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Abstract. Combinatorial auctions, where bidders can submit bids on bundles of
items, are economically efficient mechanisms for selling items to bidders, and
are attractive when the bidders’ valuations on bundles exhibit complementarity
and/or substitutability. Determining the winners in such auctions is a complex
optimization problem that has received considerable research attention during the
last 4 years. An equally important problem, which has only recently started to
receive attention, is that of eliciting the bidders’ preferences so that they do not
have to bid on all combinations [6,8]. Preference elicitation has been shown to be
remarkably effective in reducing revelation [13]. In this paper we introduce a new
family of preference elicitation algorithms. The algorithms in this family do not
rely on absolute bids, but rather on relative (differential) value information. This
holds the promise to reduce the revelation of the bidders’ valuations even further.
We develop a differential-elicitation algorithm that finds the efficient allocation of
items to the bidders, and as a side-effect, the Vickrey payments (which make truth-
ful bidding incentive compatible). We also present two auction mechanisms that
use differential elicitation: the difference mechanism and the difference increment
mechanism.

1 Introduction

Combinatorial auctions, where bidders can submit bids on bundles of items, are eco-
nomically efficient mechanisms for selling m items to bidders, and are attractive when
the bidders’ valuations on bundles exhibit complementarity (a bundle of items is worth
more than the sum of its parts) and/or substitutability (a bundle is worth less than the
sum of its parts). Determining the winners in such auctions is a complex optimization
problem that has recently received considerable attention (e.g., [20,24,9,25,15,1,26]).

An equally important problem, which has received much less attention, is that of
bidding. There are 2m − 1 bundles, and each bidder may need to bid on all of them to
fully express its preferences. This can be undesirable for any of several reasons: (1a)
determining one’s valuation for any given bundle can be computationally intractable [21,
23,17,14]; (1b) there is a huge number of bundles to evaluate; (2) communicating the
bids can incur prohibitive overhead (e.g., network traffic); and (3) bidders may prefer
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not to reveal all of their valuation information due to reasons of privacy or long-term
competitiveness. Appropriate bidding languages [24,9,22,15,12] can potentially solve
the communication overhead in some cases (when the bidder’s utility function is com-
pressible). However, they still require the bidders to completely determine and transmit
their valuation functions and as such do not solve all the issues. So in practice, when the
number of items for sale is even moderate, the bidders will not bid on all bundles.

We study the setting in which a benevolent auctioneer (or arbitrator) wants to imple-
ment an efficient allocation of a set of heterogeneous, indivisible goods. The preferences
of the participating bidders (or consumers) are private information and utility is trans-
ferable via money. The auctioneer tries to design a mechanism that gives no incentive
for the bidders to misreport preferences.

It is well known that the Vickrey-Clarke-Groves mechanism [27,5,10] (aka. General-
ized Vickrey Auction (GVA)), that is based on exhaustively eliciting all utilities, is such
an incentive compatible mechanism. However, in that mechanism, each bidder evaluates
each of the exponentially many bundles, and communicates a value for each one.1 This
is clearly impractical even for auctions with moderate numbers of goods.

Consider the following: the (rational) preferences of bidders can be ranked (from
most preferred towards least preferred). Each rank uniquely represents a bundle (bundles
with consecutive ranks may have identical valuations). Combining the individual ranks
will lead to combinations of ranks (respectively combinations of ranked bundles); some
of them are feasible. All combinations form a lattice along a (weak) dominance relation.
This lattice structure can be utilized to guide a (best-first) search through the space of
(feasible and infeasible) combinations. This idea has been exploited in [6,8] to design an
efficient, (individually) incentive compatible mechanism for combinatorial auctions. The
mechanism may reduce the amount of elicited information in comparison to generalized
Vickrey auctions. The mechanism asks each bidder for the (true) valuations of (a subset
of) the bundles. We called this a partial-revelation mechanism. Recently, it has been
shown that this method, and related elicitation methods, may lead to significant savings
in the amount of information that is elicited from the bidders (compared to the full
elicitation of the GVA)—in fact, because the number of items in the auction grows, only
a vanishing fraction of all value queries end up being asked [13].

In this paper we present a mechanism that does not elicit absolute valuations but
rather elicits differences between valuations and, thus, may reveal only a fraction of
each value information to the auctioneer.2 We call this differential revelation (because
only differences of valuations are revealed). We present an algorithm to explore the
rank lattice using differential value information. The algorithm determines an efficient
allocation based on revealed valuation differentials. It also inherits the partial revelation
properties of the algorithm discussed in [8], while saving the bidder from specifying
absolute valuations. Note that in the worst-case, all valuation information has to be
revealed—it is, however, a challenge to reduce this amount whenever possible. The
algorithm was designed with this objective.

1 In general, preference communication in combinatorial auctions is provably exponential (even
to find an approximately optimal solution) in the theoretical worst case [16].

2 This may be especially useful in settings where the communication between the bidder and the
auctioneer is public.
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We will also discuss the computation of Vickrey payments based on the information
collected while executing the algorithm. We show that differential information suffices
to determine the Vickrey payments and that all information necessary to compute the
payments is already available once the algorithm has determined an efficient allocation.
Before we proceed, an example will be given to demonstrate the basic ideas.

