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Abstract

This paper analyzes coalitions among self�interested agents that
need to solve combinatorial optimization problems to operate e��
ciently in the world� By colluding �coordinating their actions by solv�
ing a joint optimization problem�� the agents can sometimes save costs
compared to operating individually� A model of bounded rationality is
adopted� where computation resources are costly� It is not worth solv�
ing the problems optimally� solution quality is decision�theoretically
traded o� against computation cost� A normative� protocol�independent
theory of coalitions among bounded rational �BR� agents is devised�
The optimal coalition structure and its stability are signi	cantly af�
fected by the agents
 algorithms
 performance pro	les �PPs� and the
unit cost of computation� This relationship is 	rst analyzed theo�
retically� A domain classi	cation including rational and BR agents
is introduced� Experimental results are presented in the distributed
vehicle routing domain using real data from � dispatch centers� the
optimal coalition structure for BR agents di�ers signi	cantly from the
one for rational agents� These problems are NP�complete and the
instances are so large that� with current technology� any agent
s ratio�
nality is bounded by computational complexity��
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� Introduction

In many domains� self�interested real world parties �e�g� companies	 need
to solve combinatorial optimization problems to operate e
ciently� Often
they can save costs by coordinating their activities with other parties� Such
settings occur for example in distributed manufacturing among multiple com�
panies and in distributed vehicle routing among dispatch centers� When the
planning activities are automated� it is useful to also automate the coordi�
nation activities via a negotiating software agent representing each party� In
such automated negotiations among self�interested agents� the question of
coordination arises� what coalitions should the agents form� are they stable�
and how should costs be divided within each coalition� Coalition formation
includes three activities� One is coalition structure generation� formation of
coalitions by the agents such that agents within each coalition coordinate
their activities� but agents do not coordinate between coalitions� The second
is the solving of the combinatorial optimization problem of each coalition�
Conceptually this involves deciding how to distribute the tasks of the coali�
tion among the member agents and solving the optimization problem of each
agent �given its resources and the tasks it was distributed	� The coalition
s
objective is to maximize monetary value� money received from outside the
system for accomplishing tasks minus the cost of using resources�� Third�
agents within each coalition have to agree on how to divide this value of the
generated solution� These activities interact� For example� the coalition that
an agent wants to join depends on the portion of the value that the agent
would be allocated in each potential coalition�

Coalition formation has been widely studied ���� ��� ��� ��� ��� ���� but
to our knowledge� only among rational agents� Let us call the entire set of
agents A� Say� that the lowest cost achievable by agents S � A working
together� but without any other agents� is cRS � This is the minimum cost
to handle the tasks of agents S with the resources of agents S� A coalition
game is de�ned by a characteristic function vRS � which de�nes the value of

�In some problems� not all tasks have to be handled	 This can be incorporated by
associating a cost with each omitted task	 Then problem solving also involves the selection
of tasks to handle	 The theory of this paper applies to such cases but in our example
application� all tasks have to be handled� and no payments from outside the system are
received for them	
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each coalition S�
vRS � �cRS � ��	

The superscript R emphasizes that we mean the rational value of the coali�
tion� i�e� the maximum value that is reachable by the coalition given its
optimization problem� A rational agent can solve this combinatorial prob�
lem optimally without any deliberation costs such as CPU time costs or time
delay costs�

If the problem is hard and the instance is large� it is unrealistic to as�
sume that it can be solved without deliberation costs� This paper adopts a
model of bounded rationality ���� ���� where each agent has to pay for the
computational resources �CPU cycles	 that it uses for deliberation� A �xed
computation cost ccomp � � per CPU time unit is assumed�� The domain
cost associated with coalition S is denoted by cS�rS	 � �� i�e� it depends
on �decreases with	 the allocated computation resources rS � Fig� �� The
functions cS�rS	 can be viewed as performance pro�les �PPs	 of the problem
solving algorithm� They are used to decide how much CPU time to allocate
to each computation� With this model of bounded rationality� the value of a
coalition with BR agents can be de�ned� Each coalition minimizes the sum
of solution cost and computation cost�

vS�ccomp	 � �min
rS

�cS�rS	 � ccomp � rS��� ��	

The coalition value decreases as the CPU time unit cost ccomp increases�
Fig� �� Our model also incorporates a second form of bounded rationality�
the base algorithm may be incomplete� i�e� it might never �nd the optimal
solution� If it is complete� the BR value of a coalition when ccomp � � equals
the rational value �vS��	 � vRS 	� In all� the bounded rational value of a
coalition is determined by three factors�

�In practice� CPU time can already be bought on supercomputers	 Similarly� the
developing infrastructure for remotely executing agents provides an equivalent setting	
For example in Telescript 
��� the remotely executing agents pay Teleclicks for CPU time
to the owner of the host machine	 In this paper� the market for CPU time is assumed
to be so large that the demand of the agents we are studying does not impact the price
of a CPU time unit	 It is also assumed that this price is common to all agents� which
corresponds to an open CPU cycle market	

�Throughout the paper� min�operators are used due to their familiarity� although
strictly speaking the value of such a min�operator may be unde�ned because cS�rS� need
not be continuous	 Thus� to be precise� inf�operators should be used	
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� The domain problem� tasks and resources of the agents� Among ratio�
nal agents this is the only determining factor�

� The execution architecture on which the problem solving algorithm is
run� Speci�cally� the architecture determines ccomp�

� The problem solving algorithm� We make no restrictive assumptions as
to how e�ectively the algorithm uses the execution architecture� This
is realistic because in practise it is often hard to construct algorithms
that optimally �in some sense	 use the architecture�
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Figure �� Example experiment �from the vehicle routing domain� with agents
�� �� and �� Left� performance pro	les� i�e� solution cost as a function of
allocated computation resources� The curves become 
at when the algorithm
has reached a local optimum� Right� BR coalition value as a function of
computation unit cost� The value of each coalition is negative because costs
are positive� The curves become 
at at a ccomp that is so high that it is not
worth to take any iterative re	nement steps� the initial solutions are used
�their computation requirements are assumed negligible��

Conceptually the agents use design�to�time algorithms ��� ��� ��� once an
agent has decided how much CPU time rS it will allocate to a computation�
it can design an algorithm that will �nd a solution of cost cS�rS	� The
design�to�time framework is used instead of the anytime framework ���� ��
�� ��� ��� because to devise a theory of self�interested agents� the possibility
that they design their algorithms to time has to be accounted for� With
deterministic PPs� for any desired computation time allocation or solution
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quality� a noninterruptible design�to�time algorithm can be constructed that
performs no worse than an interruptible anytime algorithm� We assume that
the PPs exactly predict the solution cost attained for a given CPU time
allocation� So� we have relaxed the assumption that the base level algorithm
is optimal �complete and costless	� but instead we assume that the meta�level
deliberation controller is optimal �exact and costless	� Assuming optimality
of the meta�level is more realistic than assuming optimality of the base level�
but it still does not match reality exactly� In practice there is uncertainty
in each PP� the meta�level is not exact�� Secondly� the PP depends on
several features of the problem instance� and computing the mapping from
the instance to the PP ���� may take considerable time� thus making the
meta�level itself costly� In the limit� the base algorithm would be run at
the meta�level to determine what it would achieve for a given time setting�
Assuming an optimal meta�level enables analyzing bounded rationality at
the base level in isolation from uncertainty of the PPs� It also allows us
to sidestep the problem of having a meta�meta�level controlling the meta�
level� a meta�meta�meta�level controlling the meta�meta�level� and so on ad
in	nitum�

