. Centers
1..5 had 65, 200, 82, 124, and 300 deliveries, and 10, 13, 21, 18, and 15
vehicles respectively. Both with and without the route length restriction, 2
and 5 were best off by only mutually colluding for any ceomp. Their deliveries
have considerable areal overlap due to adjacency, and the light voluminous
items and heavy low volume items can be profitably joined into the weight
and volume constrained vehicles. Centers 2 and 3 did not collude as much
as 2 and 5 because 3’s vehicles had tighter volume constraints than 5’s—
hindering the transport of 2’s goods. No other two centers besides 2 and 5
were always best off in a 2-agent coalition independent of the third agent of
the game. Relaxing the route length constraint increased collusion between
the distant 2 and 4 while demoting collusion of the adjacent 2 and 3.

Next we analyzed the () = 5 4-agent games and the 5-agent game with
and without the route length restriction. In every game, the existence of
BRC (cecomp) varied many times as a function of ceomp, but it existed for the
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3-agent games with route length restriction (BRSUB = Bounded rational subadditive)

|(1,2,3} {13{2.{3} Ccomp | {1,2,4}‘ {1}{2}.{4} {13425} | {2.5}.{3} | {2.5:.{4}
> > b
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Figure 4: Optimal coalition structure (CS*) and bounded rational subadditiv-
ity as a function of ccomp. Tested by evaluating all possible coalition structures
and super/subadditivity at varying points of c.omp chosen from a grid where
Ceomp 15 always incremented by 1%.

largest values of ccomp. No game was BRS for any ccomp, but some games were
bounded rational subadditive for interior values, Fig. 4. In only one game
(with agents 1, 2, 3, and 4, and the route length restriction), for low ccomp,
the best coalition structure was the grand coalition. When this occurred,
BRC(cecomp) happened to be non-empty (point Lg (or Lg’) in Fig. 2). In
none of the experiments was the BRC (¢comp) empty when the best coalition
structure was the grand coalition. Thus, depending on ccomp, the games were
at the points M, LH, Lg, or 45 (or M’, LH’, Lg’, or 45’) in Figure 2. The
best coalition structure varied despite the fact that rational agents would be
best off forming the grand coalition due to superadditivity. Again, whenever
both agents 2 and 5 participated, they were best off by mutually colluding
for all computation unit costs. In those games no other agents colluded.
Each step of the refinement algorithm takes ©(vd?) time, where v is the
number of vehicles and d is the number of deliveries. Because this is superlin-
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ear in deliveries, a larger coalition can make fewer refinement steps in a given
time than the agents in partitions of that coalition can. To compensate, a re-
finement step of the larger coalition would need to reduce solution cost more
than a refinement step of a smaller coalition. The size of the saving has to
be averaged over all refinement steps in the optimal time allocation. If ccomp
is low, more time is allocated, and small coalitions will often run out of prof-
itable refinements. If ccomp 1s high, less time is allocated, and all coalitions
will have profitable refinements, though the larger coalition will have time to
make fewer of them. These intuitions suggest that with refinement steps of
superlinear complexity, higher computation unit costs often promote smaller
coalitions, and lower computation unit costs promote larger ones. Thus it
was not surprising that in games where the grand coalition was optimal, it
was optimal for very small computation unit costs only.

Surprisingly, two agents colluding was often better than all agents work-
ing separately even for large ccomp’s. The result that higher computation
unit costs often promote smaller coalitions is somewhat deemphasized by
our choice of not including the initial solution construction phase in the PPs.
Shifting the PPs right to begin at the time when the initial solution was fin-
ished (instead of 0) would shift the PPs of small coalitions less than the PPs
of large coalitions because the initial solution construction is superlinear both
in tasks and vehicles. Thus small coalitions would gain an advantage—that
is most significant for large ccomp. If the time of initial solution generation is
discarded, the best coalition structure for the greatest computation unit costs
depends only on the quality of the initial solutions of the different coalitions
because no refinement steps are beneficial. For example, coalitions {1,3}
(Fig. 1), {1,5} and {2,5} achieved a better initial solution cost than the sum
of the initial solution costs of the two agents separately, Fig. 4.