2 Example of Differential Elicitation

In this section we present an example of differential elicitation with three unit-demand
bidders, three goods, and a benevolent auctioneer. Table 1 shows the valuations of the
bidders for the goods and the individual rankings of the bundles.

Table 1. In this setting there are 3 unit-demanding consumers (allows us to neglect the valuations
for the bundles) and 3 goods. The efficient allocation is to give good A to bidder 1, good B to
bidder 2, and good C to bidder 3. Bidder-specific rankings for the bundles are given, for example
the rank of good C is 1 for bidder 1 because good C is the good most preferred by bidder 1 (note
that the ranking for bidder 1 is not unique, because the ranks of goods A and B could be swapped
due to the indifference of bidder 1).

A B C ∅
Bidder 1 3 3 4 0
Rank 3 2 1 4
Bidder 2 2 5 3 0
Rank 3 1 2 4
Bidder 3 3 4 6 0
Rank 3 2 1 4

With the valuations3 and ranks shown in Table 1, a lattice of combinations of ranked
preferences is given implicitly. The lattice is formed from the set of possible combina-
tions of ranks and a (rank-)dominance relation that orders the combinations partially
with respect to the ranks. A combination a dominates a combination b if and only if all
the ranks in a are at least as low as the corresponding ranks in b. For example, (2, 1, 1)
(rank-)dominates (3, 1, 1) and (2, 1, 2), but not (1, 3, 4). Note that if a dominates b, the
value of the combination of bundles that is represented by a cannot be less than the
value of the combination of bundles that is represented by b.4 A search procedure is
deployed that travels through the (implicitly given) lattice in a best-first manner, start-
ing with the best possible combination and stopping with the first feasible combination
found (combinations of ranks can represent feasible or infeasible combinations of bun-
dles). In previous work, we have based the decisions which node to expand next on
information about the total value of represented combinations. In the following, we will
use information about the difference of the value of the considered combinations to the
(undetermined) value of the best possible combination.

3 We assume throughout the paper that valuations are integral.
4 With the usual assumption of utility functions representing rational preferences.
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With 3 bidders, the best possible combination of ranks is (1, 1, 1). In the example, it
represents the combination of the most preferred bundles (C, B, C).5 This combination
necessarily dominates all other combinations, both with respect to the ranks and the
aggregated value (which is 15—this will not be revealed, however). Unfortunately, this
combination is not feasible.

1 1 1

2 1 1 1 2 1 1 1 2

3 1 1 2 2 1 2 1 2

= infeasible

= feasible

1,2,3: v(rank 2) <= v(rank1) - 1? Yes.1+4

3+6
2+5

7

n = Question n

Questions (leaving out bundle questions):

4:       v(rank 2) <= v(rank1) - 2? No.

5,6:    v(rank 2) <= v(rank1) - 2? Yes.

7:       v(rank 3) <= v(rank1) - 2? No.

0

-1 -2 -2

-3 -3-1

Fig. 1. Seven value queries are necessary to determine the efficient allocation in the above example
(here and in the following, v(rank r) denotes the valuation of the bundle at rank r). To the lower
right of the combination nodes, the difference in value from the value of combination (1, 1, 1) is
shown. The combination with the smallest difference is the efficient allocation—here represented
by the rank combination (3, 1, 1). Note that as long as the nodes (1, 2, 1) and (1, 1, 2) aren’t
expanded (because other, at least equally promising nodes where chosen first), there is no need to
expand the shaded areas either.

Now, consider the upper part of the rank lattice in Figure 1, which is used to guide the
search for the efficient allocation. The auctioneer will ask queries of the following two
types: (1) “Give me the bundle at the currently considered rank” (bundle query), and (2)
“Is the value of the currently considered bundle smaller than the value of your highest
ranking bundle minus δi?” (value query). We assume that it is common knowledge of
the bidders and the auctioneer that the first bundle to be requested will be the bundle at
rank 1 and that all δi are initially set to 1 and are incremented each time the bidder i
answers “Yes”.6

The search proceeds as follows. First, after asking the initial bundle queries and
after discovering that the best combination is not feasible, all immediate successors of
(1, 1, 1) will be considered. These are the combinations (2, 1, 1),(1, 2, 1), and (1, 1, 2).
The currently considered rank is 2 for each bidder. The bidders will answer the bundle
queries. Then the first round of value queries will be asked: bidder i, is your valuation of
the bundle at rank 2 less or equal to your valuation of the bundle at rank 1 minus 1? Each

5 Note that, in a strict sense, a bundle will be defined as a subset of the goods, and thus, one
would have to write ({C}, {B}, {C}). We will relax this notational constraint whenever it can
be done without harm (e.g., we will write AB instead of {A, B}, or A instead of {A}).

