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25:2 A. GILPIN AND T. SANDHOLM

1. Introduction

In environments with more than one agent, an agent’s outcome is generally affected
by the actions of the other agent(s). Consequently, the optimal strategy of one
agent can depend on the others. Game theory provides a normative framework for
analyzing such strategic situations. In particular, it provides solution concepts that
define what rational behavior is in such settings. The most famous and important
solution concept is that of Nash equilibrium [Nash 1950]. It is a strategy profile
(one strategy for each agent) in which no agent has incentive to deviate to a different
strategy. However, for the concept to be operational, we need algorithmic techniques
for finding an equilibrium.

Games can be classified as either games of perfect information or imperfect
information. Chess and Go are examples of the former, and, until recently, most
game playing research has been on games of this type. To compute an optimal
strategy in a perfect information game, an agent traverses the game tree and evaluates
individual nodes. If the agent is able to traverse the entire game tree, she simply
computes an optimal strategy from the bottom-up, using the principle of backward
induction.1 In computer science terms, this is done using minimax search (often
in conjunction with α-β-pruning to reduce the search tree size and thus enhance
speed). Minimax search runs in linear time in the size of the game tree.2

The differentiating feature of games of imperfect information, such as poker, is
that they are not fully observable: when it is an agent’s turn to move, she does not
have access to all of the information about the world. In such games, the decision of
what to do at a point in time cannot generally be optimally made without considering
decisions at all other points in time (including ones on other paths of play) because
those other decisions affect the probabilities of being at different states at the current
point in time. Thus, the algorithms for perfect information games do not solve games
of imperfect information.

For sequential games with imperfect information, one could try to find an equi-
librium using the normal (matrix) form, where every contingency plan of the agent
is a pure strategy for the agent.3 Unfortunately (even if equivalent strategies are

1This actually yields a solution that satisfies not only the Nash equilibrium solution concept, but a
stronger solution concept called subgame perfect Nash equilibrium [Selten 1965].
2This type of algorithm still does not scale to huge trees (such as in chess or Go), but effective
game-playing agents can be developed even then by evaluating intermediate nodes using a heuristic
evaluation and then treating those nodes as leaves.
3There has been significant recent work on Nash equilibrium finding for normal (matrix) form games.
An ε-equilibrium in a normal form game with any constant number of agents can be constructed in
quasi-polynomial time [Lipton et al. 2003], but finding an exact equilibrium is PPAD-complete even
in a 2-player game [Chen and Deng 2006]. The most prevalent algorithm for finding an equilibrium
in a 2-agent game is Lemke-Howson [Lemke and Howson 1964], but it takes exponentially many
steps in the worst case [Savani and von Stengel 2004]. For a survey of equilibrium computation
in 2-player games, see von Stengel [2002]. Equilibrium-finding algorithms that enumerate supports
(i.e., sets of pure strategies that are played with positive probability) have been shown efficient on
many games [Porter et al. 2004], and efficient mixed integer programming algorithms that search
in the space of supports have been developed [Sandholm et al. 2005]. For more than two players,
many algorithms have been proposed, but they currently only scale to very small games [Govindan
and Wilson 2003; McKelvey and McLennan 1996; Porter et al. 2004]. Progress has also been made
on algorithms for finding equilibria in restricted and/or structured games (e.g., Papadimitriou and
Roughgarden [2005], Bhat and Leyton-Brown [2004], Leyton-Brown and Tennenholtz [2003], Blum
et al. [2003], and Singh et al. [2004]).
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Lossless Abstraction of Imperfect Information Games 25:3

replaced by a single strategy [Kuhn 1950a]) this representation is generally expo-
nential in the size of the game tree [von Stengel 1996].

By observing that one needs to consider only sequences of moves rather than pure
strategies [Romanovskii 1962; Selten 1988; Koller and Megiddo 1992; von Stengel
1996], one arrives at a more compact representation, the sequence form, which is
linear in the size of the game tree.4 For 2-player games, there is a polynomial-sized
(in the size of the game tree) linear programming formulation (linear complemen-
tarity in the non-zero-sum case) based on the sequence form such that strategies
for players 1 and 2 correspond to primal and dual variables. Thus, the equilibria of
reasonable-sized 2-player games can be computed using this method [von Stengel
1996; Koller et al. 1996; Koller and Pfeffer 1997].5 However, this approach still
yields enormous (unsolvable) optimization problems for many real-world games,
such as poker.

