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Abstract

This paper analyzes automated distributive negotiation where agents
have firm deadlines that are private information. The agents are al-
lowed to make and accept offers in any order in continuous time. We
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show that the only sequential equilibrium outcome is one where the
agents wait until the first deadline, at which point that agent concedes
everything to the other. This holds for pure and mixed strategies. So,
interestingly, rational agents can never agree to a nontrivial split be-
cause offers signal enough weakness of bargaining power (early dead-
line) so that the recipient should never accept. Similarly, the offerer
knows that it offered too much if the offer gets accepted: the offerer
could have done better by out-waiting the opponent. In most cases,
the deadline effect completely overrides time discounting and risk aver-
sion: an agent’s payoff does not change with its discount factor or risk
attitude. Several implications for the design of negotiating agents are
discussed. We also present an effective protocol that implements the
equilibrium outcome in dominant strategies.

All good things come to those who wait. -Proverb

1 Introduction

Multiagent systems for automated negotiation between self-interested agents
are becoming increasingly important. One reason for this is the technol-
ogy push of a growing standardized communication infrastructure—Internet,
WWW, EDI, KQML, FIPA, Concordia, Voyager, Odyssey, Java, etc—over
which separately designed agents belonging to different organizations can in-
teract in an open environment in real-time and safely carry out transactions.
Another form of technology push comes from recent advances in automated
negotiation technology itself [Sandholm, 1993, Rosenschein & Zlotkin, 1994,
Sandholm & Lesser, 2001, Sen, 1993]. The second reason is strong appli-
cation pull for computer support for negotiation at the operative decision
making level. For example, we are witnessing the advent of small transac-
tion electronic commerce on the Internet for purchasing goods, information,
and communication bandwidth. There is also an industrial trend toward vir-
tual enterprises: dynamic alliances of small, agile enterprises which together
can take advantage of economies of scale when available (e.g., respond to
more diverse orders than individual agents can), but do not suffer from dis-
economies of scale. Multiagent technology facilitates such negotiation both
in terms of processes and outcomes.

For many-to-many negotiation settings, market mechanisms are often
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used, and for one-to-many negotiation, auctions are often appropriate. The
competitive pressure on the side with many agents often reduces undesirable
strategic effects. On the other hand, market mechanisms often have difficulty
in “scaling down” to small numbers of agents [Osborne & Rubinstein, 1990].
In the limit of one-to-one negotiation, strategic considerations become preva-
lent. At the same time, one-to-one negotiation settings that crave software
agents are ubiquitous. Consider, for example, two scheduling agents negoti-
ating meeting times on behalf of their users, or any ecommerce application
where agents negotiate the final price of a good, or a scenario where agents
representing different departments bargain over the details of a service which
they provide jointly (for example, the ADEPT multi-agent system, currently
used by British Telecom, see [Jennings et al., 1996]).

The designer of a multiagent system can construct the interaction protocol
(aka. mechanism) which determines the legal actions that agents can take at
any point in time. Violating the protocol can sometimes be made technically
impossible—e.g. disallowing a bidder from submitting multiple bids in an
auction—or illegal actions can be penalized e.g. via the regular legal system.
To maximize global good, the protocol needs to be designed carefully taking
into account that each self-interested agent will take actions so as to maximize
its own utility regardless of the global good. In other words, the protocol has
to provide the right incentives for the agents. In the extreme, the protocol
could specify everything, i.e. give every agent at most one action to choose
from at any point. However, in most negotiation settings, the agents can
choose whether to participate or not. So, to have the protocol used, the
designer has to provide incentives for participation as well. This turns out to
have important implications on the types of protocols analyzed in this paper.
We will return to this question in Section 8.

Perhaps the most well-known economic model of strategic bargaining is
the infinite horizon alternating offers game [Rubinstein, 1982]. Since it has
a unique solution where agents agree on a split immediately, it seems at-
tractive for automated negotiation, see e.g. [Kraus, Wilkenfeld, & Zlotkin,
1995]. However, the infinite horizon assumption is often not realistic in the
same context. Most ecommerce applications simply cannot allow for nego-
tiations to continue forever. Moreover, the results change considerably if
there is a known last period, or even if the distribution from which the num-
ber of negotiation rounds is drawn is known and has a finite support. A
second disadvantage of the model is that the predictions of the model are
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specific to exponential time discounting. For example, under linear time
discounting—i.e. a fixed bargaining cost per round of offers—the results
change dramatically. The first mover either gets the whole surplus or most
of it depending on the ratio of the fixed costs of the two agents. The as-
sumption of perfect information is also of limited use to designers of agents
and negotiation protocols. In practice, agents have private information. In
such settings, the alternating offers model leads to multiple equilibria, in-
cluding some where the true types are revealed after long delays, or never.
The length of the delay depends on the number of types. See e.g. [Fudenberg
& Tirole, 1983], [Fudenberg, Levine, & Tirole, 1985], and [Rubinstein, 1985].
Cramton constructs a sequential equilibrium in a bargaining model with two-
sided uncertainty, where types are revealed after a maximum of two rounds,
but where the delay is directly related to the types of the players [Cramton,
1992]. However, there is a continuum of other sequential equilibria where
types are not fully revealed. The usefulness of these models as blueprints
for designing agents and protocols is questionable when they allow for such
qualitatively different outcomes.