5 Different performance profiles, different com-
putation unit costs, and domain solution
interactions

So far games where each agent has the same PP for a given coalition were

presented. In general, domains where the agents have different PPs—due
to different algorithms—are not characteristic function games for BR agents
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(BRCFGs), because the value of a coalition sometimes depends on the actions
of nonmembers. The value of a coalition can depend on whether an outside
agent is willing to compute the solution for the coalition (for a payment) if its
algorithm is better than any of the algorithms of the agents in the coalition.

Games where the agents have different unit costs (ceomp’s) for computation—
e.g. due to different execution architectures—are also in general not BR-
CFGs. Actually such games are analogous to games with a global ceomyp
but agents with different PPs. Namely, games where agents have different
computation unit costs (ceomp’s) can be modeled as games with a uniform
computation unit cost after the ceomp-axis of each vg(ceomp) function is ap-
propriately rescaled based on the real c.omp of the corresponding coalition
S.

Interactions between domain solutions of different coalitions may also ex-
clude some problems from the class BRCFG. In general, the rational value of
a coalition may depend on the actions of nonmember agents due to positive
and negative interactions of the agents’ solutions. Such games are normal
form games (NFGs), but not characteristic function games (CFGs), Fig. 2.
For the same reason, the value of some BR coalition’s domain solution—
computed by a BR agent—may depend on the actions of nonmembers. Neg-
ative interactions are often caused by shared resources of finite capacity.
Once nonmembers are using the resource to a certain extent, not enough of
that resource is available to agents in the coalition to carry out the planned
solution at the minimum cost. Negative interactions can also be caused by
conflicting goals. In satisfying their goals, nonmembers may actually move
the world further from the coalition’s goal state(s) [19]. Positive interactions
are often caused by partially overlapping goals. In satisfying their goals, non-
members may actually move the world closer to the coalition’s goal state(s),
from where the coalition can reach its goals less expensively than it could
have without the actions of nonmembers.

In the distributed vehicle routing domain of this paper, there were no
shared resources, because all of the resources—vehicles and depots—in the
domain were exclusively and exhaustively distributed among the agents (and
thus among coalitions). Secondly, each agent (and thus each coalition) had
its own goal: delivering all of the parcels at the lowest possible cost. The
deliveries of one coalition are unaffected by the deliveries of nonmember
agents. Thus, as stated earlier, the domain is a CFG. For the same reason,
domain solution interactions do not preclude the problem from belonging to
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the class BRCFG. Yet if the agents had different PPs or computation unit
costs, the problem would not necessarily be within BRCFG.

In non-CFGs, superadditivity, subadditivity, and the core are undefined,
Fig. 2. Thus, other solution concepts are necessary. One alternative is the
Nash equilibrium [17, 14], which guarantees stability in the sense that no
agent alone is motivated to deviate from the solution given that others in
the game do not deviate. Often this solution concept is too weak because
subgroups of agents can deviate in a coordinated manner. The Strong Nash
equilibrium [1] is a solution concept that guarantees more stability in the
sense that it requires that there is no subgroup that can deviate in a manner
that increases the payoff of all of its members given that nonmembers do not
deviate from the original solution. The Strong Nash equilibrium is often too
strong a solution concept because in many games no such equilibria exist.
Recently, the Coalition-Proof Nash equilibrium [2, 3] has been suggested to
remedy this problem. This solution concept requires that there is no sub-
group that can make a mutually beneficial deviation (keeping the strategies
of nonmembers fixed) in a way that the deviation itself is stable according
to the same criterion. A problem with this solution concept is that the de-
viation may be stable within the deviating group, but the solution concept
ignores the possibility that some of the agents that deviated may prefer to
deviate again with agents that did not originally deviate. Clearly, there is
room for further research on coalition formation even among rational agents.