6 Note that the queries given in the figure are more explicit than necessary. With the above
conventions, the queries can be reduced to a signal “Next query” and the answer can be given
as one bit (1=Yes, 0=No). Details will follow in Section 5.1.
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bidder will answer with “Yes”. Now the auctioneer knows that each immediate successor
of (1, 1, 1) represents a combination of bundles that has a value that is at least 1 less
than the value of the best combination. To discriminate amongst the three successors, a
second round of value queries is asked with all δi incremented to 2. This time, bidder
1 answers “No” (because the value of B, the bundle at rank 2, is only one less than the
value of C, the bundle at rank 1). Bidder 2 and bidder 3 answer “Yes” again. This allows
the auctioneer to fix the difference in value between (1, 1, 1) and (2, 1, 1) to 1 (we will
also say that the δ of bidder 1 for the rank 2 is tight). In addition, it is now known that
the difference in value between (1, 1, 1) and the combinations (1, 2, 1) and (1, 1, 3) is
at least 2. Because the search proceeds best-first, (2, 1, 1) will be expanded next. Only
two more queries are necessary: bidder 1 is asked for the bundle at rank 3 (the answer
is A, which renders the considered combination (3, 1, 1) feasible) and bidder 1 is asked
again, if the value of the bundle represented by the currently considered rank (now rank
3) is 2 or more less than the value of the most preferred bundle. Again, the answer is
“No”. This allows to conclude that (3, 1, 1) must represent an efficient allocation.7 In
total, the following information is revealed (to the auctioneer):

v1(rank1) = v1(rank2) + 1 = v1(rank3)
v2(rank1) ≥ v2(rank2) + 2
v3(rank1) ≥ v3(rank2) + 2

This can also be summarized as follows:

A B C ∅
Bidder 1 (x1 − 1) (x1 − 1) x1 0
Bidder 2 ≤ (x2 − 2) x2 ≤ (x2 − 2) 0
Bidder 3 ≤ (x3 − 2) ≤ (x3 − 2) x3 0

The efficient allocation is determined to be A → 1, B → 2, C → 3. Although the value
of the allocation is not known, it can be bound to be at least 4 (because we have enough
information to conclude that combination (3, 2, 2) has a value that is at least 4 less than
the value of (3, 1, 1), and with the assumption of free disposal and values of 0 for empty
bundles, the value of (3, 2, 2) must be at least 0).

Interestingly, the Vickrey payments can be computed from the information already
elicited. First consider bidder 1: because the allocated bundle B (respectively C) is the
highest ranking bundle of bidder 2 (respectively 3), the payment of bidder 1 is 0. The
effect of the participation of bidder 2 and 3 on bidder 1 is the known difference between
v1(rank1) and v1(rank3), which is 1. Here, it is the participation of bidder 3 that causes
this effect. This information is also available: the best possible feasible allocation if only
bidder 1 and 2 participate is realized when both receive their highest ranking bundle
(C respectively B). If bidder 3 enters the scene, bidder 2 will still receive this bundle
while bidder 1 experiences a loss of 1 relative to realizing his most preferred alternative.
The participation of bidder 2 has no such effect. The Vickrey payments are therefore
t1 = 0, t2 = 0, and t3 = 1.

7 Note that the available information would also suffice to conclude that (3, 1, 1) represents the
only efficient allocation, because we know that the value of the combinations represented by
(2, 2, 1) and (2, 1, 2) is at least 2 less than the value of the best combination.
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In section 4, we will prove that the differential information collected by our algorithm
(primarily used to determine the efficient solution) will always suffice for determining
the Vickrey payments. Note that in the above example no absolute valuation is revealed.8

Furthermore, queries that are directly related to the bundles at rank 3 of bidders 2 and 3
are never asked.

In the following section, we will first specify the underlying model more precisely and
then present the basic algorithm. We consider Vickrey payments in section 4. In section
5, we discuss how the algorithm can be used to create mechanisms that use different
type of queries to elicit differential value information from the bidders. In section 6,
properties of the mechanism related to incentive-compatibility, information revelation,
communication complexity and the cognitive burden of bidders are discussed. Section
7 relates our research to ascending combinatorial auctions and section 8 offers some
conclusions and a brief outlook.

3 The Model

Our setting is based on the concepts introduced in [6].We consider an economy consisting
of n consumers, N = {1, . . . , n}, a seller 0, and m goods, Ω = {1, . . . .m}. Each
consumer i ∈ N has utility over bundles, given by a function vi : 2Ω → N

+
0 , where

vi(∅) = 0.9 The seller has all the goods; the consumers own none of them. We will
neglect the seller. If the seller has reservation values for bundles, he can be modeled as
an additional consumer.

It is well known that a bidder’s preferences can be represented by a utility function
only if the preference order is rational, that is, the preference order over alternatives is
transitive and defined on all pairs of alternatives (equal preference between alternatives
is fine). This preference order induces a rank function as follows.

Definition 1 (Rank function, Inverted Rank function). Let R be the set of the first
2m natural numbers, {1, . . . , 2m}. Let, for every bidder i, the rational preference order
�i be defined over 2Ω . A bijective function ri : 2Ω → R will be called the rank function
for bidder i if it assigns a unique number (rank) to each bundle, such that, for every pair
x, y ⊆ Ω of bundles with x �i y, ri(x) < ri(y) holds. The inverse r−1

i of ri gives the
bundle that corresponds to a rank.

