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ABSTRACT
Combinatorial auctions (CAs) where bidders can bid on
bundles of items can be very desirable market mechanisms
when the items sold exhibit complementarity and/or sub-
stitutability, so the bidder’s valuations for bundles are not
additive. However, in a basic CA, the bidders may need to
bid on exponentially many bundles, leading to difficulties in
determining those valuations, undesirable information rev-
elation, and unnecessary communication. In this paper we
present a design of an auctioneer agent that uses topological
structure inherent in the problem to reduce the amount of
information that it needs from the bidders. An analysis tool
is presented as well as data structures for storing and op-
timally assimilating the information received from the bid-
ders. Using this information, the agent then narrows down
the set of desirable (welfare-maximizing or Pareto-efficient)
allocations, and decides which questions to ask next. Sev-
eral algorithms are presented that ask the bidders for value,
order, and rank information. A method is presented for
making the elicitor incentive compatible.

1. INTRODUCTION
Combinatorial auctions where bidders can bid on bundles

of items can be desirable market mechanisms when the items
exhibit complementarity or substitutability, so the bidder’s
valuations for bundles are not additive. One of the problems
with these otherwise desirable mechanisms is that determin-
ing the winners is computationally complex. There has been
a recent surge of interest in winner determination algorithms
for such markets [11, 13, 3, 15, 16].

Another problem, which has received less attention, is
that combinatorial auctions require potentially every bun-
dle to be bid on, and there are exponentially many bundles.
This is complex for the bidder because she may need to
invest effort or computation into determining each of her
valuations [12, 14, 5, 6, 8]. It can also be undesirable from
the perspective of revealing unnecessary private information
and from the perspective of unnecessary communication.
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In this paper we present a blueprint for a software agent
(an elicitor) for the auctioneer that will intelligently ask the
bidders the right questions for determining good allocations
without asking unnecessary questions. Each of our algo-
rithms is incremental in that it requests information, opti-
mally propagates the implications of the answer, and does
this again until it has received enough information.

The key observation of this paper is that topological struc-
ture that is inherent in the problem can be used to intelli-
gently ask only relevant questions about the bidders’ pref-
erences while still finding the optimal (welfare-maximizing
and/or Pareto-efficient) solution(s). Based on the informa-
tion, the auctioneer agent can narrow down the set of po-
tentially desirable allocations, and decide which questions
to ask the bidders next.

We first present our topological observations. We then
lay out two algorithms that capitalize on those observations
and query the bidders selectively using restricted query poli-
cies. Then, we introduce data structures that are used to
store and propagate richer information received from the
bidders, and we discuss algorithms that support completely
general policies for querying the bidders. Finally we discuss
the efficiency of elicitation, and how to make it incentive
compatible.

2. COMBINATORIAL AUCTION SETTING
In a combinatorial auction, the seller has a set Ω = {ω1, . . . ,

ωm} of indivisible, distinguishable items that she can sell.
Any subset of the items is called a bundle. The set of bidders
(buyers) is called N = {1, . . . , n}.1 Each bidder has a value
function vi : 2Ω → R that states the value that the bidder
is willing to pay for any given bundle.

A collection (X1, . . . , Xn) states which bundle Xi ⊆ Ω
each bidder i receives. In a collection, some bidders’ bun-
dles may overlap in items, which would make the collection
infeasible. We call a collection an allocation if it is feasi-
ble, i.e., each item is allocated to at most one bidder. The
possibility that Xi = ∅ is allowed.

An allocation X is welfare maximizing if it maximizes∑n
i=1 vi(Xi) among all allocations (feasible collections). We

call an allocation X Pareto efficient if there is no other al-
location Y such that vi(Xi) ≥ vi(Yi) for each bidder i and
strictly for at least some bidder i.

1In our model, the seller has zero reservation prices on all
bundles, i.e., she gets no value from keeping them. If in
reality she has reservation prices on bundles, that can be
modeled by treating the seller as one of the bidders who
submits bids that correspond to the reservation values.



3. TOPOLOGICAL STRUCTURE IN COM-
BINATORIAL AUCTIONS

We observed significant topological structure in the com-
binatorial auction setting. We use that to avoid asking the
bidders unnecessary questions about their valuations.