Still, the tools of game theory and mechanism design can be used to
study new types of bargaining models, inspired by the various applications
of automated negotiation. In fact, game theory and mechanism design theory
are more suitable for software agents than for humans because agents can
be designed off-line to act rationally even if determining rational strategies
is complex [Rosenschein & Zlotkin, 1994]. Also, computational agents do
not suffer from emotional irrationality. Finally, the bounded rationality of
computational agents can be more systematically characterized than that
of humans [Sandholm & Lesser, 1997]. Whether a given communication
protocol for self-interested agents will lead to efficient outcomes typically
depends on the underlying strategic structure of these interactions. The
traditional economic approach of mechanism design which studies first the
set of equilibria is therefore of particular relevance to the engineering of such
protocols.

In many of the applications we have come across, agents must reach an
agreement by a given deadline, which is private information. For example
in ADEPT, agents negotiate for services which must be supplied and used
by a certain time [Jennings et al., 1996]. In ADEPT, as in many similar
applications, deadlines - and not time discounting - are the main determi-
nant of the agent’s bargaining power. In our model therefore agents face firm
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deadlines in their bargaining. This is also an appealing assumption from a
practical perspective since users easily understand deadlines and can trivially
communicate them to software agents. Since each agent’s deadline is private
information, there is a disadvantage in making offers. Any offer—with the ex-
ception of demanding everything for oneself—reveals some information about
the proposer’s deadline, namely that it cannot be very long. If it were, the
proposer would stand a good chance of being able to out-wait the opponent,
and therefore would ask for a bigger portion of the surplus than it did. Sim-
ilarly, the offerer knows that it offered too much if the offer gets accepted:
the offerer could have done better by out-waiting the opponent. We analyze
bargaining with deadlines in both continuous and discrete time frameworks.
In our model of continuous time bargaining, agents can—at any time—make
an offer, accept an existing offer, or simply do nothing. Our model resembles
war of attrition games where two agents compete for an object and winner-
takes-all when one concedes. Those games exhibit multiplicity of equilibria.
If the value of the object is common knowledge, there is an asymmetric equi-
librium where one agent concedes immediately. There is also a symmetric
equilibrium where agents concede at a rate which depends on the value of
the object. [Hendricks, Weiss, & Wilson, 1988] study the general class of
war of attrition games with perfect information. [Hendricks & Wilson, 1989]

study the case of incomplete information, normally about the object’s value,
see also [Riley, 1980]. The game was introduced by [Smith, 1974] in a biolog-
ical context and has been applied in industrial economics [Fudenberg et al.,
1983], [Kreps & Wilson, 1982]). Cramton [Cramton, 1992], and especially
Smith [Smith, 1997], consider the war of attrition as the framework with
which to model bargaining situations.

Our model differs from the war of attrition. Agents are allowed to split
the dollar instead of the winner taking it all. One would expect that to
enlarge the set of equilibria and equilibrium outcomes. This intuition turns
out to be false. We show that the only equilibrium outcome is one where
agreement is delayed until one of the deadlines is reached, and then one agent
gets the entire surplus.

We show that there exists a sequential equilibrium where agents do not
agree to a split until the first deadline, at which time the agent with the later
deadline receives the whole surplus. Conversely, we show that there do not
exist any other Bayes-Nash equilibria where agents agree to any other split at
any other time. Therefore both our positive and negative results are strong
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with respect to the degree of sequential rationality agents are assumed to
have. Intuitively speaking, in these equilibria the agents update their beliefs
rationally, and neither agent is motivated to change its strategy at any point
of the game given that the other agent does not change its strategy.

Our results are robust in other ways as well. First, there does not exist
even a mixed strategy equilibrium where an agent concedes at any rate before
its deadline. This, again, is in contrast with the usual equilibrium analysis of
war of attrition games. Second, the results hold even if the agents discount
time in addition to having deadlines. Third, even if agents have different risk
attitudes, they will not agree to any split before their deadline. That is, even
risk averse agents will refuse safe and generous offers and will instead prefer
to continue to the risky “waiting game”.

The rest of the paper is organized as follows. Section 2 describes our for-
mal model of bargaining with deadlines. Section 3 presents our main results
for pure-strategy equilibria as well as mixed strategy equilibria. Sections 4
and 5 present the results with time discounting and with agents with risk
attitudes. Section 6 shows how our results apply to the case of discrete time.
Section 7 describes the entailed insights for designing automated negotiating
agents. Section 8 discusses implications for the design of interaction proto-
cols. Finally, Section 9 concludes.

2 A model of bargaining under deadlines

Our bargaining game, Γ(a, b), has two agents, 1 and 2. The type of agent 1 is
its deadline d1. The type of agent 2 is its deadline d2. The types are private
information: each agent only knows its own type. The type d1 is drawn from
a distribution a, and d2 is independently drawn from a distribution b, where
the distributions a and b are common knowledge. Without loss of generality
we assume that these distributions are on [0, 1], that is, the deadlines occur
no earlier than the beginning of the game, and no later than time 1.

At any time t, player i can choose whether to change its demand, xi ∈
[0, 1]. The game begins at t = 0 with both players demanding the whole cake
for themselves (that is, x0

1 = x0
2=1). Players can alter their demand at any

stage of the game. A history for player i at time t is: f ti : [0, t) → [0, 1]. A
strategy is a mapping from histories to actions. A mixed strategy is a mapping
from histories to distributions over the action space. As in war of attrition,
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we interpret a mixed strategy as the probability of accepting a given offer at
a given time and history.