A rank function and its inverse exist for every rational preference relation. In the presence
of indifference, there is no unique rank function. A combination of ranks of the bidders
can be viewed as representing a potential solution to the allocation problem at hand.
Some of these potential solutions are invalid, though. The others determine allocations.

8 Note that an auction with a single item only is a degenerated case with only one difference per
bidder and is, therefore, not a good example. Because at least one difference of every bidder
will be a target of elicitation queries, no difference can be left untouched (so, the revelation is
not partial). The absolute valuations of all loosing bidders will be revealed. Revelation of the
valuation of the winning bidder can be limited to a fraction of its value, which suffices to beat
the second largest difference (so, the revelation can be fractional).

9 We will later add assumptions of quasi-linearity and free disposal to this setting.
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Definition 2 (Combination of Ranks). Let C be the set of all possible n-ary tuples
over R, that is C = R × · · · × R. An element c ∈ C, c = (r1, . . . , rn) will be called
combination of ranks. (If, for every position i of c, the corresponding function r−1

i is
applied, a collection of bundles, bc, will be obtained.)

Definition 3 (Feasible Combination). A combination c of ranks is feasible if the cor-
responding collection bc of bundles is a partition (possibly with empty elements) of a
(not necessarily proper) subset of Ω. A feasible combination determines an allocation
Xc with Xi = bc[i], i = 1, . . . , n, where the seller keeps the item set X0 = Ω/

⋃
i bc[i].

Here, [i] denotes the i’th element of the tuple.

Definition 4 (Dominance of Rank Combinations). A binary relation � ⊆ C ×C will
be called a dominance relation if, for all x, y ∈ C, (x, y) ∈� if and only if x[i] <= y[i]
for all i ∈ N .

The relation � is a partial order and C forms a complete lattice with respect to � with
lub(C) = (2m, . . . , 2m) and glb(C) = (1, . . . , 1).

The observation exploited by the following algorithm is that a combination that is
feasible and not dominated by any other feasible combination is Pareto-efficient. In
addition, if utilities are considered, the welfare-maximizing allocation will be among
these feasible Pareto-efficient combinations. The following algorithm will search the
space of combinations (including infeasible ones) to determine a welfare-maximizing
(or efficient) allocation.

3.1 Computing an Efficient Allocation

We assume a setting with transferable utility (the utility functions are quasi-linear in
money). The algorithm to be presented is essentially a modification of the EBF algorithm
that we studied in [8], and inherits some of its properties. For presentation purposes, the
EBF algorithm is repeated here and the necessary modification is outlined afterwards.

Algorithm EBF (Efficient Best First):
(1) OPEN = {(1, . . . , 1)};
(2) loop
(3) if |OPEN| = 1 then c = combination in OPEN

else Determine
M = {k ∈ OPEN |v(k) = maxd∈OPEN v(d)}. /* to be modified below */
if |M | ≥ 1 ∧ ∃d ∈ M with Feasible(d) then return d
else Choose c ∈ M such that no d ∈ M exists with d � c;

OPEN = OPEN \{c}.
(4) if Feasible(c) then return c
(5) SUC = suc(c)
(6) foreach n ∈ SUC do

if n �∈ OPEN then OPEN = OPEN ∪{n}
We recently showed that EBF algorithms determine an efficient (that is, welfare-ma-
ximizing) allocation [8]. Note that we speak of algorithms because the choice of the
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next combination to be expanded is not deterministically specified above if 2 or more
combinations have the same value. So, actually a family of algorithms, differing with
respect to their tie-breaking rule, is given above.

The following observation motivates the changes to the algorithm that will be outlined
below.

Observation: The determined (feasible) collection does not only represent an allocation
that maximizes aggregated utility, it also minimizes (over all feasible collections) the
aggregated loss in utility of the bidders (here, the individual loss of a bidder is the
difference between the utility of the bidder’s most preferred bundle and the utility of the
bundle the bidder receives in the considered allocation).

We will now modify step 3 of the algorithm such that the algorithm can make use of
differences in utility when deciding which combination to explore next (in contrast to [8],
where it has been assumed that all precise, absolute value information that is necessary
to determine the subset of the most efficient combinations from the set of currently
considered combinations, that is OPEN, is elicited).

Assume for simplicity that a set of quadruples is used to collect the elicited informa-
tion. Each quadruple (i, b, δ, s) identifies a bidder i, a bundle b, a value for the information
about the difference between the valuation of i for the highest ranking bundle and i’s
valuation for bundle b, and a bit s that shows if δ is the precise difference (s=1) or a lower
bound (s=0). There are quadruples for every bidder-bundle pair (we will also write δb

i and
sb

i if we want to access the information in the quadruple for a given (bidder,bundle)-pair
(i, b)).