3.1 Rank Lattice and Associated Algorithms
Conceptually, the bundles can be ranked for each agent

from most preferred to least preferred. This gives a unique
rank for each bundle for each agent. The key observation
behind the rank lattice is the following. Without referring to
the values of the bundles, each collection can be mapped to
a unique rank vector [R1(X1), R2(X2), . . . , Rn(Xn)]. The
set of rank vectors, and a dominates2 relation between them
define a lattice. Now, the important fact is that if a collec-
tion (resp. its rank vector) is feasible (i.e., is an allocation),
then no collection (resp. its rank vector) “below” it can be
a better solution to the allocation problem.

Example 1. Let there be two goods, A and B, and two
agents, a1, and a2. The agents rank the bundles as follows.

Agent a1: (1 : AB, 2 : A, 3 : B, 4 : ∅)
Agent a2: (1 : AB, 2 : B, 3 : A, 4 : ∅)

This implies the rank lattice of Fig. 1. Only a subset of the
collections is feasible and, thus, corresponds to allocations.
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Figure 1: Left: Rank lattice for Example 1. The
nodes are collections. Some of them are dominated,
some are infeasible, some are both, and some are
neither. Right: Rank lattice, augmented with sums
of values for Example 2.

If a feasible collection is not dominated by another feasi-
ble collection, it is Pareto-efficient. In Figure 1, the set of
Pareto-efficient solutions is {[2, 2], [1, 4], [4, 1]}.

The following search algorithm that operates top-down
along the implicitly given rank lattice finds all Pareto-efficient
allocations. To generate successors in the lattice, it asks the
agents what their next most preferred bundles are.

s = (1, . . . , 1) /* start node */
PAR = []; /* Pareto-optimal nodes */
OPEN = [s]; /* Unexpanded nodes */
while OPEN 6= [] do

Remove(c,OPEN); SUC = suc(c)
if Feasible(c) then
PAR = PAR ∪ {c}; Remove(SUC,OPEN)

else foreach n ∈ SUC do
if n 6∈ OPEN and Undominated(n, PAR)
then Append(n,OPEN)

If (monetary) valuations can be asked, then those queries
can be combined with rank queries to guide the search that
finds a welfare-maximizing allocation.
2Given two rank vectors a and b, a is said to dominate b if
ai ≥ bi for all agents i and aj > bj for at least one agent j.

Example 2. Let there be the two goods, A and B, and
the two agents, a1, and a2 of the above example. The agents
assign the following values to the bundles:

∅ A B AB
a1 0 4 3 8
a2 0 1 6 9

The values imply the preference order that has been con-
sidered in Example 1. The value-augmented rank lattice is
shown in Figure 1 Right. The welfare-maximizing allocation
is given by rank vector [2, 2], that is X∗ = {A,B}.

The following search algorithm uses rank and value infor-
mation to determine a welfare-maximizing allocation.

s = (1, . . . , 1) /* start node */
OPEN = {s}; /* Unexpanded nodes */
CLOSED = ∅; /* Expanded nodes */
while OPEN 6= ∅ do

c = arg maxc∈OPEN
∑
i∈N vi(ci)

OPEN = OPEN \{c}
if Feasible(c) then return {c}
CLOSED = CLOSED ∪{c}; SUC = suc(c)
foreach n ∈ SUC do

if n 6∈ OPEN and n 6∈ CLOSED
then OPEN = OPEN ∪{n}

In practice, the algorithm would ask questions to deter-
mine the best rank vector in OPEN (i.e., to solve the arg max).
For a given rank, the algorithm needs to know which bun-
dle the agent associates with that rank and which value she
attributes to that bundle. The algorithm traverses the rank
lattice in a way that leads to a natural sequence of questions
for the bidder: asking for the highest ranking bundle first,
then proceeding to the next best bundle, and so on.

3.2 Policy-Independent Elicitation Algorithms
The algorithms presented so far are based on search, and

the search strategy imposes constraints on the query policy
(which question is asked as a function of answers received so
far). We now present algorithms that avoid this weakness.
Questions can be asked in any order that the auctioneer con-
siders (ex ante) most efficient, and still no unnecessary (from
the perspective of all the information known and derivable
at that time) questions are asked.

The auctioneer may be able to ask any bidder the follow-
ing types of queries:

• Order queries: Which bundle do you prefer, A or B?

• Value queries: What is your valuation for bundle A?
The bidder can answer with bounds or an exact value.