We assume that the problem instances �tasks and resources	 of all agents
are common knowledge� This is somewhat unrealistic in open environments
with a large number of agents� In practice it is often necessary to learn
the other agents
 characteristics from previous encounters� Alternatively� the
agents can be made to explicitly declare their tasks and resources� but they
may lie in order to gain monetarily� Rosenschein and Zlotkin ���� analyze
when rational agents are motivated to declare truthfully� Unfortunately that
work assumes only two agents and that they can optimally solve exponen�
tially many NP�complete problems without computation costs� Even under
these assumptions� in most cases� truth�telling is not achieved� The e�ect of
bounded rationality on truthful revelation is unknown�

For now�this is relaxed in Section ��we assume that the agents solve the
combinatorial optimization problems equally well and that this is common

�If the PPs are only probabilistically known� anytime algorithms may be desirable due
to their 
exibility with respect to termination time	 In general� for optimal meta�reasoning�
the remaining part of a probabilistic PP should be conditioned on the algorithm�s perfor�
mance on that problem instance on previous CPU time steps 
��� ���	 Such conditioning�
anytime algorithms� and their integration to coalition formation are part of our current
research	
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knowledge� For any coalition
s problem and for any setting of CPU time� the
cost of the solution potentially generated by each agent is the same� The
agents need not generate the same solutions� only the same quality�

With such shared deterministic PPs� each agent knows the value vS�ccomp	
of each potential coalition S upfront� Therefore coalition formation will take
place before any computation� After collusion� each coalition computes its
solution using the optimal amount of CPU time rS as de�ned by Equation ��
Because in our model� rationality is bounded by CPU time cost� it costs the
same for one agent to use nt CPU time units as it costs n agents to use t

units� Therefore� it is best if a coalition
s optimization problem is solved by a
single agent� This is trivially true since an agent could simulate distributed
problem solving among n agents for time t by using a local algorithm for
nt� Conversely� it is not always possible �due to redundancy etc�	 for n

agents solving the problem for time t to reach a solution of the same quality
as one agent using nt can reach� The computing agent can be arbitrarily
chosen from within the coalition� and the coalition pays that agent its true
cost for computing� This cost along with the domain solution cost contribute
to vS�ccomp	� which is divided among the agents in the coalition as will be
presented later�

In general� the value of a coalition may depend on the actions of nonmem�
ber agents due to positive and negative interactions of the agents
 solutions�
Such settings can be modeled as normal form games �NFGs	� Fig� �� Coali�
tion formation is usually studied in characteristic function games �CFGs	�
where the value of each coalition S is given by the characteristic function
vRS � and is thus not a function of the actions of nonmembers� CFGs are a
strict subset of NFGs� The two are equivalent in constant�sum games with
unrestricted side�payments and perfect communication� In such games� the
characteristic function value of a coalition is its minimax value from the nor�
mal form game ����� The equivalent of CFGs among BR agents are BRCFGs
�Fig� �	 where the value of each coalition S is de�ned by vS�ccomp	� This
paper mainly studies BRCFGs� Non�BRCFGs are addressed in Section ��
There exist BRCFGs that are not CFGs� This is due to the fact that one
can construct games where the domain cost of the actual solution �for any
coalition	 attained by the algorithm of a BR agent may be independent of
the actions of nonmembers even though the domain cost of the best solution
attained by a rational agent depends on the actions of nonmembers� For ex�
ample� in some domains it is possible to restrict oneself to using algorithms
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function game (BRCFG)
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Figure �� Venn diagram of negotiation domains� Normal lines show the clas�
si	cation for rational agents� Bold lines show our new classi	cation for BR
agents� and how it relates to the rational case� Dotted lines show the ratio�
nal agent domain classi	cation of Rosenschein and Zlotkin ��
�� They use
�Subadditive� to mean that an agent�s cost for handling tasks is subadditive
in tasks� We use subadditive to refer to coalition value functions that are
subadditive in agents� The 	gure does not re
ect the fact that Rosenschein
and Zlotkin do not allow sidepayments�

that only consider solutions whose value is not a�ected by nonmembers�
There also exist CFGs that are not BRCFGs� For example� the agents may
have di�erent performance pro�les and therefore the bounded rational value
of a coalition may depend whether nonmembers are willing to do the com�
putation for the coalition� There is also another reason why some CFGs are
not BRCFGs� The algorithms that the agents use may produce solutions
whose values depend on the actions of nonmembers although the value of
the optimal solution would not�

The paper is organized as follows� Section � studies the optimal coali�
tion structure for BR agents� and Section � analyzes its stability� Section �
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presents experimental results in the distributed vehicle routing domain with
real data� Section � discusses agents with di�erent problem solving capa�
bilities� Section � presents related research� and � concludes and describes
future research�

� Optimality� BR superadditivity

Any outcome of a game can be analyzed with respect to social welfare� which
is de�ned as the sum of the agents
 payo�s� The payo� that agent i gets is
called xi � R� The sum of the agents
 xi
s has to equal the sum of the values
of the coalitions in the coalition structure �CS	 that formed� no wealth is
generated from nothing and no wealth disappears� With bounded rational
�BR	 agents� these coalition values incorporate the computation costs�

A game is superadditive if the value of one coalition plus the value of
another coalition is never more than the value of these coalitions joined into
one coalition�

De�nition ��� � A game is superadditive if ��S� T � A�S�T � 		� vRS�T �
vRS � vRT � See Fig� ��

When computation cost is ignored� this is almost always the case� because at
worst� the agents in the composite coalition can use the solutions that they
had when they were in separate coalitions� A game can be non�superadditive
only if the collusion process itself involves some cost� e�g� anti�trust penal�
ties� All superadditive games are grand coalition games� i�e� the agents are
best o��from a social welfare viewpoint�by forming the grand coalition
�CSR� � fAg	� Some non�superadditive games are subadditive� Fig� ��

De�nition ��� A game is subadditive if ��S� T � A�S � T � 		� vRS�T �

vRS � vRT �

In subadditive games� the agents are best o� by operating alone� i�e� CSR� �
ffa�g� fa�g� ���� fajAjgg� Some games are neither superadditive nor subaddi�
tive� because the characteristic function ful�lls the condition of superaddi�
tivity for some coalitions and the condition of subadditivity for others� In
such cases� the social welfare maximizing coalition structure varies�

�De�nitions �	�� �	� and �	� are from game theory	
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Now we present a new concept for BR agents that is analogous to super�
additivity among rational agents� A game is bounded rational superadditive
�BRS	 if the best value that one coalition can reach given the computation
cost plus the best value that another coalition can reach given the computa�
tion cost is never greater than the best value that these coalition can reach
as a composite coalition given the computation cost�

De�nition ��� A game is bounded rational superadditive �BRS� for
computation unit cost ccomp if ��S� T � A�S�T � 		� vS�T �ccomp	 � vS�ccomp	�
vT �ccomp	�

Every BRS game is a bounded rational grand coalition game� Fig� �� In
such games� BR agents are best o��from a social welfare viewpoint�by
forming the grand coalition �CS� � fAg	� BR superadditivity does not
always coincide with superadditivity� In general� for a given ccomp� a game
can be superadditive� BRS� both� or neither� Only some non�BRS games are
BR subadditive� Fig� ��

De�nition ��� A game is bounded rational subadditive for computation
unit cost ccomp if ��S� T � A�S�T � 		� vS�T �ccomp	 � vS�ccomp	�vT �ccomp	�

If the game is BR subadditive� agents are best o� alone� i�e� by colluding with
nobody �CS� � ffa�g� fa�g� ���� fajAjgg	� In games that are neither BRS nor
bounded rational subadditive� the optimal CS varies� and several CSs may
be equally good wrt� social welfare� We will denote any one of these best
CSs by CS��

The rest of this section analyzes the relationship between the shape of
the performance pro�les and the class of the game�

BR superadditivity depends on the performance pro�les and the unit cost
of computation� The next theorem states a natural condition on the PPs� If
the condition holds� the game is BRS for any ccomp�

Theorem ��� BRS �su�cient condition�� ���S� T � A�S�T � 	��rS �
���rT � �	� cS�T �rS � rT 	 
 cS�rS	 � cT �rT 	�� Game is BRS �ccomp�

Proof� Let us analyze two arbitrary potential coalitions S and T � where
S� T � A and S � T � 	� The conditions in the theorem state

�rS � ���rT � �� cS�T �rS � rT 	 
 cS�rS	 � cT �rT 	
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and obviously

�r�S� r
�
T � � s�t� cS�r

�
S	 � ccomp � r

�
S � cT �r

�
T 	 � ccomp � r

�
T

� min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � r�

It follows that

�r�S� r
�
T � � s�t� cS�T �r

�
S � r�T 	 � ccomp � �r

�
S � r�T 	


 min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � r�


 �r� � � s�t� cS�T �r
�	 � ccomp � r

�


 min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � r�


 min
r

�cS�T �r	 � ccomp � r� 
 min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � r�


 vS�T �ccomp	 � vS�ccomp	 � vT �ccomp	

�

The condition states that the domain cost for coalition S after allocat�
ing a certain amount rS of computation plus the domain cost to another
coalition T after allocating a certain amount rT of computation is never less
than the domain cost of these coalitions combined after allocating rS � rT �
This is always achievable in theory because in the worst case� the algorithm
can allocate rS on the problem of S and then do the problem of T using
rT separately� Given a large coalition� it is di
cult to intelligently guess an
e
cient decomposition of this type� To be sure of BR superadditivity� the al�
gorithm would need to solve each agent
s problem separately�thus ensuring
superadditivity trivially by additivity�

Usually� the algorithm that is used on the composite problem does not
apply this type of problem decomposition� The real desideratum is not nec�
essarily to generate algorithms that guarantee BR superadditivity �and thus
the superiority of the grand coalition over other coalition structures	� but
algorithms that provide the highest social welfare �for the best coalition
structure� which need not be the grand coalition	� Sometimes these goals
are con�icting� Whether the algorithm
s PPs actually satisfy the conditions
for BR superadditivity without using a decomposition method depends on
the problem� the speci�c instances under study� and the algorithm itself�

In general� the game can be BRS �ccomp even if the above condition does
not hold on the PPs�

��



Theorem ��� ���S� T � A�S � T � 	��rS � ���rT � �	� cS�T �rS � rT 	 

cS�rS	 � cT �rT 	� �� Game is BRS �ccomp�

Proof� Counterexample� Let us analyze a ��agent game where A �
f�� �g� Let the performance pro�les of the algorithms be

cf�g�r	 � cf�g�r	 �

�
�

�
� �

�
r if � 
 r 
 �

� if r � �
and

cf���g�r	 �

���
��

� if � 
 r 
 �
�� r if � � r 
 �
� if r � �

Thus �see also Figure �	�
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Figure �� Performance pro	les and value functions of the counterexample�

vf�g�ccomp	 � vf�g�ccomp	 � �min
r

�cf�g�r	 � ccomp � r� �

�
�ccomp if ccomp 


�

�

��

�
if ccomp �

�

�

and vf���g�ccomp	 � �min
r

�cf���g�r	 � ccomp � r� �

�
��ccomp if ccomp 


�

�

�� if ccomp �
�

�

So when ccomp 

�

�
�

vf���g�ccomp	 � ��ccomp � �ccomp ��ccomp � vf�g�ccomp	 � vf�g�ccomp	

and when ccomp �
�

�
�

vf���g�ccomp	 � �� � �
�

�
��

�

�
� vf�g�ccomp	 � vf�g�ccomp	
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Thus� ��ccomp��S� T � A�S�T � 		� vS�T �ccomp	 � vS�ccomp	�vT �ccomp	� i�e�
the game is BRS for all ccomp� But cf���g�

�

�
� �

�
	 � � � �

�
� �

�
� cf�g�

�

�
	�cf�g�

�

�
	�

�

It is reasonable to assume that the PP cS�r	 is decreasing in r if the agent
can inexpensively store the best solution it has arrived at so far� Furthermore�
cS�r	 is often convex in r� greater savings are achieved in the early stages
of computation and the savings per time unit decrease as problem solving
proceeds� We conjecture that PPs of design�to�time algorithms are almost
always convex� On the other hand� PPs of anytime algorithms are typically
not convex at points where the base algorithm switches from one approach
to another� One example is completing an iterative re�nement algorithm
by running an exhaustive complete algorithm after the re�nement phase�
Another example is switching from using one re�nement operator �e�g� ��
swap in TSP ���� ���	 to using another re�nement operator �e�g� ��swap
in TSP	� Furthermore� re�nements often decrease solution cost in a step�
wise� noncontinuous manner rendering the PPs locally nonconvex�as in our
experiments �Fig� � left	� If the algorithm is stochastic� these step�related
nonconvexities are reduced as the PP is averaged over multiple runs� The PPs
in our experiments exhibited an overall convex nature� but also had true local
nonconvexities �because the design�to�time algorithms were constructed from
anytime algorithms� and were not tailored for each time setting separately�
Sec� �	� Convexity is signi�cant because with convex PPs� a domain is BRS
for all computation unit costs if and only if the condition of Theorem ��� on
the PPs holds�

Theorem ��� BRS �necessary and su�cient condition�� Let us re�
strict ourselves to such performance pro	les that �U � A� cU�r	 is decreas�
ing and convex in r� Now� ���S� T � A�S � T � 	��rS � ���rT �
�	� cS�T �rS � rT 	 
 cS�rS	 � cT �rT 	�
 Game is BRS �ccomp�

The proof of Theorem ��� relies on the following Lemma�

Lemma ��� Let f�x	 be a decreasing� convex function� For any given x��
�c � � s�t�

min
x

�f�x	 � cx� � f�x�	 � cx�
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Proof� �Lemma ����� Let us de�ne x� � argmin
x
�f�x	�cx�� Assume�for

contradiction�that �x� s�t� �c � ��

min
x

�f�x	 � cx� �� f�x�	 � cx�


 f�x�	 � cx� �� f�x�	 � cx�

Because f�x	 is convex�

f�x�	 

f�x� � �	 � f�x� � �	

�

� lim
���

f�x�	� f�x� � �	

�

 lim

���

f�x� � �	� f�x�	

�

Thus c � � is well�de�ned when chosen as follows�

lim
���

f�x�	� f�x� � �	

�

 �c 
 lim

���

f�x� � �	� f�x�	

�

Now there are two cases�
Case �	 x� � x�	

x� � x�


 argmin
x

�f�x	 � cx� � x�


 f�argmin
x

�f�x	 � cx�	 � c � argmin
x

�f�x	 � cx� � f�x�	 � cx�


 f�x�	 � cx� � f�x�	 � cx�


 f�x� � �	 � c � �x� � �	 � f�x�	 � cx�


 f�x�	� f�x� � �	 � �c�



f�x�	� f�x� � �	

�
� �c

�
f�x�	� f�x� � �	

�
� lim

���

f�x�	� f�x� � �	

�

This violates convexity� Contradiction�
Case �	 x� � x�	

x� � x�


 argmin
x

�f�x	 � cx� � x�

��




 f�argmin
x

�f�x	 � cx�	 � c � argmin
x

�f�x	 � cx� � f�x�	 � cx�


 f�x�	 � cx� � f�x�	 � cx�


 f�x� � �	 � c � �x� � �	 � f�x�	 � cx�



f�x� � �	� f�x�	

�
� �c

�
f�x� � �	� f�x�	

�
� lim

���

f�x� � �	� f�x�	

�

This also violates convexity� Contradiction� Because both cases lead to a
contradiction� the original assumption is false� �

Proof� �Theorem ����� The if�part was proven in Theorem ���� Now the
only if�part is proven�

Game is BRS �ccomp


 ��ccomp��S� T � A�S � T � 		� vS�T�ccomp	 � vS�ccomp	 � vT �ccomp	


 ��ccomp��S� T � A�S � T � 		�

min
r

�cS�T �r	 � ccomp � r� 
 min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � r�


 ��ccomp��S� T � A�S � T � 	��rS� rT � �	�

min
r

�cS�T �r	 � ccomp � r� 
 cS�rS	 � ccomp � rS � cT �rT 	 � ccomp � rT

Now� by Lemma ���� for any rS � rT � �� �ccomp � � s�t� minr�cS�T �r	 �
ccomp � r� � cS�T �rS � rT 	 � ccomp � �rS � rT 	� Thus�

��S� T � A�S � T � 	��rS� rT � ���ccomp � �	�

cS�T �rS � rT 	 � ccomp � �rS � rT 	


 cS�rS	 � ccomp � rS � cT �rT 	 � ccomp � rT


 ��S� T � A�S � T � 	��rS� rT � ���ccomp � �	�

cS�T �rS � rT 	 
 cS�rS	 � cT �rT 	


 ��S� T � A�S � T � 	��rS� rT � �	� cS�T �rS � rT 	 
 cS�rS	 � cT �rT 	

�

Analogous to Theorem ���� there is an easy su
cient condition on the
PPs that guarantees that the game is BR subadditive for all computation
unit costs�

��



Theorem ��� Bounded rational subadditivity �su�cient condition��
���S� T � A�S�T � 	��rS � ���rT � �	� cS�T �rS�rT 	 � cS�rS	�cT �rT 	��
Game is bounded rational subadditive �ccomp�

Proof�

��S� T � A�S � T � 	��rS� rT � �	�

cS�T �rS � rT 	 � cS�rS	 � cT �rT 	


 ��S� T � A�S � T � 	��rS� rS�T � �	�

cS�T �rS�T 	 � cS�rS	 � cT �rS�T � rS	


 ��ccomp��S� T � A�S � T � 	��rS� rS�T � �	�

cS�T �rS�T 	 � ccomp � rS�T

� cS�rS	 � ccomp � rS � cT �rS�T � rS	 � ccomp � �rS�T � rS	

� ��ccomp��S� T � A�S � T � 	��rS� rS�T � �	�

min
r

�cS�T �r	 � ccomp � r�

� cS�rS	 � ccomp � rS � cT �rS�T � rS	 � ccomp � �rS�T � rS	

� min
r

�cS�r	 � ccomp � r� � min
r

�cT �r	 � ccomp � �r	�


 ��ccomp��S� T � A�S � T � 		� vS�T�ccomp	 � vS�ccomp	 � vT �ccomp	


 Game is bounded rational subadditive �ccomp

�

� Stability� bounded rational core

In the previous section we presented conditions on the PPs that describe
what CS the agents are best o� forming from the social welfare viewpoint�
In this section we analyze the stability of that CS� Can the social good be
distributed among the agents so that each agent is motivated to stay with
CSR� �individual rationality	� Furthermore� can it be distributed so that
every subgroup of agents is better o� with CSR� than by forming a coalition
of their own �coalition rationality	� The core �C	 is the solution concept
that satis�es both of these conditions ���� ��� ���� The core of a game is a
set of vectors �x� where each �x is a vector of payo�s to the agents in such a
manner that no subgroup �individual agents and the group of all agents are

��



also subgroups	 is motivated to depart from CSR�� Given payo�s according
to �x� the value of each subgroup is less than or equal to the sum of the payo�s
that the agents of that subgroup get under CSR�� Obviously� only CSs that
maximize welfare can be stable in the sense of the core� because from any
other CS the group of all agents would prefer to switch to a CSR�� Formally�

De�nition ��� Core C � f�xj�S � A�
P

i�S xi � vRS and
P

i�A xi �P
j�CSR� vRSjg�

The core is the strongest solution concept used for coalition formation� It
is often too strong� in many cases it is empty� i�e� the social good cannot
be divided so that the individual and coalition rationality conditions are
satis�ed ���� ��� ���� A lesser problem is that the core may include multiple
�x
s and the agents have to agree on one of them� An often used solution is to
pick the nucleolus which is� intuitively speaking� the center of the core ����
��� ���� Games with non�empty cores are called weak� Fig� ��

Now we introduce the analog of the core for BR agents�

De�nition ��� The bounded rational core �BRC� for computation unit
cost ccomp is BRC�ccomp	 � f�xj�S � A�

P
i�S xi � vS�ccomp	 and

P
i�A xi �P

j�CS� vSj�ccomp	g�

If the BRC is not empty� BR agents can divide the social good among them�
selves in a way that no subgroup is motivated to break away from CS��
Sometimes the BRC is empty� but this does not always coincide with the
core being empty� There are games� where the BRC and the core exist�
games where either one of them exists separately� and games where both are
empty� Fig� �� If the agents are best o� working separately� the CS with
separate agents is stable� Fig� ��

Theorem ��� Bounded rational subadditive core� Game is bounded
rational subadditive for some ccomp � BRC�ccomp	 �� 	�

Proof� Let us analyze a game that is bounded rational subadditive for
some ccomp� i�e� ��S� T � A�S � T � 		� vS�T �ccomp	 � vS�ccomp	 � vT �ccomp	�
Let us study a coalition structure CS� � ff�g� f�g� ���� fjAjgg� Let us choose
�x s�t� �i � A� xi � vfig�ccomp	� Now�

X
i�A

xi �
X
i�A

vfig�ccomp	 �
X

j�CS�

vSj �ccomp	

��



and
�S � A�

X
i�S

xi �
X
i�S

vfig�ccomp	 � vS�ccomp	

Thus �x � BRC�ccomp	 which implies BRC�ccomp	 �� 	� �

In domains that are not BR subadditive� the BRC is sometimes empty�
The condition C �� 	 can be converted into necessary and su
cient con�
ditions on the vRS 
s in games where the grand coalition maximizes social
welfare ���� ��� We convert the condition BRC�ccomp	 �� 	 into conditions
on the vS�ccomp	
s analogously� Let B�� ���� Bp be distinct� nonempty� proper
subsets of A� The set B � fB�� ���� Bpg is called balanced if there are positive
coe
cients ��� ���� �p such that �i � A�

P
fjji�Bjg �j � �� A minimal balanced

set includes no other balanced sets�

Theorem ��� Bounded rational core in grand coalition games� In
games where CS� � fAg for some ccomp� BRC�ccomp	 �� 	 i� for every
minimal balanced set B � fB�� ���� Bpg�

Pp
j�� �jvBj

�ccomp	 
 vA�ccomp	�

Proof� Shapley ���� proved the following fact �his Theorem �	 for rational
agents� In games where CSR� � fAg� C �� 	 i� for every minimal balanced
set B � fB�� ���� Bpg�

Pp
j�� �jv

R
Bj

 vRA� Theorem ��� follows by analogy� �

Example� In any ��agent game where CS� � fAg for some ccomp�
BRC�ccomp	 �� 	 i� vf�g�ccomp	�vf���g�ccomp	 
 vf�����g�ccomp	 and vf�g�ccomp	�
vf���g�ccomp	 
 vf�����g�ccomp	 and vf�g�ccomp	 � vf���g�ccomp	 
 vf�����g�ccomp	
and vf�g�ccomp	�vf�g�ccomp	�vf�g�ccomp	 
 vf�����g�ccomp	 and

�

�
vf���g�ccomp	�

�

�
vf���g�ccomp	 �

�

�
vf���g�ccomp	 
 vf�����g�ccomp	� All but the last inequality are

implied by the fact that CS� � fAg�

Example� In any ��agent game where CS� � fAg for some ccomp�
BRC�ccomp	 �� 	 i� the �� inequalities of Table � hold� Constraints �� ��
� and � correspond to partitions of A �all �
s are �	� They are thus implied
by the fact that CS� � fAg�

In BRS games� a subset of the above inequalities su
ces� Let us call a
minimal balanced set proper if no two of its elements are disjoint�

Theorem ��� BRS bounded rational core� In a game that is BRS
for some ccomp� BRC�ccomp	 �� 	 i� for every proper minimal balanced set

��



Id Constraint �
� vf���g�ccomp	 � vf���g�ccomp	 
 vf�������g�ccomp	 �
� vf�����g�ccomp	 � vf�g�ccomp	 
 vf�������g�ccomp	 �
� vf���g�ccomp	 � vf�g�ccomp	 � vf�g�ccomp	 
 vf�������g�ccomp	 �
� �

�
vf�����g�ccomp	 �

�

�
vf�����g�ccomp	 �

�

�
vf���g�ccomp	 
 vf�������g�ccomp	 �

� vf�g�ccomp	 � vf�g�ccomp	 � vf�g�ccomp	 � vf�g�ccomp	

 vf�������g�ccomp	 �

� �

�
vf���g�ccomp	 �

�

�
vf���g�ccomp	 �

�

�
vf���g�ccomp	

�vf�g�ccomp	 
 vf�������g�ccomp	 �
� �

�
vf�����g�ccomp	 �

�

�
vf���g�ccomp	 �

�

�
vf���g�ccomp	

��

�
vf�g�ccomp	 
 vf�������g�ccomp	 ��

� �

�
vf�����g�ccomp	 �

�

�
vf���g�ccomp	 �

�

�
vf���g�ccomp	

��

�
vf���g�ccomp	 
 vf�������g�ccomp	 �

� �

�
vf�����g�ccomp	 �

�

�
vf�����g�ccomp	 �

�

�
vf�����g�ccomp	

��

�
vf�����g�ccomp	 
 vf�������g�ccomp	 �

Table �� Conditions for existence of the BRC in a ��agent grand coalition
game� Last column shows the number of constraints generated from that
constraint by permuting the agents �including the presented permutation��

B � fB�� ���� Bpg�
Pp

j�� �jvBj
�ccomp	 
 vA�ccomp	� Furthermore� this set of

inequalities is minimal� no smaller set is su�cient�

Proof� Shapley ���� proved the following fact �his Theorem �	 for rational
agents� In a superadditive game� C �� 	 i� for every proper minimal balanced
set B � fB�� ���� Bpg�

Pp
j�� �jv

R
Bj

 vRA� Charnes and Kortanek ��� proved that

this set of inequalities is minimal� Theorem ��� follows by analogy� �

Example� In a ��agent game that is BRS for some ccomp� BRC�ccomp	 �� 	
i� �

�
vSf���g�ccomp	 �

�

�
vSf���g�ccomp	 �

�

�
vSf���g�ccomp	 
 vSf�����g �ccomp	�

Example� In a ��agent game that is BRS for some ccomp� BRC�ccomp	 ��
	 i� the �� conditions acquired from Table �
s constraints �� � and � are
satis�ed�

Next we present conditions on the PPs that are su�cient to guarantee
that the BRC exists� According to Theorem ���� the conditions on the PPs
that guarantee BR subadditivity �Theorem ���	 form one such set of condi�

��



tions� The following set su
ces for games where CS� � fAg�

Theorem ��� BRC in grand coalition games �su�ciency�� In games
where CS� � fAg for some ccomp� �for every minimal balanced set B �
fB�� ���� Bpg� ��B � B��rB � �	

Pp
j�� �jcBj

�rBj
	 � cA�

Pp
j�� �jrBj

	��
BRC�ccomp	 �� 	�

Proof� Let us analyze an arbitrary minimal balanced set B � fB�� ���� Bpg�

��B � B��rB � �	�
pX

j��

�jcBj
�rBj

	 � cA�
pX

j��

�jrBj
	

� ��ccomp��B � B��rB � ���rA � �	�
pX

j��

�jcBj
�rBj

	 � ccomp � ��rA �
pX

j��

�jrBj
	 � cA�rA	


 ��ccomp��B � B��rB � ���rA � �	�
pX

j��

�jcBj
�rBj

	 � ccomp �
pX

j��

�jrBj
� cA�rA	 � ccomp � rA


 ��ccomp��B � B��rB � �	�
pX

j��

�jcBj
�rBj

	 � ccomp �
pX

j��

�jrBj
� min

r
�cA�r	 � ccomp � r�


 ��ccomp��B � B��rB � �	�
pX

j��

�j �cBj
�rBj

	 � ccomp � rBj
� � min

r
�cA�r	 � ccomp � r�


 ��ccomp	�
pX

j��

�j min
r�
Bj

�cBj
�r�Bj

	 � ccomp � r
�
Bj
� � min

r
�cA�r	 � ccomp � r�


 ��ccomp	�
pX

j��

�jvBj
�ccomp	 
 vA�ccomp	

Since this holds for an arbitrary minimal balanced set� it has to hold for
every minimal balanced set� Thus� by Theorem ���� BRC�ccomp	 �� 	� �

If CS� � fAg for all ccomp�� �	� the above conditions guarantee existence
of the BRC�ccomp	 for all ccomp�� �	� In BRS games� fewer conditions su
ce�

��



Theorem ��
 BRC in BRS games �su�ciency�� In a game that
is BRS for some ccomp � �� �for every proper minimal balanced set B �
fB�� ���� Bpg� ��B � B��rB � �	

Pp
j�� �jcBj

�rBj
	 � cA�

Pp
j�� �jrBj

	��
BRC�ccomp	 �� 	�

Proof� Analogous to the proof of Theorem ���� except that now an arbitrary
proper minimal balanced set is considered� Furthermore� the reference to
Theorem ��� should be changed to a reference to Theorem ���� �

Again� if the game is BRS for all ccomp�� �	� the above conditions guar�
antee existence of the BRC�ccomp	 for all ccomp�� �	�

Example� In a ��agent game that is BRS �ccomp� ���rf���g � ���rf���g �
���rf���g � �	� �

�
cf���g�rf���g	�

�

�
cf���g�rf���g	�

�

�
cf���g�rf���g	 � cf�����g�

�

�
rf���g�

�

�
rf���g �

�

�
rf���g	�� �ccomp� BRC�ccomp	 �� 	�

� Experimental results� vehicle routing

BR coalition formation was tested in the vehicle routing domain using one
week real�world vehicle and order data from � geographically distributed
dispatch centers� Each center had its own vehicles and delivery tasks� In
all� they had ��� deliveries to make with �� vehicles� Each vehicle had to
begin and end its tour at the depot of its center� but neither the pickup
nor the drop�o� locations of the orders were at the depot� The vehicles had
heterogeneous maximum load weight and maximum load volume constraints�
All vehicles had the same maximum route length� The domain cost cS�rS	 for
a coalition S was the sum of the route lengths of the vehicles of that coalition
�while handling all of its orders	 in the solution that had been reached after
computation rS� The problem is NP�hard� because �TSP can be trivially
reduced to it� It is in NP� because the cost and feasibility of a solution can
easily be checked in polynomial time� Thus� the problem is NP�complete�
Moreover� the problem instances in our example are so large that even the
smallest ones are too hard to solve optimally� Therefore� rational coalition
formation algorithms for the vehicle routing problem ���� are unusable�

The rational value �vRS 	 of each coalition S is de�ned by the tasks and
the resources �vehicles� depots	 of the agents in the coalition� Speci�cally�
vRS is independent of how nonmembers solve their optimization problems�
Therefore our problem is a characteristic function game �CFG	� Fig� ��

��



Our problem is outside the domain classi�cation of Rosenschein and
Zlotkin ����� Fig� �� because agents do not have symmetric capabilities due to
heterogeneous �eets� If their de�nition were extended to allow asymmetric
capabilities� our domain would be in SOD n TOD� Our domain would not
be a TOD because any one agent is not necessarily able to individually han�
dle all tasks of all agents� If we further dropped the maximum route length
constraint �this experiment will also be presented	� and restricted ourselves
to domains where each center has at least one su
cient vehicle to satisfy the
weight�volume constraints of any order of any center �not true in our data	�
then the domain would be a TOD� The following simple example shows that
it would not be a �Subadditive TOD because the depots are geographically
distributed� Let us look at a game with just two agents �A� and A�	� two
delivery tasks �T� and T�	� and two identical vehicles�one for each agent�
Say that the pickup site and the drop�o� site of T� are close to A�
s depot�
and T�
s pickup and drop�o� are close to A�
s depot� Now say that the
depots are far from each other� Thus the sum of the route lengths when A�
manages T� and A� manages T� is lower than when either agent individually
manages both tasks�

To analyze a game we ran the same algorithm on the vehicle routing
problem of each subgroup of agents separately and thus acquired a PP for
each potential coalition� The algorithm �rst generates an initial solution by
giving each vehicle one long delivery and then� in order� giving each vehi�
cle the delivery that can be added to its route with the least cost without
violating the constraints� The second phase of the algorithm is based on
iterative re�nement� At each step� a delivery �chosen from a randomly or�
dered circular list	 is removed from the routing solution and inserted back
to the solution� but into the least expensive place while not violating the
constraints� The drop�o� location of the delivery has to be inserted after
the pickup location into the same vehicle
s route� but not necessarily into
the same leg� We ran the re�nement algorithm until no remove�insert oper�
ation enhanced the solution� a local optimum was reached� In the PPs we
ignored the time to construct the initial solution� and only viewed how the
solution cost decreased with more CPU seconds of iterative re�nement� Fig� �
left� The re�nement algorithm is an anytime algorithm� but because the PPs
are exact �as explained� they are precomputed for experimental purposes by
running the base algorithm itself	� the agents do not gain information from
execution on that instance so far� Therefore the algorithm is equivalent to a

��



design�to�time algorithm for our purposes�
We analyzed all of the ��

�
	 � �� ��agent games that can be acquired by

choosing � of the � dispatch centers� There are � subgroups of the � agents�
f�g� f�g� f�g� f���g� f���g� f���g� f�����g and � coalition structures� ff�g�
f�g� f�gg� ff�g� f���gg� ff�g� f���gg� ff�g� f���gg� ff�����gg� Figure �
shows the PPs with agents �� � and �� Each of our games is superadditive
for reasons that were explained in Section �� Thus rational agents would
be best o� by forming the grand coalition� Surprisingly� none of the games
were BRS for any ccomp� Fig� �� For ccomp
s in the mid�range� the ��agent
games were often BR subadditive �point M in Fig� �	� while in the low and
high ranges �point LH in Fig� �	� they were often neither BRS nor bounded
rational subadditive� In some of these mixed games� for low ccomp� the grand
coalition was the best coalition structure �point Lg in Fig� �	� Existence of
the core for rational agents is unknown for our games� the points M� LH�
and Lg might really be M
� LH
� and Lg
� The BRC was non�empty in all
��agent games for all values of ccomp� So� rational agents would be best o�
forming the possibly unstable grand coalition� while BR agents should form
varying coalition structures �the grand coalition for some low ccomp
s	� which
are always stable� We also reran the experiments without the maximum
route length restriction� and these results prevailed� Fig� ��

Centers �� � and � were located near each other� while � and � were
far from each other and the other centers� Centers �� �� � and � transported
heavy low volume items� while � transported light voluminous items� Centers
���� had ��� ���� ��� ���� and ��� deliveries� and ��� ��� ��� ��� and ��
vehicles respectively� Both with and without the route length restriction� �
and � were best o� by only mutually colluding for any ccomp� Their deliveries
have considerable areal overlap due to adjacency� and the light voluminous
items and heavy low volume items can be pro�tably joined into the weight
and volume constrained vehicles� Centers � and � did not collude as much
as � and � because �
s vehicles had tighter volume constraints than �
s�
hindering the transport of �
s goods� No other two centers besides � and �
were always best o� in a ��agent coalition independent of the third agent of
the game� Relaxing the route length constraint increased collusion between
the distant � and � while demoting collusion of the adjacent � and ��

Next we analyzed the ��
�
	 � � ��agent games and the ��agent game with

and without the route length restriction� In every game� the existence of
BRC�ccomp	 varied many times as a function of ccomp� but it existed for the
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{1,2,3} {1},{2},{3} ccomp

BRSUB BRSUB BRSUB

{1,2,4} {1},{2},{4} {1},{2,5} {2,5},{3} {2,5},{4}

3-agent games with route length restriction

3-agent games without route length restriction

{1},{3},{4}

BRSUB BRSUB
{1},{3},{5} {1,5},{3}

BRSUB

{1},{4},{5} { 1 , 5 } , { 4 }
BRSUB

{3},{4},{5} { 3 , 5 } , { 4 }
BRSUB

{2,3},{4} {2},{3},{4}

BRSUB

{1,2,3} {1},{2},{3} {1},{2,5} {2,5},{3} {2,5},{4} {1},{3},{4}

BRSUB

{1},{2,4} {1},{2},{4}

BRSUB BRSUB

{1},{3},{5} {1,5},{3}

BRSUB

{1},{3},{5}

{1},{4},{5} {1,5},{4}

BRSUB

{2,4},{3} {2},{3},{4}

BRSUB BRSUB BRSUB
{3,4,5} {3,5},{4}{3},{4},{5}

BRSUB

{1},{4},{5} {1,5},{4}

{1,5},{3}

4-agent games with route length restriction

4-agent games without route length restriction

5-agent game with route length restriction 5-agent game without route length restriction