Initially, δb
i and sb

i will be set to 0 for all i ∈ N, b ⊆ Ω. To simplify the presentation,
we will assume that all rank functions and their inverses are known (i.e., we can determine
a bundle from a rank information, this allows us to neglect rank/bundle queries for now).
For each i, the bit s of the highest ranking bundle r−1

i (1) will be set to 1. We assume
that the information in the quadruples is and remains consistent, that is, the following
condition invariantly holds:

δb
i = vi(r−1

i (1)) − vi(b), if s = 1 and δb
i ≤ vi(r−1

i (1)) − vi(b), if s = 0

Now, assume that the combination (1, . . . , 1) is not feasible. The algorithm will now
add all successors of this combination to the set OPEN. Each successing combination
will cover one (bidder,bundle)-pair for which s = 0 holds (one such pair per bidder).

Note that the value of each combination c = (c1, . . . , cn) can be related to the
(unknown) value of (1, . . . , 1) by computing the sum of the deltas in the quadruples that
are covered by c. This set of covered quadruples is

Qc = {(i, b, δ, s) | i ∈ N, b = r−1
i (ci)}.

The sum of difference ∆c can be determined as
∑

i δ
r−1

i (ci)
i (i.e., the sum of the δs in

Qc). We know (assuming the information has been truthfully reported) that the value
of c is at least ∆c currency units lower than the value of (1, . . . , 1). If all s in Qc

are 1, the difference is tight, that is v(c) = v((1, . . . , 1)) − ∆c, otherwise v(c) ≤
v((1, . . . , 1)) − ∆c (canonically extending the value function to combinations of ranks
by setting v(c) =

∑
i v(r−1

i (ci))).
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Consider again the set OPEN. In step 3, a set M will be determined that contains all
elements from OPEN such that the difference is tight and has the same value for each
combination in M and every other combination in OPEN has a difference ∆ (tight or
otherwise) that is higher in value.

The modification of step 3 is as follows (the set M is completely determined):

(3 – old version)
M = {k ∈ OPEN |v(k) = maxd∈OPEN v(d)}.

is changed to

(3 – new version)
M = {k ∈ OPEN | Tight10(k) ∧ ∆k ≤ ∆d for all d with Tight(d)
∧ ∆k < ∆d for all d with Not(Tight(d)) }.

The information necessary to determine the set M (which is always non-empty) will be
collected by a mechanism which builds upon the modified algorithm. Such mechanisms
will be outlined below. Assume now that we have a method that allows us to correctly
determine the set M in each iteration of the algorithm. This allows us to show that the
following result holds in the context of transferable utility:

Proposition 1. Any algorithm of the modified EBF family (to be called EBF-DE where
DE stands for differential elicitation) determines an efficient (that is, welfare-maximi-
zing) allocation.

This follows, using Proposition 8 from [8] (which states that any EBF algorithm de-
termines an efficient allocation), from the fact that the set M in the original version
and in the new modified version coincide in each iteration. To see this, the following
proposition is helpful:

Proposition 2. Given an arbitrary but fixed subset S of the set of all possible combina-
tions C. Then the set M , if determined from S (substitute S for OPEN above) with the
old version, coincides with the set M determined with the new version.

Proof. Let Mold be the set determined from S by the old version. Let c∗ be one of
the combinations in C with the highest value v∗ = v(c∗). (a) For each m ∈ Mold,
v∗ − v(m) ≤ v∗ − v(n) holds for all n ∈ S. Assume that a protocol is available to elicit
information from the bidders and whose use guarantees that the following invariantly
holds: (b) ∆k ≤ v∗ − v(k) for all k ∈ S and (c) Tight(k) = TRUE if and only if
∆k = v∗ − v(k) for all k ∈ S. Assume that the protocol has been used to determine
a set Mnew. To show the proposition, first assume that a combination c ∈ Mold exists
such that c �∈ Mnew. (d) From the conditions for the formation of Mnew follows that
a combination k ∈ S exists with a tight11 ∆k such that ∆k < ∆c. From (a),(b) and
(c) follows ∆c ≤ v∗ − v(c) ≤ v∗ − v(k) = ∆k, contradicting (d) respectively the
assumption. The other case is equally straightforward. �

10 Tight(k) answers TRUE, if all s in the quadruples covered by k are 1, see above.
11 Such a k with a tight ∆ exists because for any d ∈ S with ∆d < ∆c and ∆d is not tight,

another d
′

exists with ∆d
′

< ∆d. With the finiteness of C and the conditions for M , at least
the ∆ of one such d

′
must be tight. This is the k used above.
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With the fact that each set OPEN that can occur during the execution of the algorithm is
necessarily a subset of C, the above Proposition 1 follows.

We will later discuss how the algorithm can be embedded into a mechanism that
computes an efficient allocation and elicits differential valuation information only. But
first, we will show that the (differential) information collected while executing an EBF-
DE algorithm is sufficient to determine Vickrey payments.

4 Determining the Vickrey Payments Based on Differential
Information Only

Now we will turn our attention to the information that is required to determine Vickrey
payments. Recall that the Vickrey payment of bidder i reflects the effect of her partici-
pation in an economy E: a consumer i will pay an amount equal to the utility that the
other consumers will loose due to the participation of i, that is

t(i) = V (E−i) −
∑

j∈N,j �=i

vj(Xj) (1)

where E−i is the economy E without i and V (E−i) is the utility that can be realized
implementing a welfare-maximizing allocation for E−i.