Similar problems arise with BR agents. In non-BRCFGs, BR superaddi-
tivity, BR subadditivity, and the BRC are undefined, Fig. 2. Again, other
solution concepts are necessary, e.g. the Nash equilibrium or some of its
refinements. This is part of our current research.

6 Related DAI research on collusion

Coalition formation has been widely studied in game theory [12, 2, 3, 1,
27, 18]; only the most relevant concepts were presented here. This section
compares our work to other recent DAI research on coalition formation.
Zlotkin and Rosenschein [30] analyze rational agents that cannot make
side payments, while our agents do. Their analysis is limited to “Subadditive
Task Oriented Domains” (STODs), which are a strict subset of CFGs, Fig. 2.
In their solution concept, one agent handles all the tasks. In STODs this
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is optimal because STODs never exhibit diseconomies of scale. We do not
assume that one agent can take care of all the agents’ tasks. Unlike our work,
they also assume that all agents have the same capabilities (symmetric cost
functions for task sets). Their method guarantees each agent an expected
value that equals its Shapley value [12, 18]. The Shapley value motivates
individual agents to stay with the coalition structure (individual rationality)
and the group of all agents to stay (group rationality). Unlike the core, the
Shapley value does not in general motivate every subgroup of agents to stay
with the coalition structure (coalition rationality). In a subset of STODs,
“Concave Task Oriented Domains” (Fig. 2), the Shapley value also satisfies
coalition rationality, i.e. the vector of Shapley value payoffs is in the core.

A naive method that guarantees an expected value equal to the Shapley
value has exponential complexity in the number of agents, but Zlotkin and
Rosenschein present a novel cryptographic method for achieving this with
linear complexity in the number of agents. Yet each one of these linearly
many problems involving the agents’ tasks needs to be solved optimally. In
combinatorial problems such as the vehicle routing problem of this paper
(and the Postmen Domain of Zlotkin and Rosenschein for that matter), this
is clearly intractable if the problem instances are large.

Ketchpel [13] presents a coalition formation method for rational agents
which have different expectations of coalition values. The (computational)
origin of these expectations is not addressed. His assumption of imperfect
information differs from our setting, where the agents have perfect informa-
tion, but cannot perfectly deduce. Ketchpel’s coalition formation algorithm
runs in cubic time in the number of agents, but does not guarantee stability.
His protocol is based on mutual offers. In practice it is hard to prevent out-
of-protocol offers such as multiagent offers. In our approach, if the agents’
payoff vector is chosen from within the BRC, the coalition structure is stable
against all offers. Finally, his 2-agent auction is manipulable and compu-
tationally inefficient. He approaches the coalition formation and the payoff
division problems simultaneously.

This is closely related to the contracting protocol of Sandholm [20] (TRA-
CONET), where agents construct the global solution by contracting a small
number of tasks at a time, and payments are made regarding each contract
before new contracts take place. An agent updates its approximate solution
after each task transfer. In general equilibrium approaches such as WAL-
RAS [28], non-manipulative agents iterate over the allocation of resources
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and tasks, and payments are made only after a final solution is reached.

Shechory and Kraus [25] analyze coalition formation among rational agents
with perfect information in domains that are not necessarily superadditive.
Their protocol guarantees that if agents follow it, a certain stability criterion
(K-stability) is met. This requires the solution of an exponential number of
optimization problems. Their other protocol guarantees a weaker form of
stability (polynomial K-stability), but only requires the solution of a polyno-
mial number of optimization problems. Unfortunately, each one of these may
be intractable. Their algorithm switches from one coalition structure to an-
other guaranteeing improvements at each step: coalition structure formation
is an anytime algorithm, although each domain problem is solved optimally.
In our approach, each domain problem is solved using an approximation
(design-to-time) algorithm.

7 Conclusions and future research

A normative, domain-independent theory of coalitions in combinatorial do-
mains was presented, where the rationality of self-interested agents is bounded
by computational complexity. This work is an extension of game theory,
which classically assumes perfect rationality: algorithms that find the opti-
mal solution, and zero computation unit cost.