• Rank queries: In your preferences, what is the rank
of bundle A? Which bundle has rank x in your prefer-
ences? (Later we also discuss the more natural ques-
tion: If you cannot get the bundles that you have de-
clared most desirable so far, what is your most desired
bundle among the remaining ones?)

3.2.1 Augmented Order Graph
The elicitor algorithms use a data structure called an aug-

mented order graph G to assimilate the answers. It includes
a node for each (bidder, bundle) pair (i,X). It includes a
directed arc from node (i,X) to node (i, Y ) (always nodes
of the same bidder) whenever vi(X) > vi(Y ). We call this



a domination arc �. The graph G also includes an upper
bound UB and a lower bound LB for each node. Finally, it
includes a rank Ri(X) for every node. Some of these vari-
ables may not have values. Initially, G includes no edges.
The upper bounds are initialized to∞, and the lower bounds
to 0 (in the free-disposal case) or to −∞ (in the general
case). All of the rank information is initially missing. If
there is free disposal, edges are added to the graph to rep-
resent this: ((i,X), (i, Y )) ∈ � whenever Y ⊂ X.
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Figure 2: Order graph, feasible allocations, and how
they relate to the rank lattice.

Figure 2 shows the augmented order graph for our 2-agent,
2-good example at a stage where some of the information
from the bidders has not yet been asked. In the upper right
corner, two allocations and their relation to the nodes in the
graph are shown. These allocations are connected to the
corresponding feasible collections (allocations) in the rank
lattice. The lower bound LB of a collection is the sum of
the lower bounds of the bundles in that collection. Similarly,
the upper bound UB of a collection is the sum of the upper
bounds of the bundles in that collection. In the example, the
allocations can be ordered due to the available rank informa-
tion. The allocation ({A}, {B}) dominates the other. The
highlighted rank vector represents the welfare-maximizing
allocation. This, however, cannot be determined yet due to
lack of information.

Our algorithms use the augmented order graph as the ba-
sic analysis tool. As new information is obtained, it is incor-
porated into the augmented order graph. This may cause
new arcs to be added, bounds to be updated, or rank infor-
mation to be filled in. As a piece of information is obtained
and incorporated, our algorithms fully propagate its impli-
cations. The process is monotonic in that new information
allows us to make more specific inferences. Edges are never
removed, upper bounds never increase, lower bounds never
decrease, and rank information is never erased.

3.2.2 General Elicitation Algorithm Framework
In different settings, answering some of the query types

can be more natural and easier than answering others. There-
fore, we designed different algorithms that use different sub-
sets of the query types listed above (and different query
policies). The algorithms share the following general skele-
ton, but differ based on how the specific procedures in this
skeleton work. Due to limited space, we do not present those
algorithms here, but refer the reader to [2] for details. An
augmented order graph G and an input set Y are expected
as input to the algorithms. The type of input set Y depends
on the specific algorithm.

Algorithm Solve(Y, G):
while not Done(Y, G) do

o = SelectOp(Y, G) /* Choose question */
I = PerformOp(o,N) /* Ask bidder */
G = Propagate(I,G) /* Update graph */
Y = Candidates(Y, G) /* Curtail the set of

candidate allocations */

In addition to this general structure, the algorithms share
the procedures for efficiently comparing two collections for
dominance and for optimally propagating value information,
rank information, and order information in the augmented
order graph. Due to limited space we will not present those
procedures here. They are described in [2].

4. EFFICIENCY OF ELICITATION
The elicitor is economically efficient. Our algorithms that

use value queries (possibly with other queries) are guaran-
teed to find the social welfare maximizing allocations. Our
algorithms that only use order and/or rank queries are guar-
anteed to find the Pareto optimal allocations.

It is easy to show that the elicitor also saves revelation.
Consider the following simple example. A bidder has re-
vealed that she prefers bundle A over bundle B, and that her
valuation for A is at most $100. If, based on the bids from
others, the elicitor already knows that it can obtain revenue
higher than $100 for bundle B, then the elicitor need not
ask the bidder her valuation for B, because she would not
win B anyway.