There are well known problems in modeling games of continuous time.
Most importantly, some time dependent strategies will not uniquely define a
payoff (see, e.g. [Bergin & MacLeod, 1993]). Although this is an important
technical aspect of the model, it does not affect our results because the type
of strategies used, in both our existence and nonexistence theorems, depend
only on private information. That is, agents’ strategies are only conditional
on their own type, i.e. their deadline. Moreover, in continuous time, the
event d1 = d2 has zero probability.1

If there exists a time t < d1, d2 at which xt1 + xt2 ≤ 1 then the game ends

and the payoffs xt1 +
1−xt1−xt2

2
and xt2 +

1−xt1−xt2
2

are distributed. The payoff for
an agent from any agreement which takes place after its deadline is 0. We
assume that an agent strictly prefers to hand over the whole surplus than to
miss its deadline. In other words, if the agent will get zero payoff anyway, it
will rather give the surplus to the other agent than not. We believe that this
assumption of discontinuity of preferences captures the essence of deadlines:
there is a small but positive utility associated with reaching an agreement.
If this assumption is removed, then there may be additional equilibria where
agents miss their deadline with probability 1.

Each player holds beliefs about the deadline of its opponent. Initially,
these beliefs are equal to the densities of a and b, but they then get updated.
In equilibrium these beliefs must be consistent. As we show below, this fact
is crucial in proving our main result. In fact, we show that this fact is the
only feature of the model necessary to prove our results. In other words,
histories do not matter. More specifically, the fact that players can respond
to offers is irrelevant since, in equilibrium, they will never choose to do so.

3 Equilibrium analysis

We first show that there exists a sequential equilibrium where agents refuse
any type of offer made to them before their deadline. The intuition for this is
simple: At any stage of the game, each agent can compute its expected payoff
from rejecting all offers (based on its type and its opponent’s density). If the

1If time is discrete, then Prob(d1 = d2) > 0, but every pair of strategies does define a
unique payoff. We will return to this in Section 6.
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agent is being made an offer lower than this value, then it will be rejected.
If the agent is being made an offer higher than this value, then the agent
reasons that it must be that its opponent deadline is approaching. Updating
its beliefs accordingly, it again prefers to wait. The following proposition
makes this intuition formal.

Proposition 3.1 There exists a sequential equilibrium of Γ(a, b), where the
agent with the latest deadline receives the whole surplus exactly at the earlier
deadline.

Proof. Consider the following (symmetric) strategies: si(di): demand
x = 1 (everything) at any time t < di. At t = di accept any offer. At any
time t < di, reject offers xi ≥ di. Update beliefs according to Bayes rule,
putting all the weight of the posterior distribution over the values of the
opponent’s deadline, d−i, over the interval (1 − xi, 1). At any time t < di,
reject offers xi < di.

We first show that the beliefs specified above are consistent: Let sεi (for
i = 1, 2) assign probability 1− ε to the above specified posterior beliefs, and
probability ε to the rest of the support of d−i. As ε → 0 the fully mixed
strategy pair converges to (s1, s2), while the beliefs generated by the fully
mixed strategy pair converge to the beliefs described above. It is now easy
to see that, given these beliefs, actions are sequentially rational. Along the
equilibrium path agents will always demand the full surplus and therefore no
agreement will be achieved before the fist deadline. At the first deadline, the
agent with the later deadline will receive the whole surplus. 2

The equilibrium described above is clearly also a continuation equilibrium
of any subgame beginning at any given time t, following a non-terminal
history, ht. That is, at any stage of the game each agent can move to this
waiting game, and the other agent’s best response is to do the same. We
use this property in the proof of our main result which states that the “sit-
and-wait” equilibrium is the only sequential equilibrium of Γ(a, b). In fact,
we prove a stronger claim that there is no equilibrium even using a weaker
definition of equilibrium, the Bayes-Nash equilibrium. It follows that no
sequential equilibrium exists either. We first present the result for pure
strategies.

Theorem 3.1 If d1 > 0 or d2 > 0, there does not exist a pure strategy
Bayes-Nash equilibrium of Γ(a, b), where agents agree to a split other than
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(1, 0) or (0, 1).

Proof. Assume, for contradiction, that there exist types d1 > 0 and d2 > 0
and a pure strategy Bayes-Nash equilibrium (s1, s2) where the agents agree
to a split (π1, π2) = (x, 1 − x), where x ∈ (0, 1) at time t ≥ 0. We assume,
without loss of generality, that agent 1 receives at least one half, i.e. x ≥ 1

2
.

We can therefore write x = 1
2

+ ε, where 1
2
> ε ≥ 0.

Let g0(d2) denote agent 1’s beliefs about d2 at time t. Similarly, let f0(d1)
denote agent 2’s beliefs about d1 at time t. Denote by G(d2) ≡

∫ d2
t g0(d2)dd2

the cumulative distribution of g0, and by F (d1) ≡
∫ d1
t f0(d1)dd1 the cumula-

tive distribution of f0.
In equilibrium, agent 2 will accept 1−x only if it does not expect to receive

more by unilaterally moving to the waiting game. The expected payoff from
the waiting game is simply agent 2’s subjective probability that d2 < d1.
Hence agent 2 would accept only if

1

2
− ε ≥

∫ d2

t
f0(d1)dd1 = F (d2)− F (t) = F (d2) (1)

In other words, agent 2’s type, d2, must not be too high. Let α(y) ≡ inf[d2 |
y ≥ F (d2)]. With this notation, (1) can be rewritten as d2 ≤ α(1

2
− ε).

