
Online Appendix to:
Optimizing Prices in Descending Clock Auctions†

TRI-DUNG NGUYEN, University of Southampton, Schools of Mathematics and Management
TUOMAS SANDHOLM, Carnegie Mellon University, Computer Science Department ∗Corresponding
author

APPENDIX
A.1. A Dynamic Programming Model for Optimal Price Setting in DCA
In each round of the descending clock auction, the auctioneer needs to offer each active
bidder a price, i.e., to do Step 2.1. of Algorithm 1. Here we show a dynamic program-
ming model that the optimal set of offer prices should solve.

Let V (m,S,u, l) be the minimum expected payment that the auctioneer needs to pay
to the bidders in a descending clock auction with m rounds, with a set of active bidders
S, with upper bounds u and lower bounds l within which the bidders’ valuations lie.
Let ξ be a realization of the bidders’ values. For any offer prices p in the first round,
the state of the auction by the end of that first round will be as follows.

— The number of rounds left will be (m− 1).
— The remaining active bidders will be S(p, ξ). This includes bidder i if the offer price
pi is no smaller than the bidder’s value ξi, i.e., pi ≥ ξi.

— A new vector of upper bounds u(p, ξ) which updates the upper bound of any remain-
ing active bidder i to xi.

— Unchanged lower bounds l.

The minimum expected value that the auctioneer needs to pay under the new state
of the auction will be V (m− 1,S(p, ξ),u(p, ξ), l). Thus, the auctioneer’s problem in the
first round is to choose p that minimizes the expectation of V (m− 1,S(p, ξ),u(p, ξ), l).
We have the Bellman optimality equation

V (m,S,u, l) = min
p

E[V (m− 1,S(p, ξ),u(p, ξ), l)].

Solving this dynamic program would be extremely difficult. In fact, just finding
V (m,S,u, l) for the case m = 1 would be very difficult as shown in a simple case below.

A.2. Optimal Price Setting in the Last Round with Recourse Action
Consider the problem of setting prices in the final round of a descending clock auction.
Assume that the actual bid values are uniformly distributed random variables, i.e.,
ξi ∼ U [li, ui], where (li, ui), i = 1, . . . , n are known. Let p be a vector of prices that
the auctioneer offers to the bidders. Given the offer prices, the bidders might accept or
reject the offers. The auctioneer then updates the best upper bounds on the bids values,
that is, upper bounds for accepting bidders will be updated to the offer prices while
those of rejected bidders will remain unchanged. The auctioneer chooses T bids with
the smallest updated upper bounds and pays each of these bidders those prices. Since
the bidders’ values are random variables, the acceptance of the bidders for each set of
offer prices p will also be stochastic, so the final payment is stochastic. We consider the
problem of finding the optimal offer prices p such that the expected final payment is
minimized. Here expectation is taken over the randomness of the bidders’ valuations.

Copyright c© 2013 ACM 978-1-4503-2565-3/12/06...$15.00
DOI 10.1145/2600057.2602869 http://doi.acm.org/10.1145/2600057.2602869

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.

App–2 T. Sandholm and T.D. Nguyen

For convenience in notation, we perform a linear transformation on the price vectors
p to x where xi = pi−li

ui−li , that is, xi ∈ [0, 1] can be interpreted as the target chance of
acceptance for bidder i. We also have pi = li + xi(ui − li). Let us denote by f(x) the
stochastic payment.

Let us first consider the simple case where T = 1 and n = 2. Here the payment
is min(u1, u2) if both bidders reject the offers, min(p1, p2) if both of them accept, and
pi, i = {1, 2} if only bidder i accepts the offer. The probability for each of these four
events can be calculated as functions of x. For example, the chance of rejecting both
offers is (1− x1)(1− x2). Putting all of these together, we have

f(x) =


min(u1, u2), w.p. (1− x1)(1− x2),
min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)), w.p. x1x2,
l1 + x1(u1 − l1), w.p. x1(1− x2),
l2 + x2(u2 − l2), w.p. (1− x1)x2.

The expected payment is

E[f(x)] = (1− x1)(1− x2)min(u1, u2) + x1x2min(l1 + x1(u1 − l1), l2 + x2(u2 − l2)) +
x1(1− x2)(l1 + x1(u1 − l1)) + (1− x1)x2(l2 + x2(u2 − l2)).

The problem of determining the optimal offer prices can therefore be formulated as

min
x1,x2

E[f(x)]

s.t. 0 ≤ xi ≤ 1,∀i = 1, 2,

which is a non-convex quadratic optimization problem. If we extend the problem to the
case n > 2, the problem becomes a polynomial optimization problem as follows;

min
x

∑
S⊂N ,S6=∅

∏
i∈S

xi
∏
i 6∈S

(1− xi)min
i∈S
{li + xi(ui − li)}

+
∏
i∈N

(1− xi)min
i∈N

ui

s.t. 0 ≤ xi ≤ 1,∀i = 1, . . . , n,

which is very difficult to solve. Notice that we have considered only the simple case of
T = 1 and also considered finding the optimal decision in the last round only.