A domain classification was presented for rational and bounded rational
(BR) agents. The algorithms used by the agents significantly impact the
coalition structure that should form as well as its stability. General theorems
were presented that relate an algorithm’s performance profiles (PPs) to the
social welfare maximizing coalition structure. This analysis was carried out
using the new concepts of BR superadditivity and BR subadditivity. General
theorems were also presented that relate the PPs to the non-emptiness of the
bounded rational core (BRC), which determines the stability of the coalition
structure.

Although almost all domains are superadditive, BR superadditivity is
surprisingly all but obvious in practice. None of the vehicle routing games
of our experiments—using real data and a reasonable iterative refinement
algorithm—exhibited BR superadditivity. Thus the optimal coalition struc-
ture for BR agents varied although rational agents should always form the
grand coalition. Section 2 developed conditions on the PPs that guarantee
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BR superadditivity. It also discussed a separate solving approach—based on
a problem decomposition step—that guarantees that the base algorithm ful-
fills those conditions. With our reasonable deterministic iterative refinement
algorithm, these conditions were—somewhat surprisingly—never met. The
real desideratum is not necessarily to generate algorithms that guarantee BR
superadditivity (and thus the superiority of the grand coalition over other
coalition structures), but algorithms that provide the highest social welfare
(for the best coalition structure, which need not be the grand coalition).
Sometimes these goals are conflicting.

The observed BR subadditivity of some of the games implies a non-empty
BRC: the best coalition structure in those games is stable. Even when BR
subadditivity did not hold, the BRC was often non-empty—especially for
large computation unit costs ceomp. Often with superlinear iterative refine-
ment steps, low ceomp promotes large coalitions while high c.omp suggests
smaller ones. The best BR coalition structures mostly agreed with our intu-
itions of what coalitions should form among rational agents based on strategic
domain specific considerations such as adjacency of the dispatch centers and
the combinability of their loads.

Our model of bounded rationality is based on costly computation re-
sources. Future work includes analyzing another model, where each agent
has a fixed free CPU and no more CPU time can be bought. If the domain
cost increases with real time due to a dynamic environment, such agents with
bounded computational capabilities are often best off by distributing the com-
putation. In the costly computation model of this paper, it is best to allocate
each coalition’s computation to a single agent. The models are equivalent if
the domain cost increases linearly with real time and distribution does not
speed up computation.

Extensions include generalizing these methods to agents with different
PPs, probabilistic PPs, and anytime algorithms where PPs are conditioned
on execution so far [21, 29]. Agents with probabilistic PPs may want to rese-
lect a coalition if the value of their original coalition is lower than expected—
but sunk computation cost has already been incurred. Future research also
includes agents that can refine solutions generated by others. Finally, we are
in the process of developing interaction protocols [23] that efficiently guide
self-interested agents towards the optimal and stable (whenever possible)
coalition structures—as determined by the theory developed in this paper.

29



References

1]

[9]

[10]

[11]

R. Aumann. Acceptable points in general cooperative n-person games.
volume IV of Contributions to the Theory of Games. Princeton Univer-
sity Press, 1959.

B. D. Bernheim, B. Peleg, and M. D. Whinston. Coalition-proof nash
equilibria: 1. concepts. Journal of Economic Theory, 42(1):1-12, June
1987.

B. D. Bernheim and M. D. Whinston. Coalition-proof nash equilibria:
2. applications. Journal of Economic Theory, 42(1):13-29, June 1987.

M. Boddy and T. Dean. Solving time-dependent planning problems. In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 979-984, Detroit, MI, Aug. 1989.

A. Charnes and K. O. Kortanek. On balanced sets, cores, and linear
programming. Technical Report 12, Cornell Univ., Dept. of Industrial
Eng. and Operations Res., Ithaca, NY, 1966.

T. Dean and M. Boddy. An analysis of time-dependent planning. In
Proceedings of the National Conference on Artificial Intelligence, pages
49-54, St. Paul, MN, Aug. 1988.