Now, agent 1 will only accept this offer if it will give it an expected payoff
at least as large as that of the waiting game, which equals its subjective
probability of winning the waiting game. There are two cases. First, if
d1 > α(1

2
−ε), agent 1 knows that it will win the waiting game with probability

one, so the split (x, 1 − x) could not occur in equilibrium. The second case
occurs when d1 ≤ α(1

2
− ε). Agent 1 can use the fact that d2 ≤ α(1

2
− ε) to

update its beliefs about agent 2’s deadline as follows:

g1(d2) = 0 if d2 > α(
1

2
− ε). Otherwise,

g1(d2) = g0(d2)

∫ 1
t g0(d2)∫ α( 1
2
−ε)

t g0(d2)

= g0(d2) [1 +

∫ 1
α( 1

2
−ε) g0(d2)∫ α( 1

2
−ε)

t g0(d2))
]

︸ ︷︷ ︸
≥2 because α( 1

2
−ε)≤ median(g0)

(2)
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Based on these updated beliefs, agent 1 would accept only if

1

2
+ ε ≥

∫ d1

t
g1(d2)dd2 ≥ 2[G(d1)−G(t)] = 2G(d1) (3)

In other words, agent 1’s type, d1, must also not be too high. Let β(y) ≡
inf[d1 | y ≥ G(d1)]. With this notation, (3) can be rewritten as d1 ≤ β(

1
2

+ε

2
).

In equilibrium, agent 2 only accepts if it gives it an expected payoff at least
as large as that of the waiting game, which equals its subjective probability

of winning the waiting game. There are two cases. First, if d2 > β(
1
2

+ε

2
),

agent 2 knows that it will win the waiting game with probability one, so the

split (x, 1 − x) could not occur. The second case occurs when d2 ≤ β(
1
2

+ε

2
).

Agent 2 can use the fact that d1 ≤ β(
1
2

+ε

2
) to update its beliefs about agent

1’s deadline as follows:

f1(d1) = 0 if d1 > β(
1
2

+ ε

2
). Otherwise,

f1(d1) = f0(d1)

∫ 1
t f0(d1)∫ β(
1
2 +ε

2
)

t f0(d1)

= f0(d1) [1 +

∫ 1

β(
1
2 +ε

2
)
f0(d1)

∫ β(
1
2 +ε

2
)

t f0(d1))

]

︸ ︷︷ ︸
≥2 because β(

1
2 +ε

2
)≤ median(f0)

(4)

Based on these updated beliefs, agent 2 would accept only if

1

2
− ε ≥

∫ d2

t
f1(d1)dd1 ≥ 2[F (d2)− F (t)] = 2F (d2) (5)

i.e. d2 ≤ α(
1
2
−ε
2

)).
This process of belief update and acceptance threshold resetting continues

to alternate between agents. After r rounds of this alternation, all types have

been eliminated except those that satisfy d1 ≤ β(
1
2

+ε

2r
) and d2 ≤ α(

1
2
−ε
2r

). This
process can continue for an unlimited number of steps, r, so the upper bounds
approach zero. Therefore the equilibrium cannot exist if d1 > 0 or d2 > 0.
Contradiction. 2
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We now strengthen our impossibility result by showing that it holds for
mixed strategies as well, i.e. that there is no other rational way of playing
the game than “sit-and-wait” even if randomization is possible. This is yet
another difference between our setting and war of attrition games. In the lat-
ter, mixed strategies play an important role: typically the unique symmetric
equilibrium has concession rates that are mixed strategies.

Theorem 3.2 If d1 > 0 or d2 > 0, there does not exist a mixed strategy
Bayes-Nash equilibrium of Γ(a, b), where the agents agree to a split other
than (1, 0) or (0, 1) with positive probability.

The proof is based on a similar type elimination argument as the proof of
Theorem 3.1, but is somewhat more technical. It is presented in the ap-
pendix.

4 Incorporating discounting

Time discounting is a standard way of modeling settings where the value of
the good decreases over time, e.g. due to inflation or due to perishing. In the
previous sections we assumed that agents do not discount time. However, we
now show that our results are robust to the case where agents do discount
time in addition to having firm deadlines. Let δ1 be the discount factor of
agent 1, and δ2 be the discount factor of agent 2. The utility of agent i from an
agreement where he receives a share x at time t < di is then δtix. We denote
by Γ(a, b, δ1, δ2) the bargaining game where a, b, δ1, and δ2 are common
knowledge. We now prove that our previous result for Γ(a, b) holds also for
a large range of parameters in Γ(a, b, δ1, δ2). So, interestingly, the bargaining
power of an agent does not change with its discount factor, in contrast to
the results of most other bargaining games. In other words, the deadline
effect completely suppresses the discounting effect. This result is important
in its own right for the design of automated negotiating agents, and it also
motivates the study of deadline-based models as opposed to focusing only on
discounting-based ones.

Proposition 4.1 For any δ1, δ2, 0 < δ1 ≤ 1, 0 < δ2 ≤ 1, there exists a
sequential equilibrium of Γ(a, b, δ1, δ2) where the agent with the latest deadline
receives the whole surplus exactly at the earlier deadline.
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Proof. The equilibrium strategies and proof of sequential equilibrium are
identical to those in the proof of Proposition 3.1 with the difference that the
threshold is no longer di but δtidi. Also the posteriors are now defined only
until δti and not 1. 2

Theorem 4.1 If δ1δ2 >
1
2
, there does not exist a Bayes-Nash equilibrium of

Γ(a, b, δ1, δ2), (in pure or mixed strategies) where agents agree to a split other
than (1, 0) or (0, 1).