1.1. OUR APPROACH. In this article, we take a different approach to tackling the
difficult problem of equilibrium computation. Instead of developing an equilibrium-
finding method per se, we instead develop a methodology for automatically ab-
stracting games in such a way that any equilibrium in the smaller (abstracted) game
corresponds directly to an equilibrium in the original game. Thus, by computing
an equilibrium in the smaller game (using any available equilibrium-finding algo-
rithm), we are able to construct an equilibrium in the original game. The motivation
is that an equilibrium for the smaller game can be computed drastically faster than
for the original game.

To this end, we introduce games with ordered signals (Section 2), a broad class
of games that has enough structure which we can exploit for abstraction purposes.
Instead of operating directly on the game tree (something we found to be techni-
cally challenging), we instead introduce the use of information filters (Section 2.2),
which coarsen the information each player receives. They are used in our analysis
and abstraction algorithm. By operating only in the space of filters, we are able
to keep the strategic structure of the game intact, while abstracting out details of
the game in a way that is lossless from the perspective of equilibrium finding. We
introduce the ordered game isomorphism to describe strategically symmetric situ-
ations and the ordered game isomorphic abstraction transformation to take advan-
tange of such symmetries (Section 3). As our main equilibrium result we have the
following:

THEOREM 3.4. Let � be a game with ordered signals, and let F be an infor-
mation filter for �. Let F ′ be an information filter constructed from F by one
application of the ordered game isomorphic abstraction transformation, and let σ ′
be a Nash equilibrium strategy profile of the induced game �F ′ (i.e., the game �
using the filter F ′). If σ is constructed by using the corresponding strategies of σ ′,
then σ is a Nash equilibrium of �F .

4There were also early techniques that capitalized in different ways on the fact that in many games
the vast majority of pure strategies are not played in equilibrium [Wilson 1972; Koller and Megiddo
1996].
5Recently, this approach was extended to handle computing sequential equilibria [Kreps and Wilson
1982] as well [Miltersen and Sørensen 2006].

Journal of the ACM, Vol. 54, No. 5, Article 25, Publication date: October 2007.



25:4 A. GILPIN AND T. SANDHOLM

The proof of the theorem uses an equivalent characterization of Nash equilibria:
σ is a Nash equilibrium if and only if there exist beliefs μ (players’ beliefs about
unknown information) at all points of the game reachable by σ such that σ is
sequentially rational (i.e., a best response) given μ, where μ is updated using
Bayes’ rule. We can then use the fact that σ ′ is a Nash equilibrium to show that σ
is a Nash equilibrium considering only local properties of the game.

We also give an algorithm, GameShrink, for abstracting the game using our
isomorphism exhaustively (Section 4). Its complexity is Õ(n2), where n is the
number of nodes in a structure we call the signal tree. It is no larger than the game
tree, and on nontrivial games it is drastically smaller, so GameShrink has time
and space complexity sublinear in the size of the game tree. We present several
algorithmic and data structure related speed improvements (Section 4.1), and we
demonstrate how a simple modification to our algorithm yields an approximation
algorithm (Section 5).

1.2. APPLICATIONS. Sequential games of imperfect information are ubiquitous,
for example in negotiation and in auctions. Often aspects of a player’s knowledge are
not pertinent for deciding what action the player should take at a given point in the
game. On the trivial end, some aspects of a player’s knowledge are never pertinent
(e.g., whether it is raining or not has no bearing on the bidding strategy in an art
auction), and such aspects can be completely left out of the model specification.
However, more generally, some aspects can be pertinent in certain states of the
game while they are not pertinent in other states, and thus cannot be left out of the
model completely. Furthermore, it may be highly nonobvious which aspects are
pertinent in which states of the game. Our algorithm automatically discovers which
aspects are irrelevant in different states, and eliminates those aspects of the game,
resulting in a more compact, equivalent game representation.