A. Garvey and V. Lesser. Design-to-time real-time scheduling. IEEE
Transactions on Systems, Man, and Cybernetics, 23(6), 1993.

A. Garvey and V. Lesser. A survey of research in deliberative real-time
artificial intelligence. Real-Time Systems, 6:317-347, 1994.

General Magic, Inc. Telescript technology: The foundation for the elec-
tronic marketplace, 1994. White paper.

I. Good. Twenty-seven principles of rationality. In V. Godambe and
D. Sprott, editors, Foundations of Statistical Inference. Toronto: Holt,
Rinehart, Winston, 1971.

E. J. Horvitz. Reasoning about beliefs and actions under computational
resource constraints. In L. Kanal, T. Levitt, and J. Lemmer, editors,
Uncertainty in Artificial Intelligence, volume 3, pages 301-324. 1989.

30



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

J. P. Kahan and A. Rapoport. Theories of Coalition Formation.
Lawrence Erlbaum Associates Publishers, 1984.

S. Ketchpel. Forming coalitions in the face of uncertain rewards. In
Proceedings of the National Conference on Artificial Intelligence, pages
414-419, Seattle, WA, July 1994.

D. M. Kreps. A course in microeconomic theory. Princeton University

Press, 1990.

S. Lin and B. W. Kernighan. An effective heuristic procedure for the
traveling salesman problem. Operations Research, 21:498-516, 1971.

M. G. Lundgren, K. Jornsten, and P. Varbrand. On the nucleolus of the
basic vehicle routing game. Technical Report 1992-26, Linkoping Univ.,
Dept. of Mathematics, Sweden, 1992.

J. Nash. Equilibrium points in n-person games. Proc. of the National

Academy of Sciences, 36:48-49, 1950.

H. Raiffa. The Art and Science of Negotiation. Harvard Univ. Press,
Cambridge, Mass., 1982.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.

T. W. Sandholm. An implementation of the contract net protocol based
on marginal cost calculations. In Proc. 11th National Conference on

Artificial Intelligence (AAAI-93), pages 256-262, July 1993.

T. W. Sandholm and V. R. Lesser. Utility-based termination of any-
time algorithms. In ECAI Workshop on Decision Theory for DAI Ap-
plications, pages 88-99, Amsterdam, The Netherlands, 1994. Extended
version: Univ. of Mass. at Amherst, Comp. Sci. Tech. Report 94-54.

T. W. Sandholm and V. R. Lesser. Coalition formation among bounded
rational agents. In Proc. 14th International Joint Conference on Arti-
fictal Intelligence (IJCAI-95), pages 662-669, Montreal, Canada, Aug.
1995.

31



23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

T. W. Sandholm and V. R. Lesser. Issues in automated negotiation
and electronic commerce: Extending the contract net framework. In
Proc. First International Conference on Multiagent Systems (ICMAS-
95), pages 328-335, San Francisco, June 1995.

L. S. Shapley. On balanced sets and cores. Naval Research Logistics
Quarterly, 14:453-460, 1967.

O. Shechory and S. Kraus. Feasible formation of stable coalitions among
autonomous agents in general environments. Computational Intelligence

Journal, 1995. Submitted.
H. A. Simon. Models of bounded rationality, volume 2. MIT Press, 1982.

W. J. van der Linden and A. Verbeek. Coalition formation: a game-
theoretic approach. In H. A. M. Wilke, editor, Coalition Formation,
volume 24 of Advances in Psychology. North Holland, 1985.

M. Wellman. A general- equilibrium approach to distributed transporta-
tion planning. In Proc. 10th National Conference on Artificial Intelli-
gence (AAAI-92), pages 282-289, San Jose, CA, July 1992.

S. Zilberstein. Operational rationality through compilation of anytime
algorithms. PhD thesis, University of California, Berkeley, 1993.

G. Zlotkin and J. S. Rosenschein. Coalition, cryptography and stabil-
ity: Mechanisms for coalition formation in task oriented domains. In
Proceedings of the National Conference on Artificial Intelligence, pages
432-437, Seattle, WA, July 1994.

32