Proof. We prove the case for pure strategy equilibrium. The extension for
mixed strategy equilibrium is identical to that in Theorem 3.2. The proof is
a variant of the proof in Theorem 3.1, and we keep the notation from there.

Assume, for contradiction, that there exist types d1 > 0 and d2 > 0
and a pure strategy Bayes-Nash equilibrium (s1, s2) where the agents agree
to a split of the total surplus available at time t, according to proportions
(π1, π2) = (x, 1 − x), where x ∈ (0, 1) at time t ≥ 0. We assume, without
loss of generality, that agent 1 receives at least one half, i.e. x ≥ 1

2
. We can

therefore write x = 1
2

+ ε, where 1
2
> ε ≥ 0.

In equilibrium, agent 2 will accept 1 − x only if it does not expect to
receive more by unilaterally moving to the waiting game. The expected
payoff from the waiting game is now agent 2’s subjective probability that
d2 < d1, multiplied by the discounted value of winning. Hence agent 2 would
accept only if

δt2(
1

2
− ε) ≥

∫ d2

t
δd1

2 f0(d1)dd1 ≥ δ2

∫ d2

t
f0(d1)dd1 (6)

Dividing both sides by δt2, we get:

1

2
− ε ≥ δ1−t

2

∫ d2

t
f0(d1)dd1 = δ1−t

2 F (d2) ≥ δ2F (d2) (7)

In other words: d2 ≤ α(
1
2
−ε
δ2

).
Now, agent 1 can use this to update its beliefs about agent 2’s deadline

in the same way as in equation (2), with the difference that now g1 ≥ 2δ2g0.
Since δ2 > 0.5 (by the assumption that δ1δ2 > 0.5), we know that g1 > g0

(when g1 is not zero). Based on these updated beliefs, agent 1 would accept
only if

δt1(
1

2
+ ε) ≥

∫ d1

t
δd2

1 g1(d2)dd2 ≥ δ1

∫ d1

t
g1(d2)dd2 (8)
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Dividing both sides by δt1 and using the updated beliefs, g1, we can now rule

out ”high” types of agent 1. Formally, d1 ≤ β(
1
2

+ε

2δ2δ1
). Because δ1δ2 >

1
2
, we

can write δ1δ2 = 1
2

+ λ, where λ > 0. So, d1 ≤ β(
1
2

+ε

2δ2δ1
) = β(

1
2

+ε

1+2λ
).

Once more, belief updating by agent 2 (in the same way as in (4)) yields
f1 ≥ 2δ2δ1f0. Since δ1δ2 > 0.5 we get that f1 > f0 (when it is not zero).
Based on these updated beliefs, agent 2 would accept only if

δt2(
1

2
− ε) ≥

∫ d2

t
δd1

2 f1(d1)dd1 ≥ δ2

∫ d2

t
f0(d1)dd1 (9)

Dividing by δt2 and using the updated beliefs, f1, we can rule out the following

types: d2 ≤ α(
1
2
−ε

δ2(2δ1δ2)
) = α(

1
2
−ε

δ2(1+2λ)
).

This process of belief update and acceptance threshold resetting continues
to alternate between agents. After r rounds of this alternation, all types

have been eliminated except those that satisfy d1 ≤ β(
1
2

+ε

(1+2λ)r
) and d2 ≤

α(
1
2
−ε

δ2(1+2λ)r
). This process can continue for an unlimited number of steps, r,

so the upper bounds approach zero. Therefore the equilibrium cannot exist
if d1 > 0 or d2 > 0. Contradiction. 2

To satisfy the condition δ1δ2 > 1
2
, time discounting must not be too

significant compared to the deadlines, i.e. the cake cannot shrink too much
before the deadline. Since most deadline bargaining situations will certainly
have shorter deadlines than the time it will take for the cake to shrink to, say,
one half of its original size, Theorem 4.1 shows that “sit-and-wait” remains
the only equilibrium. So, in practice, the effect of deadlines suppresses that of
discount factors. This is even more commonly true in automated negotiation
because that is most likely going to be used mainly for fast negotiation at the
operative decision making level instead of strategic long-term negotiation.

5 Robustness to risk attitudes

We now generalize our results to agents that are not necessarily risk neutral.
Usually in bargaining games the equilibrium split of the surplus depends on
the agents’ risk attitudes. However, we show that this does not happen in
our setting. This is surprising at first since a risk averse agent generally
prefers a smaller but safe share to the risky option of the waiting game even
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if she expects to win it with high probability. However, we show that the
type-elimination effect described in the theorems so far is still present and
dominates any concessions which may be consistent with risk aversion.

Let the agents’ risk attitudes be captured by utility functions, ui where
i = 1, 2. Without loss of generality we let ui(0) = 0 and ui(1) = 1 for both
agents.

Proposition 5.1 There exists a sequential equilibrium of Γ(a, b, u1, u2), where
the agent with the latest deadline receives the whole surplus exactly at the ear-
lier deadline.

Proof. The equilibrium strategies and proof of sequential equilibrium are
identical to those in the proof of Proposition 3.1 with the difference that the
threshold is no longer di but ui(di). 2

The following definition is used to state our main result for the case of
different risk attitudes.