One broad application area that has this property is sequential negotiation (poten-
tially over multiple issues). Another broad application area is sequential auctions
(potentially over multiple goods). For example, in those states of a 1-object auc-
tion where bidder A can infer that his valuation is greater than that of bidder B,
bidder A can ignore all his other information about B’s signals, although that infor-
mation would be relevant for inferring B’s exact valuation. Furthermore, in some
states of the auction, a bidder might not care which exact other bidders have which
valuations, but cares about which valuations are held by the other bidders in aggre-
gate (ignoring their identities). Many open-cry sequential auction and negotiation
mechanisms fall within the game model studied in this article (specified in detail
later), as do certain other games in electronic commerce, such as sequences of
take-it-or-leave-it offers [Sandholm and Gilpin 2006].

Our techniques are in no way specific to an application. The main experiment
that we present in this article is on a recreational game. We chose a particular poker
game as the benchmark problem because it yields an extremely complicated and
enormous game tree, it is a game of imperfect information, it is fully specified as
a game (and the data is available), and it has been posted as a challenge problem
by others [Shi and Littman 2002] (to our knowledge no such challenge problem
instances have been proposed for electronic commerce applications that require
solving sequential games).

1.3. RHODE ISLAND HOLD’EM POKER. Poker is an enormously popular card
game played around the world. The 2005 World Series of Poker had over
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$103 million dollars in total prize money, including $56 million for the main event.
Increasingly, poker players compete in online casinos, and television stations reg-
ularly broadcast poker tournaments. Poker has been identified as an important
research area in AI due to the uncertainty stemming from opponents’ cards, op-
ponents’ future actions, and chance moves, among other reasons [Billings et al.
2002].

Almost since the field’s founding, game theory has been used to analyze different
aspects of poker [Kuhn 1950b; Nash and Shapley 1950; Bellman and Blackwell
1949; von Neumann and Morgenstern 1947, pp. 186–219]. However, this work was
limited to tiny games that could be solved by hand. More recently, AI researchers
have been applying the computational power of modern hardware to computing
game theory-based strategies for larger games. Koller and Pfeffer determined
solutions to poker games with up to 140,000 nodes using the sequence form
and linear programming [Koller and Pfeffer 1997]. Large-scale approximations
have been developed [Billings et al. 2003], but those methods do not provide any
guarantees about the performance of the computed strategies. Furthermore, the
approximations were designed manually by a human expert. Our approach yields
an automated abstraction mechanism along with theoretical guarantees on the
strategies’ performance.

Rhode Island Hold’em was invented as a testbed for computational game play-
ing [Shi and Littman 2002]. It was designed so that it was similar in style to Texas
Hold’em, yet not so large that devising reasonably intelligent strategies would be
impossible. (The rules of Rhode Island Hold’em are given in Section 2.1. That
section also shows how Rhode Island Hold’em can be modeled as a game with
ordered signals, that is, it fits in our model.) We applied the techniques developed
in this paper to find an exact (minimax) solution to Rhode Island Hold’em, which
has a game tree exceeding 3.1 billion nodes.

Applying the sequence form to Rhode Island Hold’em directly without abstrac-
tion yields a linear program with 91,224,226 rows, and the same number of columns.
This is much too large for (current) linear programming algorithms to handle. We
used our GameShrink algorithm to reduce this through lossless abstraction, and
it yielded a linear program with 1,237,238 rows and columns—with 50,428,638
non-zero coefficients. We then applied iterated elimination of dominated strate-
gies, which further reduced this to 1,190,443 rows and 1,181,084 columns. (Ap-
plying iterated elimination of dominated strategies without GameShrink yielded
89,471,986 rows and 89,121,538 columns, which still would have been prohibitively
large to solve.) GameShrink required less than one second to perform the shrink-
ing (i.e., to compute all of the ordered game isomorphic abstraction transforma-
tions). Using a 1.65GHz IBM eServer p5 570 with 64 gigabytes of RAM (the
linear program solver actually needed 25 gigabytes), we solved it in 7 days and
17 hours using the interior-point barrier method of CPLEX version 9.1.2. We
demonstrated our optimal Rhode Island Hold’em poker player at the AAAI-05
conference [Gilpin and Sandholm 2005], and it is available for play on-line at
http://www.cs.cmu.edu/~gilpin/gsi.html.