A.3. Proof of Proposition 2.5
PROOF. For each m ∈ {0, 1, . . . , n} and for each budget B ≥ 0, let us define

V (m,B) = min
p

m∑
i=1

Fi(pi)pi,

s.t.
m∑
i=1

ωiFi(pi) ≥ B,

pi ∈ {Pi1, . . . , Pi,k},∀i = 1, . . . ,m.

Then we have
V (m,B) = min

pm
Fm(pm)pm + V (m− 1, B − Fm(pm)),

s.t. pm ∈ {Pm1, . . . , Pm,k},
(16)

where V (0, B) = 0,∀B. Suppose Fj(pj) receives one of (L + 1) values in the set
{0, 1/L, . . . , 1}. Then we can calculate V (1, B) for all B ∈ {0, 1/L, . . . , 1}. If we knew
V (m − 1, B),∀B ∈ {0, 1/L, . . . ,m − 1}, then we can plug this in into Formulation 16

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.

Price Setting in Descending Clock Auctions App–3

and obtain V (m,B) by taking K calculations for Fm(pm)pm+ V (m− 1, B−Fm(pm)) for
each pm ∈ {Pm1, . . . , Pm,k} and then choose the minimum, i.e., 2K operations in total.
To obtain V (m,B) for all possible B ∈ {0, 1/L, . . . ,m}, we would need to repeat this Lm
times, which means the total operations incurred for each m is 2KLm. Summing this
for all m ∈ {1, . . . , n} would require KLn(n− 1) operations. Thus the complexity of the
algorithm is O(KLn2).

A.4. Descending Clock Auctions using Optimized Price Setting for the Homogeneous Setting

ALGORITHM 2: A DCA Framework using Optimal Price Setting for the Homogeneous Setting
Input: A set of sellers N = {1, . . . , n} with goods {G1, . . . , Gn}, an auctioneer with a target T .

A target number of rounds allowed m. Initial valuation estimates vi.
Output: A set of feasible sellers A ⊂ N , i.e., |A| = T , and the corresponding offer price vector p

that aims to minimize the expected payment.
1. Let the set of active bidders be A(r) = N ;
for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T)/(m− r) where
n(r) = |A(r)| and solve Model 9 to find a vector of prices p to offer the bidders;
2.2. Find the set of rejected offers R;
if |(A(r)\R| ≥ T then

2.2.1. A(r+1) ← A(r)\R;
2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else
2.2.3. Enter the adjustment round in Step 3;

end
end
3. Adjust the prices for bidders in the last round to meet the target by solving Formulation 12;
4. Pay winning bidders the offer prices;

A.5. Descending Clock Auctions using Optimized Price Setting for Incentive Auctions

ALGORITHM 3: A DCA Framework using Optimal Price Setting for Incentive Auctions
Input: A set of stations N = {1, . . . , n}, an auctioneer with a feasibility function

F : 2N → {0, 1}. A target number of rounds allowed m. Initial valuation function
estimates vi.

Output: A set of feasible stations to reject R ⊂ N , i.e. F (R) = 1, and the corresponding offer
price vector p that aims to minimize the expected payment on the remaining stations.

1. Set the initial prices p at the reserves. Let the set of rejected bidders be R(r) = ∅;
for round r = 1...m do

2.1. Set the target number of accepting bidders T (r) = n(r) − (n(r) − T)/(m− r) where
n(r) = |A(r)| and solve Model 9 to find a vector of prices p to offer the bidders;
2.2. Find the set of rejected offers R;
if F (R(r) ∪R) = 1, i.e. via solving 17, then

2.2.1. R(r+1) ←R(r) ∪R;
2.2.2. Update the distributions of the bidders’ valuations using Formulation 11;

else
2.2.3. Enter the final Step 3;

end
end
3. Set all remaining bidders N\R(r) as winners and pay them their offer prices;

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.

App–4 T. Sandholm and T.D. Nguyen

A.6. Approximation Method for the Multi-Round Case
First, assuming that the auctioneer has only one round left. Then the optimal prices
to offer to the bidders will be the solution of Model 9 for the continuous case (or 10
for the discrete case). Now, given that the auctioneer has multiple rounds to do price
discovery, he would not offer these ‘optimal prices’ right away. Instead, a set of higher
prices will be offered first to learn more about the bidders’ valuations and to update
the bounds.