Definition. 5.1 The maximum risk aversion of agent i is

ρi ≡ max
x

ui(x)

x
(10)

We can now show that our impossibility result applies to a large range of
risk attitudes of the agents:

Theorem 5.1 If ρ1ρ2 < 2, there does not exist a Bayes-Nash equilibrium
(pure or mixed) of Γ(a, b, u1, u2), where agents agree to a split other than
(1, 0) or (0, 1).

Proof. We prove the case for pure strategy equilibrium. The extension to
mixed strategies is identical to that in Theorem 3.2. We keep the notations
from Theorem 3.1. Assume, for contradiction, that there exist types d1 > 0
and d2 > 0 and a pure strategy Bayes-Nash equilibrium (s1, s2) where the
agents agree to a split (π1, π2) = (x, 1 − x), where x ∈ (0, 1) at time t ≥ 0.
Assume, without loss of generality, that agent 1 receives at least half, i.e.
x ≥ 1

2
. Thus we can write x = 1

2
+ ε, where 1

2
> ε ≥ 0. In equilibrium, agent

2 accepts 1 − x only if it does not expect to receive more by unilaterally
moving to the waiting game. The expected payoff from the waiting game is
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agent 2’s subjective probability that d2 < d1. So, agent 2 would accept only
if

ρ2(
1

2
− ε) ≥ u2(

1

2
− ε) ≥

∫ d2

t
f0(d1)dd1 = F (d2) (11)

In other words, d2 ≤ α(ρ2(
1
2
− ε)). Now, agent 1 can use this to update its

beliefs about agent 2’s deadline in the same way as in equation (2), with the
difference that now g1 ≥ 2

ρ2
g0. Since (by assumption) ρ2 < 2, then g1 > g0

(when g1 is not zero). Based on these updated beliefs, agent 1 would accept
only if

u1(
1

2
+ ε) ≥

∫ d1

t
g1(d2)dd2 (12)

Using ρ1 and the updated beliefs, g1, we can rule out ”high” types of agent 1.
Formally, d1 ≤ β(1

2
ρ2ρ1(

1
2
+ε)). Because ρ1ρ2 < 2, we can write ρ1ρ2 = 2−τ ,

where τ > 0. So, d1 ≤ β(1
2
ρ2ρ1(

1
2
+ ε)) = β(1

2
(2− τ)(1

2
+ ε)) = β((1− 1

2
τ)(1

2
+

ε)).
Once more, belief updating by agent 2 (in the same way as in (4)) yields

f1 ≥ 2
ρ2ρ1

f0. Since ρ2ρ1 < 2 we get f1 > f0 (when f1 is not zero). Based on
these updated beliefs, agent 2 would accept only if

u2(
1

2
− ε) ≥

∫ d2

t
f1(d1)dd1 (13)

Using ρ2 and the updated beliefs, f1, we can rule out the following types:
d2 ≤ α(ρ2

1
2
ρ1ρ2(

1
2
− ε)) = α(ρ2

1
2
(2− τ)(1

2
− ε)) = α(ρ2(1− 1

2
τ)(1

2
− ε)).

This process of belief update and acceptance threshold resetting continues
to alternate between the agents. After r rounds of this alternation, all types
have been eliminated except those that satisfy d1 ≤ β((1− 1

2
τ)r(1

2
+ ε)) and

d2 ≤ α(ρ2(1− 1
2
τ)r(1

2
−ε)). This process can continue for an unlimited number

of steps, r, so the upper bounds approach zero. Therefore the equilibrium
cannot exist if d1 > 0 or d2 > 0. Contradiction. 2

6 Discrete time deadline bargaining

In this section we show how our results can be modified to the case where time
is discrete (and, since the deadlines are taken from bounded distributions,
finite). In general, discrete time can be seen as a special case of continuous
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time, although some technical issues have to be addressed. As we will show,
the proof of our main theorem is much easier in the discrete case.

The setting and notation from Section 2 hold with the change that now
t = {0, 1, 2, ..., tmax}, and a and b are finite probability distributions on (a
subset of) t. The sit-and-wait equilibrium exists in this setting, and the proof
is identical to that of Proposition 3.1.

Before the main nonexistence result is proven, note that

• Because time is discrete and finite, an agent approaching its deadline
now attaches positive probability to the event that its opponent’s dead-
line equals its own. Still, as long as di 6= tmax, the agent will prefer to
concede the whole surplus than to miss its deadline with positive prob-
ability.

• However, the above argument does not hold for the case when d1 =
d2 = tmax. If at time t = tmax − 1 neither agent has conceded, then
the last period is simply the Nash demand game. Therefore, any split
(x, 1− x) is possible in equilibrium (and since the outcome of this last
period can be made independent of history, any split can be obtained as
a sequential equilibrium of the deadline bargaining game in this case).

We are now ready to repeat our main result:

Theorem 6.1 Unless d1 = 0 or d2 = 0 or d1 = d2 = tmax, there does not
exist a Bayes-Nash equilibrium of Γ(a, b) where the agents agree to a split
other than (0, 1) or (1, 0).