While others have worked on computer programs for playing Rhode Island
Hold’em [Shi and Littman 2002], no optimal strategy has been found be-
fore. This is the largest poker game solved to date by over four orders of
magnitude.
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2. Games with Ordered Signals

We work with a slightly restricted class of games, as compared to the full generality
of the extensive form.6 This class, which we call games with ordered signals, is
highly structured, but still general enough to capture a wide range of strategic
situations. A game with ordered signals consists of a finite number of rounds.
Within a round, the players play a game on a directed tree (the tree can be different
in different rounds). The only uncertainty players face stems from private signals the
other players have received and from the unknown future signals. In other words,
players observe each others’ actions, but potentially not nature’s actions. In each
round, there can be public signals (announced to all players) and private signals
(confidentially communicated to individual players). For simplicity, we assume—
as is the case in most recreational games—that within each round, the number of
private signals received is the same across players (this could quite likely be relaxed).
We also assume that the legal actions that a player has are independent of the signals
received. For example, in poker, the legal betting actions are independent of the
cards received. Finally, the strongest assumption is that there is a partial ordering
over sets of signals, and the payoffs are increasing (not necessarily strictly) in
these signals. For example, in poker, this partial ordering corresponds exactly to
the ranking of card hands.

Definition 2.1. A game with ordered signals is a tuple � = 〈I, G, L , �, κ,
γ, p, �, ω, u〉 where:

(1) I = {1, . . . , n} is a finite set of players.

(2) G = 〈G1, . . . , Gr 〉, G j = (
V j , E j

)
, is a finite collection of finite directed trees

with nodes V j and edges E j . Let Z j denote the leaf nodes of G j and let N j (v)
denote the outgoing neighbors of v ∈ V j . G j is the stage game for round j .

(3) L = 〈L1, . . . , Lr 〉, L j : V j \ Z j → I indicates which player acts (chooses an
outgoing edge) at each internal node in round j .

(4) � is a finite set of signals.

(5) κ = 〈κ1, . . . , κr 〉 and γ = 〈γ 1, . . . , γ r 〉 are vectors of nonnegative integers,
where κ j and γ j denote the number of public and private signals (per player),
respectively, revealed in round j . Each signal θ ∈ � may only be revealed
once, and in each round every player receives the same number of private
signals, so we require

∑r
j=1 κ j + nγ j ≤ |�|. The public information revealed

in round j is α j ∈ �κ j
and the public information revealed in all rounds up

through round j is α̃ j = (α1, . . . , α j ). The private information revealed to
player i ∈ I in round j is β

j
i ∈ �γ j

and the private information revaled to
player i ∈ I in all rounds up through round j is β̃

j
i = (β1

i , . . . , β
j

i ). We also
write β̃ j = (β̃ j

1 , . . . , β̃
j

n ) to represent all private information up through round
j , and (β̃ ′ j

i , β̃
j
−i ) = (β̃ j

1 , . . . , β̃
j

i−1, β̃
′ j
i , β̃

j
i+1, . . . , β̃

j
n ) is β̃ j with β̃

j
i replaced

with β̃ ′ j
i . The total information revealed up through round j , (α̃ j , β̃ j ), is said

to be legal if no signals are repeated.

6For readers unfamiliar with extensive form games, we provide a complete definition in Appendix A.
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(6) p is a probability distribution over �, with p(θ ) > 0 for all θ ∈ �. Signals are
drawn from � according to p without replacement, so if X is the set of signals
already revealed, then

p(x | X ) =
{

p(x)∑
y /∈X p(y) if x /∈ X

0 if x ∈ X.

(7) � is a partial ordering of subsets of � and is defined for at least those pairs
required by u.

(8) ω :
⋃r

j=1 Z j → {over, continue} is a mapping of terminal nodes within
a stage game to one of two values: over, in which case the game ends, or
continue, in which case the game continues to the next round. Clearly, we
require ω(z) = over for all z ∈ Zr . Note that ω is independent of the signals.
Let ω

j
over = {z ∈ Z j | ω(z) = over} and ω

j
cont = {z ∈ Z j | ω(z) = continue}.