We will now assume that an execution of an EBF-DE algorithm has determined an
efficient allocation X for an economy E.

Proposition 3. No information in addition to the information already obtained by EBF-
DE is necessary to determine the Vickrey payments.

Proof. We assume that c is the solution combination that was found by the algorithm
and that it represents the allocation X . The tight difference between the value of the
combination of the highest ranking bundles and the value of c is known to be ∆c. First,
note that tight differential value information for all combinations with higher value
(resp. smaller ∆) than c have already been obtained (a consequence of the efficiency of
EBF-DE algorithms. Below, we will refer to the italicized claim as (a)).

Assume that consumer i is removed from economy E to form E−i and that c−i

refers to a combination of ranks that represents an efficient allocation X−i = (X−i
1 ,

. . . , X−i
i−1, X

−i
i+1, . . . , X−i

n ) for E−i.

First, observe that (1) can be re-written as follows:
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t(i) =
∑

j∈N\{i}
vi(X−i

j ) −
∑

j∈N\{i}
vj(Xj)

=
∑

j∈N\{i}

[
vi(r−1(1)) − (

vi(r−1(1)) − vi(X−i
j )

)] −
∑

j∈N\{i}

[
vi(r−1(1)) − (

vi(r−1(1)) − vj(Xj)
)]

=
∑

j∈N\{i}
vi(r−1(1)) −

∑

j∈N\{i}

(
vi(r−1(1)) − vi(X−i

j )
) −

∑

j∈N\{i}
vi(r−1(1)) +

∑

j∈N\{i}

(
vi(r−1(1)) − vj(Xj)

)

= −
∑

j∈N\{i}

(
vi(r−1(1)) − vi(X−i

j )
)

+
∑

j∈N\{i}

(
vi(r−1(1)) − vj(Xj)

)

=
∑

j∈N\{i}

(
vi(r−1(1)) − vj(Xj)

) −
∑

j∈N\{i}

(
vi(r−1(1)) − vi(X−i

j )
)

=
∑

j∈N\{i}
δ

Xj

j −
∑

j∈N\{i}
δ

X−i
j

j (setting δA
j = vj(r−1(1)) − vj(A))

=
∑

j∈N,j �=i

δ
r−1

j (cj)
j −

∑

j∈N,j �=i

δ
r−1

j (c−i
j )

j (c represents X , c−i represents X−i)

The first term does not require additional information: it is the sum of the tight δs of
the bidders other than i for the combination c. Further assume that a reduced (n − 1)-
ary allocation Y −i = (Y1, . . . , Yn) (leaving out the bidder i respectively its index)

can be found with a tight difference that is smaller than
∑

j∈N,j �=i δ
r−1

j (cj)
j . Further

assume that additional differential value information would be required to find this
reduced allocation. Then a combination d = (Y1, . . . ,Xi,. . . , Yn) could be constructed
that would have a smaller difference (resp. a higher value) than X and that would have
required additional information to establish its difference, thus contradicting (a). �

5 Auction Mechanisms That Elicit Valuation Differentials

We have an algorithm available to determine efficient allocations and demonstrated how
the collected information can be used to compute Vickrey payments. To further complete
the ingredients necessary for the design of a mechanism, we briefly outline two elicitation
mechanisms that can be used to collect the information that is required in step (3) of the
algorithm. The presentation uses the quadruple data structure suggested above.

5.1 Difference Increment Mechanism

In the algorithm, in each step (3), the complete set of combinations with the currently
smallest tight difference is determined. It is also possible to determine (in each round)
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one element of M only, which can be done by finding one combination c such that the
bound is tight and every other bound has the same or a lower value (without considering
tightness). In both cases, non-tight differences (i.e., bounds of differences) need to be
tightened. To tighten (or to lower) a bound for a combination c covering a non-tight
quadruple (i, r−1

i (ci), δ, 0), the following query will be submitted to bidder i:

Is the difference between your valuation of the highest ranking bundle and the val-
uation for the bundle at rank ci larger than δ?

If the answer is “yes”, δ can be incremented. If the answer is “no”, s will be set to 1 (s
corresponds to the last position in the quadruple and indicates whether the difference is
tight (s = 1) or a lower bound (s = 0)).12

5.2 Difference Mechanism

Instead of incrementing δ stepwise, the precise difference can be requested (each s can
be set to 1 permanently):

Give me the difference between your valuation of the highest ranking bundle and the
valuation for the bundle at rank ci?

6 Properties of Our Differential Elicitation Mechanisms

In this section we discuss the correctness, amount of information revealed, and the
communication complexity of the above two differential elicitation mechanisms. We
also address the cognitive burden imposed on the bidders.