{1,2,3,4} {1,2,4},{3} {1,2,3},{4} {1},{2},{3},{4} {1},{2,5},{3} {1},{2,5},{4} {1,5},{3},{4}{1},{3},{4},{5}

BRSUB

{2,5},{3},{4}

{1,2,3},{4} {1},{2},{3},{4} {1},{2,5},{3} {1},{2,5},{4} {1,5},{3},{4}{1},{3,4,5}

BRSUB

{1},{3},{4},{5} {1},{3},{4},{5} {1,5},{3},{4} {2,5},{3},{4}

{1}, {2,5}, {3}, {4} {1}, {2,5}, {3}, {4}

(BRSUB = Bounded rational subadditive)

Figure �� Optimal coalition structure �CS�� and bounded rational subadditiv�
ity as a function of ccomp� Tested by evaluating all possible coalition structures
and super�subadditivity at varying points of ccomp chosen from a grid where
ccomp is always incremented by ���

largest values of ccomp� No game was BRS for any ccomp� but some games were
bounded rational subadditive for interior values� Fig� �� In only one game
�with agents �� �� �� and �� and the route length restriction	� for low ccomp�
the best coalition structure was the grand coalition� When this occurred�
BRC�ccomp	 happened to be non�empty �point Lg �or Lg
	 in Fig� �	� In
none of the experiments was the BRC�ccomp	 empty when the best coalition
structure was the grand coalition� Thus� depending on ccomp� the games were
at the points M� LH� Lg� or �� �or M
� LH
� Lg
� or ��
	 in Figure �� The
best coalition structure varied despite the fact that rational agents would be
best o� forming the grand coalition due to superadditivity� Again� whenever
both agents � and � participated� they were best o� by mutually colluding
for all computation unit costs� In those games no other agents colluded�

Each step of the re�nement algorithm takes !�vd�	 time� where v is the
number of vehicles and d is the number of deliveries� Because this is superlin�
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ear in deliveries� a larger coalition can make fewer re�nement steps in a given
time than the agents in partitions of that coalition can� To compensate� a re�
�nement step of the larger coalition would need to reduce solution cost more
than a re�nement step of a smaller coalition� The size of the saving has to
be averaged over all re�nement steps in the optimal time allocation� If ccomp

is low� more time is allocated� and small coalitions will often run out of prof�
itable re�nements� If ccomp is high� less time is allocated� and all coalitions
will have pro�table re�nements� though the larger coalition will have time to
make fewer of them� These intuitions suggest that with re�nement steps of
superlinear complexity� higher computation unit costs often promote smaller
coalitions� and lower computation unit costs promote larger ones� Thus it
was not surprising that in games where the grand coalition was optimal� it
was optimal for very small computation unit costs only�

Surprisingly� two agents colluding was often better than all agents work�
ing separately even for large ccomp
s� The result that higher computation
unit costs often promote smaller coalitions is somewhat deemphasized by
our choice of not including the initial solution construction phase in the PPs�
Shifting the PPs right to begin at the time when the initial solution was �n�
ished �instead of �	 would shift the PPs of small coalitions less than the PPs
of large coalitions because the initial solution construction is superlinear both
in tasks and vehicles� Thus small coalitions would gain an advantage�that
is most signi�cant for large ccomp� If the time of initial solution generation is
discarded� the best coalition structure for the greatest computation unit costs
depends only on the quality of the initial solutions of the di�erent coalitions
because no re�nement steps are bene�cial� For example� coalitions f���g
�Fig� �	� f���g and f���g achieved a better initial solution cost than the sum
of the initial solution costs of the two agents separately� Fig� ��

� Di�erent performance pro�les	 di�erent com


putation unit costs	 and domain solution

interactions

So far games where each agent has the same PP for a given coalition were
presented� In general� domains where the agents have di�erent PPs�due
to di�erent algorithms�are not characteristic function games for BR agents
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�BRCFGs	� because the value of a coalition sometimes depends on the actions
of nonmembers� The value of a coalition can depend on whether an outside
agent is willing to compute the solution for the coalition �for a payment	 if its
algorithm is better than any of the algorithms of the agents in the coalition�

Games where the agents have di�erent unit costs �ccomp
s	 for computation"
e�g� due to di�erent execution architectures�are also in general not BR�
CFGs� Actually such games are analogous to games with a global ccomp

but agents with di�erent PPs� Namely� games where agents have di�erent
computation unit costs �ccomp
s	 can be modeled as games with a uniform
computation unit cost after the ccomp�axis of each vS�ccomp	 function is ap�
propriately rescaled based on the real ccomp of the corresponding coalition
S�

Interactions between domain solutions of di�erent coalitions may also ex�
clude some problems from the class BRCFG� In general� the rational value of
a coalition may depend on the actions of nonmember agents due to positive
and negative interactions of the agents
 solutions� Such games are normal
form games �NFGs	� but not characteristic function games �CFGs	� Fig� ��
For the same reason� the value of some BR coalition
s domain solution�
computed by a BR agent�may depend on the actions of nonmembers� Neg�
ative interactions are often caused by shared resources of �nite capacity�
Once nonmembers are using the resource to a certain extent� not enough of
that resource is available to agents in the coalition to carry out the planned
solution at the minimum cost� Negative interactions can also be caused by
con�icting goals� In satisfying their goals� nonmembers may actually move
the world further from the coalition
s goal state�s	 ����� Positive interactions
are often caused by partially overlapping goals� In satisfying their goals� non�
members may actually move the world closer to the coalition
s goal state�s	�
from where the coalition can reach its goals less expensively than it could
have without the actions of nonmembers�

In the distributed vehicle routing domain of this paper� there were no
shared resources� because all of the resources�vehicles and depots�in the
domain were exclusively and exhaustively distributed among the agents �and
thus among coalitions	� Secondly� each agent �and thus each coalition	 had
its own goal� delivering all of the parcels at the lowest possible cost� The
deliveries of one coalition are una�ected by the deliveries of nonmember
agents� Thus� as stated earlier� the domain is a CFG� For the same reason�
domain solution interactions do not preclude the problem from belonging to
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the class BRCFG� Yet if the agents had di�erent PPs or computation unit
costs� the problem would not necessarily be within BRCFG�

In non�CFGs� superadditivity� subadditivity� and the core are unde�ned�
Fig� �� Thus� other solution concepts are necessary� One alternative is the
Nash equilibrium ���� ���� which guarantees stability in the sense that no
agent alone is motivated to deviate from the solution given that others in
the game do not deviate� Often this solution concept is too weak because
subgroups of agents can deviate in a coordinated manner� The Strong Nash
equilibrium ��� is a solution concept that guarantees more stability in the
sense that it requires that there is no subgroup that can deviate in a manner
that increases the payo� of all of its members given that nonmembers do not
deviate from the original solution� The Strong Nash equilibrium is often too
strong a solution concept because in many games no such equilibria exist�
Recently� the Coalition�Proof Nash equilibrium ��� �� has been suggested to
remedy this problem� This solution concept requires that there is no sub�
group that can make a mutually bene�cial deviation �keeping the strategies
of nonmembers �xed	 in a way that the deviation itself is stable according
to the same criterion� A problem with this solution concept is that the de�
viation may be stable within the deviating group� but the solution concept
ignores the possibility that some of the agents that deviated may prefer to
deviate again with agents that did not originally deviate� Clearly� there is
room for further research on coalition formation even among rational agents�

Similar problems arise with BR agents� In non�BRCFGs� BR superaddi�
tivity� BR subadditivity� and the BRC are unde�ned� Fig� �� Again� other
solution concepts are necessary� e�g� the Nash equilibrium or some of its
re�nements� This is part of our current research�

� Related DAI research on collusion

Coalition formation has been widely studied in game theory ���� �� �� ��
��� ���# only the most relevant concepts were presented here� This section
compares our work to other recent DAI research on coalition formation�

Zlotkin and Rosenschein ���� analyze rational agents that cannot make
side payments� while our agents do� Their analysis is limited to �Subadditive
Task Oriented Domains �STODs	� which are a strict subset of CFGs� Fig� ��
In their solution concept� one agent handles all the tasks� In STODs this
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is optimal because STODs never exhibit diseconomies of scale� We do not
assume that one agent can take care of all the agents
 tasks� Unlike our work�
they also assume that all agents have the same capabilities �symmetric cost
functions for task sets	� Their method guarantees each agent an expected
value that equals its Shapley value ���� ���� The Shapley value motivates
individual agents to stay with the coalition structure �individual rationality	
and the group of all agents to stay �group rationality	� Unlike the core� the
Shapley value does not in general motivate every subgroup of agents to stay
with the coalition structure �coalition rationality	� In a subset of STODs�
�Concave Task Oriented Domains �Fig� �	� the Shapley value also satis�es
coalition rationality� i�e� the vector of Shapley value payo�s is in the core�

A naive method that guarantees an expected value equal to the Shapley
value has exponential complexity in the number of agents� but Zlotkin and
Rosenschein present a novel cryptographic method for achieving this with
linear complexity in the number of agents� Yet each one of these linearly
many problems involving the agents
 tasks needs to be solved optimally� In
combinatorial problems such as the vehicle routing problem of this paper
�and the Postmen Domain of Zlotkin and Rosenschein for that matter	� this
is clearly intractable if the problem instances are large�

Ketchpel ���� presents a coalition formation method for rational agents
which have di�erent expectations of coalition values� The �computational	
origin of these expectations is not addressed� His assumption of imperfect
information di�ers from our setting� where the agents have perfect informa�
tion� but cannot perfectly deduce� Ketchpel
s coalition formation algorithm
runs in cubic time in the number of agents� but does not guarantee stability�
His protocol is based on mutual o�ers� In practice it is hard to prevent out�
of�protocol o�ers such as multiagent o�ers� In our approach� if the agents

payo� vector is chosen from within the BRC� the coalition structure is stable
against all o�ers� Finally� his ��agent auction is manipulable and compu�
tationally ine
cient� He approaches the coalition formation and the payo�
division problems simultaneously�

This is closely related to the contracting protocol of Sandholm ���� �TRA�
CONET	� where agents construct the global solution by contracting a small
number of tasks at a time� and payments are made regarding each contract
before new contracts take place� An agent updates its approximate solution
after each task transfer� In general equilibrium approaches such as WAL�
RAS ����� non�manipulative agents iterate over the allocation of resources
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and tasks� and payments are made only after a �nal solution is reached�
Shechory and Kraus ���� analyze coalition formation among rational agents

with perfect information in domains that are not necessarily superadditive�
Their protocol guarantees that if agents follow it� a certain stability criterion
�K�stability	 is met� This requires the solution of an exponential number of
optimization problems� Their other protocol guarantees a weaker form of
stability �polynomial K�stability	� but only requires the solution of a polyno�
mial number of optimization problems� Unfortunately� each one of these may
be intractable� Their algorithm switches from one coalition structure to an�
other guaranteeing improvements at each step� coalition structure formation
is an anytime algorithm� although each domain problem is solved optimally�
In our approach� each domain problem is solved using an approximation
�design�to�time	 algorithm�

� Conclusions and future research

A normative� domain�independent theory of coalitions in combinatorial do�
mains was presented� where the rationality of self�interested agents is bounded
by computational complexity� This work is an extension of game theory�
which classically assumes perfect rationality� algorithms that �nd the opti�
mal solution� and zero computation unit cost�

A domain classi�cation was presented for rational and bounded rational
�BR	 agents� The algorithms used by the agents signi�cantly impact the
coalition structure that should form as well as its stability� General theorems
were presented that relate an algorithm
s performance pro�les �PPs	 to the
social welfare maximizing coalition structure� This analysis was carried out
using the new concepts of BR superadditivity and BR subadditivity� General
theorems were also presented that relate the PPs to the non�emptiness of the
bounded rational core �BRC	� which determines the stability of the coalition
structure�

Although almost all domains are superadditive� BR superadditivity is
surprisingly all but obvious in practice� None of the vehicle routing games
of our experiments�using real data and a reasonable iterative re�nement
algorithm�exhibited BR superadditivity� Thus the optimal coalition struc�
ture for BR agents varied although rational agents should always form the
grand coalition� Section � developed conditions on the PPs that guarantee

��



BR superadditivity� It also discussed a separate solving approach�based on
a problem decomposition step�that guarantees that the base algorithm ful�
�lls those conditions� With our reasonable deterministic iterative re�nement
algorithm� these conditions were�somewhat surprisingly�never met� The
real desideratum is not necessarily to generate algorithms that guarantee BR
superadditivity �and thus the superiority of the grand coalition over other
coalition structures	� but algorithms that provide the highest social welfare
�for the best coalition structure� which need not be the grand coalition	�
Sometimes these goals are con�icting�

The observed BR subadditivity of some of the games implies a non�empty
BRC� the best coalition structure in those games is stable� Even when BR
subadditivity did not hold� the BRC was often non�empty�especially for
large computation unit costs ccomp� Often with superlinear iterative re�ne�
ment steps� low ccomp promotes large coalitions while high ccomp suggests
smaller ones� The best BR coalition structures mostly agreed with our intu�
itions of what coalitions should form among rational agents based on strategic
domain speci�c considerations such as adjacency of the dispatch centers and
the combinability of their loads�

Our model of bounded rationality is based on costly computation re�
sources� Future work includes analyzing another model� where each agent
has a �xed free CPU and no more CPU time can be bought� If the domain
cost increases with real time due to a dynamic environment� such agents with
bounded computational capabilities are often best o� by distributing the com�
putation� In the costly computation model of this paper� it is best to allocate
each coalition
s computation to a single agent� The models are equivalent if
the domain cost increases linearly with real time and distribution does not
speed up computation�

Extensions include generalizing these methods to agents with di�erent
PPs� probabilistic PPs� and anytime algorithms where PPs are conditioned
on execution so far ���� ���� Agents with probabilistic PPs may want to rese�
lect a coalition if the value of their original coalition is lower than expected�
but sunk computation cost has already been incurred� Future research also
includes agents that can re�ne solutions generated by others� Finally� we are
in the process of developing interaction protocols ���� that e
ciently guide
self�interested agents towards the optimal and stable �whenever possible	
coalition structures�as determined by the theory developed in this paper�
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