(9) u = (u1, . . . , ur ), u j :
∏ j−1

k=1 ωk
cont ×ω

j
over ×

∏ j
k=1 �κk ×∏n

i=1

∏ j
k=1 �γ k → R

n

is a utility function such that for every j , 1 ≤ j ≤ r , for every i ∈ I , and for
every z̃ ∈ ∏ j−1

k=1 ωk
cont × ω

j
over , at least one of the following two conditions

holds:
(a) Utility is signal independent: u j

i (z̃, ϑ) = u j
i (z̃, ϑ ′) for all legal ϑ, ϑ ′ ∈∏ j

k=1 �κk × ∏n
i=1

∏ j
k=1 �γ k

.
(b) � is defined for all legal signals (α̃ j , β̃

j
i ) and (α̃ j , β̃

′ j
i ) through round j and

a player’s utility is increasing in her private signals, everything else equal:(
α̃ j , β̃

j
i

) � (
α̃ j , β̃

′ j
i

) =⇒ ui
(
z̃, α̃ j ,

(
β̃

j
i , β̃

j
−i

)) ≥ ui
(
z̃, α̃ j ,

(
β̃ ′ j

i , β̃
j
−i

))
.

We will use the term game with ordered signals and the term ordered game
interchangeably.

2.1. RHODE ISLAND HOLD’EM MODELED AS AN ORDERED GAME. In this sec-
tion, we describe how Rhode Island Hold’em can be defined as an ordered game
in accordance with Definition 2.1. First, we describe the rules of Rhode Island
Hold’em.

(1) Each player pays an ante of 5 chips which is added to the pot. Both players
initially receive a single card, face down; these are known as the hole cards.

(2) After receiving the hole cards, the players participate in one betting round. Each
player may check (not placing any money in the pot and passing) or bet (placing
10 chips into the pot) if no bets have been placed. If a bet has been placed, then
the player may fold (thus forfeiting the game along with any money they have
put into the pot), call (adding chips to the pot equal to the last player’s bet), or
raise (calling the current bet and making an additional bet). In Rhode Island
Hold’em, the players are limited to three bets each per betting round. (A raise
equals two bets.) In the first betting round, the bets are equal to 10 chips.

(3) After the first betting round, a community card is dealt face up. This is called
the flop card. Another betting round take places at this point, with bets equal to
20 chips.

(4) Following the second betting round, another community card is dealt face up.
This is called the turn card. A final betting round takes place at this point, with
bets again equal to 20 chips.
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TABLE I. RANKING OF THREE-CARD POKER HANDS, FROM HIGHEST TO LOWEST

Hand Prob. Description Example
Straight flush 0.00217 3 cards w/ consecutive rank & same suit K♠, Q♠, J♠
Three of a kind 0.00235 3 cards of the same rank Q♠, Q♥, Q♣
Straight 0.03258 3 cards w/ consecutive rank 3♣, 4♠, 5♥
Flush 0.04959 3 cards of the same suit 2♦, 5♦, 8♦
Pair 0.16941 2 cards of the same rank 2♦, 2♠, 3♥
High card 0.74389 None of the above J♣, 9♥, 2♠

FIG. 1. Stage game G RI , player label L , and game-ending nodes ω for Rhode Island Hold’em. The
action labels denote which action the player is taking: k (check), b (bet), f (fold), c (call), and r (raise).
Lower case letters indicate player 1 actions and upper case letters indicate player 2 actions.

(5) If neither player folds, then the showdown takes place. Both players turn over
their cards. The player who has the best 3-card poker hand takes the pot. In the
event of a draw, the pot is split evenly.

Hands in 3-card poker games are ranked slightly differently than 5-card poker
hands. The main differences are that the order of flushes and straights are reversed,
and a three of a kind is better than straights or flushes. Table I describes the rankings.
Within ranks, ties are broken by by ordering hands according to the rank of cards
that make up the hand. If players are still tied after applying this criterion, kickers
are used to determine the winner. A kicker is a card that is not used to make up the
hand. For example, if player 1 has a pair of eights and a five, and player 2 has a
pair of eights and a six, player 2 wins.

To make the definition of ordered games concrete, here we define each of the com-
ponents of the tuple � = 〈I, G, L , �, κ, γ, p, �, ω, u〉 for Rhode Island Hold’em.
There are two players so I = {1, 2}. There are three rounds, and the stage game is
the same in each round so we have G = 〈G RI , G RI , G RI 〉 where G RI is given in
Figure 1, which also specifies the player label L .

� is the standard deck of 52 cards. The community cards are dealt in the sec-
ond and third rounds, so κ = 〈0, 1, 1〉. Each player receives a since face down
card in the first round only, so γ = 〈1, 0, 0〉. p is the uniform distribution over
�. � is defined for three card hands and is defined using the ranking given in
Table I. The game-ending nodes ω are denoted in Figure 1 by ω. u is defined
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as in the above description; it is easy to verify that it satisfies the necessary
conditions.