Proof. Assume, for contradiction, that there exists types 0 < d1 < tmax

and 0 < d2 < tmax and a Bayes-Nash equilibrium (s1, s2) such that the agents
agree to a split (x, 1− x) where 0 < x < 1 at time t > 0. Since x < 1, then
d1 6= tmax, because agent 1 can do better by unilaterally deviating to the sit-
and-wait continuation equilibrium. Similarly, d2 6= tmax, since an agent 2 of
type tmax, knowing that d1 < tmax, will win the whole surplus with probability
1 by deviating to the sit-and-wait continuation equilibrium. Eliminating
the highest types, as above, the same argument can be repeated for types
di = tmax−1 for i = 1, 2. After tmax−1 iterated type eliminations we get that
the split (x, 1− x) is only possible for types d1 = d2 = 0, in contradiction to
our initial assumption. Hence such a Bayes-Nash equilibrium does not exist.
2
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7 Designing bargaining agents

Our motivation for studying bargaining with deadlines stems from our long-
term research agenda of constructing software agents that will optimally
negotiate on behalf of the real world parties that they represent. That will
put experienced and poor human negotiators on an equal footing, and save
human negotiation effort.

Deadlines are widely advocated and used in automated electronic com-
merce to capture time preference. For example when a user delegates price-
line.com to find an inexpensive airline flight on the web, the user gives it one
hour to complete (while priceline.com uses an agent with a deadline, the set-
ting is a form of auction, not bargaining). Users easily understand deadlines,
and it is simple to specify a deadline to an agent.

Our results show that in distributive bargaining settings with two agents
with deadlines, it is not rational for either agent to make or accept offers.
But what if a rational software agent receives an offer from the other party?
This means that the other party is irrational, and could perhaps be exploited.
However, the type-elimination argument from the proofs above applies here
too, and it is not rational for the software agent to accept the offer, no matter
how good it is. To exploit the other party, the agent would have to have an
opponent model to model the other party’s irrationality. While game theory
allows us to give precise prescriptions for rational play, it is mostly silent
about irrationality, and how to exploit it.

Another classic motivation for automated negotiation is that computer-
ized agents can negotiate faster. However, in distributive bargaining settings
where the agents have deadlines, this argument does not hold because in
such settings, rational software agents would sit-and-wait until one of the
deadlines is reached. From an implementation perspective this suggests the
use of daemons that trigger right before the deadline instead of agents that
use computation before the deadline.

Finally, our results suggest that a user will be in a much stronger bar-
gaining position by inputting time preferences to her agent in terms of a
time discount function instead of a deadline, even if the discounting is signif-
icant. To facilitate this, software agent vendors should provide user interfaces
to their agents that allow easy human-understandable specification of time
discounting functions instead of inputting a deadline.
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8 Designing bargaining protocols

The following mechanism implements, in dominant strategies, the equilib-
rium of the deadline bargaining game described above. First, agents report
their deadlines, d̃i, to the protocol—possibly insincerely (d̃i 6= di). The pro-
tocol then assigns the whole dollar to the agent with the highest d̃i, but this
only takes place at time t = d̃−i, i.e. at the earlier reported deadline. Truth-
telling is a dominant strategy in this mechanism. By reporting d̃i < di agent
i’s probability of winning is reduced. By reporting d̃i > di, agent i increase
its probability of winning, but only in cases where d̃−i > di, i.e. when i
misses its deadline. Therefore, reporting d̃i = di is a dominant strategy.

This straightforward application of the revelation principle creates a sim-
ple mechanism which is efficient in several ways. First, it minimizes coun-
terspeculation. In equilibria that are based on refinements of the Nash
equilibrium—such as Bayes-Nash or sequential equilibrium—an agent’s best
strategy depends on what others will do. This requires speculation about the
others’ strategies, which can be speculated by considering the others’ types,
their rationality, what they think of the former agent, what they think the
former agent thinks about them, etc. ad infinitum. On the other hand, in a
dominant strategy mechanism an agent’s strategy is optimal no matter what
others do. Therefore, counterspeculation is not useful. The agent need not
waste time in counterspeculation which can be intractable or even noncom-
putable. In addition, it is easier to program an agent that executes a given
dominant strategy than an agent that counterspeculates (see e.g. [Vulkan,
1999] for a discussion). Second, dominant strategy mechanisms are robust
against irrational agents since their actions do not affect how others should
behave. Finally, the mechanism minimizes communication: each agent only
sends one message.

However, the mechanism is not Pareto efficient if time is being discounted,
because the agreement is delayed as it was in the original free-form bargaining
game. In such settings, any mechanism that results in an immediate agree-
ment is Pareto efficient, e.g. a protocol that forces a 50:50 split up front.
This protocol is efficient in all respects discussed above. This might seem
like a good solution to the problem raised by our impossibility results. How-
ever, agents in ecommerce applications usually can choose whether to use a
protocol or not. If agents know their types before they choose the protocol
they want to use, an adverse selection problem may arise: any mechanism
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that forces a split other than that supported by a Nash equilibrium, will
attract a non-proportional fraction of agents that do not expect to do well
in free-form bargaining due to relatively early deadlines.

9 Conclusions

Automated agents have been suggested as a way to facilitate increasingly
efficient negotiation. In settings where the bargaining set, i.e. set of individ-
ually rational Pareto efficient deals, is difficult to construct for example due
to a combinatorial number of possible deals [Sandholm, 1993] or the compu-
tational complexity of evaluating any given deal [Sandholm & Lesser, 1997],
the computational speed of automated agents can significantly enhance ne-
gotiation. Additional efficiency can stem from the fact that computational
agents can negotiate with large numbers of other agents quickly and virtually
with no negotiation overhead. However, this paper showed that in one-to-one
negotiation where the optimal deal in the bargaining set has been identified
and evaluated, and distributing the profits is the issue, an agent’s power does
not stem from speed, but on the contrary, from the ability to wait.