6.1 Efficiency and Incentive Compatibility

Both types of queries can be utilized in step (3) of EBF-DE to establish an elicitation pro-
tocol (resulting from an elicitation policy, see below) that satisfies the conditions (b) and
(c) that were used in the proof of the efficiency of EBF-DE (Proposition 2). A straight-
forward policy to determine the next bidder to be queried is to pick one of the collections
with the smallest, non-tight ∆ and, then, pick one of the covered (bidder,bundle)-pairs
with non-tight δ. This has to repeated until enough information is available to safely
determine the set M .13

Assuming that enough space is available to store the elicited information (so that
queries do not have to be repeated), the underlying EBF-DE algorithm induces a natural
sequence of queries, starting with queries related to the most preferred bundles and
proceeding step by step to the least preferred bundles. Note that the details of the selection
12 Note that this query can be transmitted in one bit, see the discussion in Section 6.3.
13 Because the tightness of the considered δ is established immediately (in the difference mech-

anism) or eventually (in the difference increment mechanism) and because the bound is in-
cremented without leaving ranks (respective bundles) and their valuation unconsidered, the
finiteness of the information suffices to establish that the policy, together with one of the query
types, determines an elicitation protocol that satisfies the above mentioned conditions.
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of the next bidder to be asked are left out here and should be specified together with the
chosen tie-breaking rule, when the mechanism is implemented. For the properties that
are of interest in the context of this paper, namely efficiency and incentive compatibility,
discussing these details is not necessary, as the following proposition demonstrates (an
immediate consequence of the preceding propositions):

Proposition 4.
RANK-DE14 mechanisms are incentive compatible and economically efficient.

6.2 Amount of Information Revealed

The difference increment mechanism generally reveals less (and never more) information
to the auctioneer than the difference mechanism. Obviously the difference increment
mechanism will not reveal more because the same information is elicited incrementally
rather than at once. The difference increment mechanism may reveal strictly less because
incrementing the bound but still not meeting the tight difference may already exclude a
bundle from being in the efficient allocation—in which case no more information about
that difference is elicited.

6.3 Communication Complexity

The difference increment mechanism can be implemented by communicating one bit at
a time between the auctioneer and a bidder. Assume that the bidders and the auctioneer
adopt the following conventions: once the mechanism is initiated, only single bits will
be transmitted from the auctioneer to the bidders. The bit will signal to the bidder that
an answer to the following query is expected: Is the difference in value between your
highest ranking bundle and the bundle at the rank that is currently considered, larger
than the currently considered difference? All participants (that is, the bidders and the
auctioneer) will first set the difference to 0 and the considered rank to rank 2. If the bidder
answers with “Yes”, the difference is incremented. If the bidder answers with “No”, the
next less preferred rank will be considered for the next query. In addition, the auctioneer
now knows (from the properties of the rank function and the above conventions) that
the currently considered difference is tight for the currently considered rank (which will
be incremented consequentially). In the worst case, a bidder will have to send 2m − 1
“No”s (=0). The maximum number of “Yes” answers depends on the valuation for the
highest ranking bundle, say v. In the worst case, v “Yes” bits will be transmitted.

In the difference mechanism, an agent will receive at most 2m − 1 queries, and each
of these can be answered with a number in the interval [0, . . . , v]. The sum of the numbers
cannot exceed v and will equal v in the worst case. In binary encoding, the numbers
will be transmitted with logarithmic size, bounded from below by 
log2 v� + (2m − 2)
(maximal difference v for the bundle at rank 2; 0 for all other bundles, m > 1) and
bounded from above by (2m − 1)
log2
 v

2m−1��.
14 We call mechanisms that consciously explore the rank lattice RANK mechanisms. The specific

family of mechanisms presented here is based on the family of EBF-DE algorithms. The postfix
DE refers to the differential elicitation of value information that is utilized by the mechanisms.
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To compare the query types, consider an agent who receives differential increment
queries until a tight difference for a certain bundle is established. Then it is generally
true that establishing this tight difference would have required less communication if
difference queries would have been used. This can be seen by substituting the established
difference for v and the rank of the bundle for 2m in the above formulas. Intuitively, the
“No” answers in the difference increment mechanism establish an unary encoding of the
difference and the “Yes” answers count the higher-ranking bundles one by one, while
the answers to the difference questions form a set of binary-encoded numbers that add
up to the difference. The cardinality of the set is the rank of the bundle minus 1.

On the other hand, if the problem allows to stop querying difference increment
questions with some non-tight bound, querying (tight) differences directly may be more
costly. A straightforward example can be constructed with a single item and two agents.
Let the utility of the item for agent 1 be 1000, and 2 for agent 2. A difference mechanism
would elicit the answers 1000 and 2 (13 Bits). A difference increment mechanism would
require and receive two “Yes” and one “No” answers from agent 2 and three “Yes”
answers from agent 1 (6 Bits) to establish an outcome.

6.4 Cognitive Burden of the Bidders

Partial preference elicitation reduces the cognitive burden of the bidders because they
do not have to evaluate all bundles. Furthermore, for some bundles that have to be
evaluated, fractions of the valuations suffice. This is in sharp contrast to direct-revelation
mechanisms such as the GVA, where all bundles have to be evaluated exactly. The
elicitation method introduced in this paper further improves over previous elicitation
methods [6,8,13] in that only valuation differences need to be determined (fractionally).