2.2. INFORMATION FILTERS. In this section, we define an information filter for
ordered games. Instead of completely revealing a signal (either public or private) to
a player, the signal first passes through this filter, which outputs a coarsened signal
to the player. By varying the filter applied to a game, we are able to obtain a wide
variety of games while keeping the underlying action space of the game intact. We
will use this when designing our abstraction techniques. Formally, an information
filter is as follows:

Definition 2.2. Let � = 〈I, G, L , �, κ, γ, p, �, ω, u〉 be an ordered game.
Let S j ⊆ ∏ j

k=1 �κk × ∏ j
k=1 �γ k

be the set of legal signals (i.e., no repeated
signals) for one player through round j . An information filter for � is a collection
F = 〈F1, . . . , Fr 〉 where each F j is a function F j : S j → 2S j

such that each of
the following conditions hold:

(1) (Truthfulness) (α̃ j , β̃
j

i ) ∈ F j (α̃ j , β̃
j

i ) for all legal (α̃ j , β̃
j

i ).

(2) (Independence) The range of F j is a partition of S j .
(3) (Information preservation) If two values of a signal are distinguishable in

round k, then they are distinguishable for each round j > k. Let m j =∑ j
l=1 κ l + γ l . We require that for all legal (θ1, . . . , θmk , . . . , θm j ) ⊆ �

and (θ ′
1, . . . , θ

′
mk , . . . , θ

′
m j ) ⊆ �:

(θ ′
1, . . . , θ

′
mk ) /∈ Fk(θ1, . . . , θmk ) =⇒
(θ ′

1, . . . , θ
′
mk , . . . , θ

′
m j ) /∈ F j (θ1, . . . , θmk , . . . , θm j ).

A game with ordered signals � and an information filter F for � defines a new
game �F . We refer to such games as filtered ordered games. We are left with the
original game if we use the identity filter F j (α̃ j , β̃

j
i ) = {(α̃ j , β̃

j
i )}. We have the

following simple (but important) result:

PROPOSITION 2.3. A filtered ordered game is an extensive form game satisfying
perfect recall. (For the unfamiliar reader, the definition of games with perfect recall
is given in Appendix A.)

A simple proof proceeds by constructing an extensive form game directly from
the ordered game, and showing that it satisfies perfect recall. In determining the
payoffs in a game with filtered signals, we take the average over all real signals in
the filtered class, weighted by the probability of each real signal occurring.

2.3. STRATEGIES AND NASH EQUILIBRIUM. We are now ready to define behav-
ior strategies in the context of filtered ordered games.

Definition 2.4. A behavior strategy for player i in round j of � =
〈I, G, L , �, κ, γ, p, �, ω, u〉 with information filter F is a probability distribu-
tion over possible actions, and is defined for each player i , each round j , and each
v ∈ V j \ Z j for L j (v) = i :

σ
j

i,v :
j−1∏
k=1

ωk
cont × Range

(
F j) → 


{
w ∈ V j | (v, w) ∈ E j} .
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25:10 A. GILPIN AND T. SANDHOLM

FIG. 2. GameShrink applied to a tiny two-person four-card (two Jacks and two Kings) poker game.
Next to each game tree is the range of the information filter F . Dotted lines denote information sets,
which are labeled by the controlling player. Open circles are chance nodes with the indicated transition
probabilities. The root node is the chance node for player 1’s card, and the next level is for player 2’s
card. The payment from player 2 to player 1 is given below each leaf. In this example, the algorithm
reduces the game tree from 113 nodes to 39 nodes.

(
(X ) is the set of probability distributions over a finite set X .) A behavior strategy
for player i in round j is σ

j
i = (σ j

i,v1
, . . . , σ

j
i,vm

) for each vk ∈ V j \ Z j where
L j (vk) = i . A behavior strategy for player i in � is σi = (σ 1

i , . . . , σ r
i ). A strategy

profile is σ = (σ1, . . . , σn). A strategy profile with σi replaced by σ ′
i is (σ ′

i , σ−i ) =
(σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn).