We showed that in one-to-one bargaining with deadlines, the only se-
quential equilibrium is one where the agents wait until the first deadline is
reached. This is in line with some human experiments where adding dead-
lines introduced significant delays in reaching agreement [Roth, Murnighan,
& Schoumaker, 1988]. We also showed that deadline effects almost always
completely suppress time discounting effects. Impossibility of an interim
agreement also applies to most types of risk attitudes of the agents. The
results show that for deadline bargaining settings it is trivial to design the
optimal agent: it should simply wait until it reaches its deadline or the other
party concedes. On the other hand, a user is better off by giving her agent a
time discount function instead of a deadline since a deadline puts her agent
in a weak bargaining position. Finally, we discussed mechanism design, and
presented an effective protocol that implements the outcome of the free-form
bargaining game in dominant strategy equilibrium.
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A Proof of Theorem 3.2

Proof. Assume, for contradiction, that there exist types d1 > 0 and
d2 > 0 and a mixed strategy Bayes-Nash equilibrium where there is positive
probability of an agreement other than (1, 0) or (0, 1). Now there has to
exist at least one point in time, t, where there is positive probability of an
agreement other than (1, 0) or (0, 1). We analyze the equilibrium at such a
time t. Recall f , g, F , G, α, and β from the proof of Theorem 3.1.

Agent 1 will accept an agreement if it gets a share x ≥ a1, where a1

is its acceptance threshold. That threshold depends on its type. Since we
are analyzing a mixed strategy equilibrium, the threshold can also depend
on randomization. We therefore say that a1 is randomly chosen for time t
from a probability density function m(a1). Similarly, agent 2 will accept an
agreement if it has to offer 1 a share of x ≤ a2 where a2 is agent 2’s offering
threshold. We say that a2 is chosen for time t from a probability density
function n(a2).

Without loss of generality, we assume that there is positive probability
that the agreement is made in the range x ≥ 1

2
. This implies that there is

positive probability that a2 ≥ 1
2
.

Let a1 be the smallest a1 in the support of m (alternatively let a1 be
the infimum of m). The assumption that there is positive probability of an
agreement other than (1, 0) or (0, 1) means that a1 = 1− ε for some ε > 0.
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Because the strategies are in equilibrium, m and n must be best responses
to each other. For n to be a best response, each threshold, a2, in the support
of n has to give agent 2 at least the same payoff as it would get by going to
the waiting game. Focusing on those a2 for which a2 ≥ 1

2
this means

1

2
≥ E[πwait2 ] =

∫ d2

t
f0(d1)dd1 = F (d2)− F (t) = F (d2) (14)

So, d2 ≤ α(1
2
).

Now, in equilibrium, every strategy in the support of m has to give agent
1 at least the same payoff that it would get by going to the waiting game.
There are two cases. First, if d1 > α(1

2
), agent 1 knows that it will win the

waiting game with probability one, so the split (x, 1− x) could not occur in
equilibrium. The second case occurs when d1 ≤ α(1

2
). Agent 1 can use the

fact that d2 ≤ α(1
2
) to update its beliefs about agent 2’s deadline:

g1(d2) = 0 if d2 > α(
1

2
). Otherwise,

g1(d2) = g0(d2)

∫ 1
t g0(d2)∫ α( 1

2
)

t g0(d2)

= g0(d2) [1 +

∫ 1
α( 1

2
) g0(d2)∫ α( 1

2
)

t g0(d2))
]

︸ ︷︷ ︸
≥2 because α( 1

2
)≤ median(g0)

(15)

Based on these updated beliefs, the support of m can include a1 only if

a1 = 1− ε ≥
∫ d1

t
g1(d2)dd2 ≥ 2[G(d1)−G(t)] = 2G(d1) (16)

In other words, agent 1’s type, d1, cannot be too high. Specifically, this can
be written as d1 ≤ β(1−ε

2
).

In equilibrium, every strategy in the support of n has to give agent 2 at
least the same payoff that it would get by going to the waiting game, which
equals its subjective probability of winning the waiting game. There are two
cases. First, if d2 > β(1−ε

2
), agent 2 knows that it will win the waiting game

with probability one, so the split (x, 1−x) could not occur. The second case
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occurs when d2 ≤ β(1−ε
2

). Agent 2 can use the fact that d1 ≤ β(1−ε
2

) to
update its beliefs about agent 1’s deadline:

f1(d1) = 0 if d1 > β(
1− ε

2
). Otherwise,

f1(d1) = f0(d1)

∫ 1
t f0(d1)∫ β( 1−ε

2
)

t f0(d1)

= f0(d1) [1 +

∫ 1
β( 1−ε

2
) f0(d1)∫ β( 1−ε

2
)

t f0(d1))
]

︸ ︷︷ ︸
≥2 because β( 1−ε

2
)≤ median(f0)

(17)

Based on these updated beliefs, and focusing on those a2 for which a2 ≥ 1
2

we can rule out high values of d2 (otherwise agent 2 would be better off by
waiting):

1

2
≥ E[πwait2 ] =

∫ d2

t
f1(d1)dd1 ≥ 2F (d2) (18)

i.e. d2 ≤ α(1
4
)).

This process of belief update and acceptance threshold resetting continues
to alternate between agents. After r rounds of this alternation, all types have
been eliminated except those that satisfy d1 ≤ β( 1−ε

2r+1 ) and d2 ≤ α( 1
2r+1 ).

This process can continue for an unlimited number of steps, r, so the upper
bounds approach zero. Therefore the equilibrium cannot exist if d1 > 0 or
d2 > 0. Contradiction. 2
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