An additional note regarding the cognitive burden of the bidders seems in order. The
mechanism does not require per se that the bidders are aware of the complete ranking
of their preferences. In fact, a bidder may start with a rather rough categorization of
his preferences (say: this is my most preferred choice, these 3 choices are really nice,
these 4 choices are not bad, the rest is not very attractive) that may need to be refined
during the course of the mechanism.15 In the worst case, a bidder may need to reveal
her full rank and utility functions. As related experiments have demonstrated (see [13])
this seems to not be necessary very often. In the best case, only the bundle at rank 1 of

15 It would be nice if this refinement process would be consistent with the complete preference
relation of the bidder (that is: no bundle is ranked erroneously). However, because inconsistence
would only be observable if monotony is violated, this is not detectable generally. Considering
observability, this is not really relevant – the mechanism will still compute an allocation that
is efficient with respect to the reported preferences (though, from an idealistic point of view,
efficiency might not be achieved due to erratic behavior of a bidder). In a less static context,
any preference relation may change during the execution of a coordination mechanism. On the
positive side, the mechanism presented here is robust against such changes in the sense that no
re-computation will be performed and no query that has been asked already will be repeated. On
the negative side, a bidder with changed preferences can not influence the partial/differential
information that has been elicited already. She can, however, adapt her future answers to the
new situation (of course, this may break efficiency).
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each bidder (not even the valuation) will be revealed (though this case does not seem to
be very likely as well). In the other cases, rank and utility function will only be partially
revealed and, as has been argued above, will not necessarily be fully determined by the
bidders.

7 Related Research: Ascending Combinatorial Auctions

An important related research thread tries to identify iterative or progressive auction pro-
tocols that try to limit the space of preferences that are to be revealed in comparison to the
fully revealing, naive GVA. Recently, auctions that follow certain solution procedures for
primal/dual linear programs have been studied extensively and with respect to incentive
compatibility (see [4] for an overview and new suggestions, or consider [2]). Another
approach (AkBA) has been suggested [28], though a detailed analysis of incentive com-
patibility properties has yet to be performed. Iterative auctions are price-based, which
requires that to guarantee that Vickrey payments are determined by the auction, prices
must be computable that coincide with the Vickrey payments (incentive-compatibility!).
Depending on the allowed price structures16, equilibrium prices (that solve an underlying
dual model) may or may not exist. The existence depends on properties of preferences
which will be considered either individually (e.g. “gross substitutes”) or, more general,
with respect to the combination of bidder types (“agents are substitutes”, [3]). The al-
lowed price structure will also influence the applicability of the suggested mechanisms.
For example, the unconstrained anonymous prices used in AkBA, see [28], may re-
quire an enforcement of the condition that each bidder is only allowed to purchase one
bundle in one transaction (at the price quoted for that bundle and not, for example, in
two transactions as may seem attractive if the sum of prices for sub-bundles is below
the quoted price). Similar considerations are necessary for the unconstrained non-linear
(and non-anonymous) prices used in auctions based on and significantly extending the
work of Bikhchandani et. al (see, for example, [3,18,19,4]). The immediate computation
of Vickrey payments, as it is enabled by our mechanisms, renders such considerations
unnecessary.

8 Conclusions and Future Research

Combinatorial auctions, where bidders can submit bids on bundles of items, are eco-
nomically efficient mechanisms for selling items to bidders, and are attractive when the
bidders’ valuations on bundles exhibit complementarity and/or substitutability.
16 Possible price structures include the following cases: (1) the price for a bundle is additive in the

prices of the contained goods [11]; (2) unconstrained, non-linear prices for every bundle [28]
are given, only one bundle may be purchased per agent; (3) coherent prices for bundles are given
where the price for a bundle may not exceed the sum of prices of the bundles in any partition
of the bundle, and where the prices for super bundles of the bundles in the supported allocation
are additive [7]. Furthermore, prices can be differentiated to a different degree, including (a)
anonymous prices; (b) different prices for the set of buyers and the set of sellers; or (c) different
prices for each individual agent.
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An important problem, which has only recently started to receive attention, is that
of eliciting the bidders’ preferences so that they do not have to bid on all combinations.
Preference elicitation has been shown to be remarkably effective in reducing revelation.

In this paper we introduced a new family of preference elicitation algorithms, which
utilizes the general structure of the previously studied partial-revelation mechanism
and inherit some of their properties.17 However, the algorithms in the family presented
here do not rely on absolute bids, but rather on relative (differential) value information.
This holds the promise to reduce the revelation of bidders’ evaluations even further.
In addition, it may be easier for the bidder to determine differences in valuation than
to determine the absolute level of valuations.18 We developed a differential-elicitation
algorithm that finds the efficient allocation of items to the bidders, and as a side-effect,
the Vickrey payments (which make truthful bidding incentive compatible). Finally, we
briefly presented two auction mechanisms that use differential elicitation: the difference
increment mechanism and the difference mechanism.

Future research involves studying this new elicitation format experimentally and the-
oretically to determine how much revelation it saves in practice on real-world problems.
It also includes developing additional query types and, if possible, yet more effective
elicitation policies. Future research also includes developing a deeper understanding of
how preference elicitation and ascending auctions are related, and if possible, developing
effective hybrid auctions that use both techniques.
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