It is also easy to show that in the worst case, the number
of queries the elicitor needs to ask to determine the optimal
allocation is exponential in the number of items for sale (at
least when it comes to value and order queries). Consider
the following simple example with just one bidder. Say the
bidder assigns a high value to some bundle, and zero value to
all other bundles. The elicitor’s goal of maximizing welfare
amounts to trying to find the bundle that the bidder most
prefers (and to prove that that bundle is better than any
other). So, without any extra structure (such as knowledge
of free disposal), the elicitor needs to get some information
about the value of every bundle. Every value query provides
information about only one bundle, and every order query
provides information about only two bundles. Therefore,
the number of value/order queries needed is at least half the
number of bundles, which is exponential in items.

To improve the (average case) revelation efficiency, the
elicitor can allow the bidders to also answer queries that were
not asked (and our answer assimilation algorithms would not
treat the answer any differently). This allows the bidder,
who has some information (about his own valuations) that
the elicitor does not have, to guide the revelation process.
For example, this would solve the example of the previous
paragraph. On the other hand, the elicitor also has infor-
mation that the bidder does not have (about the others’
valuations) so in some cases the query-directed revelation is
effective—as shown in the paragraph before last.

We can also integrate the elicitation technique with open-
cry ascending combinatorial auctions, where some unneces-
sary revelation is avoided via price feedback [10, 9, 7, 18, 8].
Namely, if the price of a bundle is already too high for an
agent, the agent need not compute or communicate her exact
valuation. On top of that, the elicitor can guide revelation,
and bidders can answer queries that were not asked.



5. INCENTIVE COMPATIBLE ELICITATION
Motivating the bidders to answer queries truthfully is a

key issue, and is exacerbated by the fact that the elicitor’s
queries leak information to the bidder about the answers
that other bidders have given.

However, any of our elicitor designs can be made incen-
tive compatible in the sense that every bidder answering the
queries truthfully is a perfect Bayesian equilibrium. This is
accomplished by organizing the mechanism so that if all the
bidders answer truthfully, the final allocation and payments
follow the Vickrey-Clarke-Groves scheme (VCG) [17, 1, 4].
In the VCG, the amount a bidder has to pay is the sum of
others’ revealed valuations for the bundles they get had the
bidder not participated minus the sum of others’ revealed
valuations for the bundles they get in the actual allocation.

The elicitor can determine these payments by asking enough
queries to be able to determine the welfare maximizing allo-
cation overall, and by asking extra queries to determine the
welfare maximizing allocation for the auctions where each
agent is ignored in turn. Conceptually, one could think of
n+1 “elicitors”, each working to solve one of these problems.
However, these “elicitors” can use the same data structure
for assimilating the results, which leads to the advantage
that queries answered for one “elicitor” can help another
“elicitor” on its problem. Once all of the “elicitors” have
found their welfare maximizing allocations respectively, the
process can terminate. The notion of multiple “elicitors” is
just for conceptual clarity of this presentation; in practice
there would be only one elicitor asking all of the queries.

There is the risk of a lazy bidder who would not answer
queries once enough have been answered to determine her
allocation and payment. To deter this possibility, the mech-
anism could interleave, for that bidder, the questions per-
tinent to that bidder’s allocation and VCG payment with
queries pertinent to the other agents’ allocations and VCG
payments. This way the bidder would not know (at least
not directly) which purpose the questions are for. Any or-
der would motivate the bidder to reveal truthfully—the in-
terleaving scheme is simply to avoid lazyness.

6. CONCLUSIONS
Combinatorial auctions require potentially every bundle

to be bid on, and there are 2m − 1 bundles. This is com-
plex for the bidder because she may need to invest effort
or computation into determining each of her valuations. If
the bidder evaluates bundles that she does not win, eval-
uation effort is wasted. Bidding on too many bundles can
also be undesirable from the perspective of revealing un-
necessary private information and from the perspective of
causing unnecessary communication overhead. If the bid-
der omits evaluating (or bidding on) some bundles on which
she would have been competitive, economic efficiency and
revenue are generally compromised. A bidder could try to
evaluate (more accurately) only those bundles on which she
would be competitive. However, in general it is difficult for
the bidder to know on which bundles she would be compet-
itive before evaluating the bundles.

To address these problems, we presented a design of an
elicitor that helps guide the revelation of information from
the bidders to the auctioneer by asking relevant questions
from the bidders and optimally assimilating the answers. It
allows bidders to also answer queries that were not asked. It

can be used in conjunction with price-feedback mechanisms
to get the best of all of the (known) mechanisms for guiding
revelation. We also presented a way to make the elicitor
incentive compatible.
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