A simple way that the auctioneer can do this is to discretize the prices into m equal
intervals between the uppers bounds and p∗ and offer these to the bidders sequentially
until feasibility does not hold.

A better way is to do this dynamically as shown in Algorithm 4. Here, after solving
Model 9 (or 10) in Step 1, the auctioneer can offer a guess pi =

ui+(m−1)p∗i
m to bidder

i and see how the bidder responds. This price is obtained under the expectation that
the offer price in the next m rounds will be distributed evenly within the range [p∗i , ui].
Notice, however, that once the auctioneer has offered the prices to the bidders and
received their responses to form the new state of the auction, the auctioneer now has
better information and can repeat Step 2.1 of Algorithm 1 to find the new set of offer
prices, that is, to run Algorithm 4 again with the updated information. Formally:

ALGORITHM 4: Finding Offer Prices in Round m

Input: Current round r, a current set of active bidders A(r), most up-to-date valuation
estimates vi.

Output: An offer price vector p.
1. Solve Model 9 to obtain the optimal offer prices p∗ as if this were the last round;
2. Divide the range [p∗i , ui] into m equal intervals and set the actual offer prices
pi =

ui+(m−1)p∗i
m

;

A.7. Interference Constraints in Repacking and Feasibility Checking
There are two csv data files on engineering constraints available on the FCC web
site [FCC 2013]:

— A domain file called “Domain-2013July15.csv”, of size 306KB, that specifies the fea-
sible channels for each station.

— An interference file called “Interference-Paired-2013July15.csv”, of size 6219KB,
that specifies the interference constraints that the repacking must meet. This in-
cludes:
— Pairs of (station, station) that must not be assigned to the same channel (among

a given list of channels).
— Pairs of (station, station) that must not be assigned to adjacent channels (among

a given list of channels).

The average number of feasible channels that each station can be allocated to is
44.15 (out of 49 channels) with most of the channels being freely allocated to any
available channels. However, some stations only have a few feasible channels (that
is, there are stations with only three possible channel assignments). There are 2.9 ×
106 constraints requiring pairs of stations that are not to be allocated in the same or
adjacent channels. Although this is smaller than 2mn2 = 493 × 106 in the worst case,
i.e., when interference matrices are fully dense, it is still a large number.

Let S be a set of stations that needs to be repacked into a list of channels in set C.
We use i, j as indices for stations and use k as indices for channels. Let Ci ⊂ C, i ∈ S,
be the list of feasible channels to station i. Let Ic be the list of triplets (i, j, k) such that

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.

Price Setting in Descending Clock Auctions App–5

stations i and j cannot be assigned to the same channel k. Let Ia be the list of triplets
(i, j, k) such that stations (i, j) cannot be assigned to channel (k, k + 1) respectively.
Data for Ci, Ic and Ia are available from the domain file and the interference-paired
file on the FCC web site [FCC 2013].

From a given list of channels C, we say the set S of stations is feasible with respect
to C if the stations can be packed into the channels without violating any of the con-
straints. Let P(C) denote the set of all subsets of stations that can be feasibly packaged
into channels in C.

Let zik be a binary variable that indicates whether station i is assigned to channel
k. We say z is an assignment to the repacking problem. For z to be feasible, we need
the following: (a) all the indicator variables zik are binary, (b) each station is assigned
to exactly one channel, and (c) no pairs of stations that might interfere with each other
can be assigned to the same or adjacent channels. The set of feasible assignments P(C)
is therefore defined as

P(C) =

{
z :

zik ∈ {0, 1},∀i ∈ S and k ∈ Ci,
∑
k∈Ci

zik = 1,∀i ∈ S,
zik + zjk ≤ 1,∀(i, j, k) ∈ Ic, zik + zjk+1 ≤ 1,∀(i, j, k) ∈ Ia

}
. (17)

There are a large number—up to 2.9 × 106—of constraints requiring pairs of sta-
tions not to be allocated in the same or adjacent channels. This makes checking the
assignment feasibility very challenging for the full problem when all 2177 stations are
rejected. In our experiments, however, the largest number of stations being rejected
among all the instances tested is less than 1000 and hence CPLEX can still handle
the feasibility problem. The feasibility problem does not involve an objective function
and hence is much easier to solve than the winner determination problem in a VCG
setting.

In the experiments, we used CPLEX to solve the repacking feasibility problem. We
could also use a satisfiability (SAT) formulation for this purpose as has been done by
Leyton-Brown [2013]. Our choice of CPLEX here was for the convenience of implemen-
tation and due to some special network structural properties of the repacking problem
that CPLEX could exploit. However, a discussion on the comparison between the per-
formance of SAT and CPLEX is out of the scope of this manuscript since our focus is on
the price setting and not on computational method for solving the feasibility problem.

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2014.