By an abuse of notation, we will say player i receives an expected payoff of
ui (σ ) when all players are playing the strategy profile σ . Strategy σi is said to be
player i’s best response to σ−i if for all other strategies σ ′

i for player i we have
ui (σi , σ−i ) ≥ ui (σ ′

i , σ−i ). σ is a Nash equilibrium if, for every player i , σi is a
best response for σ−i . A Nash equilibrium always exists in finite extensive form
games [Nash 1950], and one exists in behavior strategies for games with perfect
recall [Kuhn 1953]. Using these observations, we have the following corollary to
Proposition 2.3:

COROLLARY 2.5. For any filtered ordered game, a Nash equilibrium exists in
behavior strateges.

3. Equilibrium-Preserving Abstractions

In this section, we present our main technique for reducing the size of games. We
begin by defining a filtered signal tree which represents all of the chance moves in
the game. The bold edges (i.e., the first two levels of the tree) in the game trees in
Figure 2 correspond to the filtered signal trees in each game.
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Definition 3.1. Associated with every ordered game � = 〈I, G, L , �, κ,
γ, p, �, ω, u〉 and information filter F is a filtered signal tree, a directed tree in
which each node corresponds to some revealed (filtered) signals and edges corre-
spond to revealing specific (filtered) signals. The nodes in the filtered signal tree
represent the set of all possible revealed filtered signals (public and private) at
some point in time. The filtered public signals revealed in round j correspond to
the nodes in the κ j levels beginning at level

∑ j−1
k=1

(
κk + nγ k

)
and the private sig-

nals revealed in round j correspond to the nodes in the nγ j levels beginning at level∑ j
k=1 κk + ∑ j−1

k=1 nγ k . We denote children of a node x as N (x). In addition, we
associate weights with the edges corresponding to the probability of the particular
edge being chosen given that its parent was reached.

In many games, there are certain situations in the game that can be thought
of as being strategically equivalent to other situations in the game. By melding
these situations together, it is possible to arrive at a strategically equivalent smaller
game. The next two definitions formalize this notion via the introduction of the
ordered game isomorphic relation and the ordered game isomorphic abstraction
transformation.

Definition 3.2. Two subtrees beginning at internal nodes x and y of a filtered
signal tree are ordered game isomorphic if x and y have the same parent and there
is a bijection f : N (x) → N (y), such that for w ∈ N (x) and v ∈ N (y), v = f (w)
implies the weights on the edges (x, w) and (y, v) are the same and the subtrees
beginning at w and v are ordered game isomorphic. Two leaves (corresponding to
filtered signals ϑ and ϑ ′ up through round r ) are ordered game isomorphic if for
all z̃ ∈ ∏r−1

j=1 ω
j
cont × ωr

over , ur (z̃, ϑ) = ur (z̃, ϑ ′).

Definition 3.3. Let � = 〈I, G, L , �, κ, γ, p, �, ω, u〉 be an ordered game and
let F be an information filter for �. Let ϑ and ϑ ′ be two information structures where
the subtrees in the induced filtered signal tree corresponding to the nodes ϑ and ϑ ′

are ordered game isomorphic, and ϑ and ϑ ′ are at either level
∑ j−1

k=1(κk + nγ k) or∑ j
k=1 κk +∑ j−1

k=1 nγ k for some round j . The ordered game isomorphic abstraction
transformation is given by creating a new information filter F ′:

F ′ j
(
α̃ j , β̃

j
i

)
=

{
F j

(
α̃ j , β̃

j
i

)
if

(
α̃ j , β̃

j
i

)
/∈ ϑ ∪ ϑ ′

ϑ ∪ ϑ ′ if
(
α̃ j , β̃

j
i

) ∈ ϑ ∪ ϑ ′.

Figure 2 shows the ordered game isomorphic abstraction transformation applied
twice to a tiny poker game. Theorem 3.4, our main equilibrium result, shows how
the ordered game isomorphic abstraction transformation can be used to compute
equilibria faster.

THEOREM 3.4. Let � = 〈I, G, L , �, κ, γ, p, �, ω, u〉 be an ordered game and
F be an information filter for �. Let F ′ be an information filter constructed from F
by one application of the ordered game isomorphic abstraction transformation. Let
σ ′ be a Nash equilibrium of the induced game �F ′ . If we take σ

j
i,v (z̃, F j (α̃ j , β̃

j
i )) =

σ
′ j
i,v (z̃, F ′ j (α̃ j , β̃

j
i )), σ is a Nash equilibrium of �F .

PROOF. For an extensive form game, a belief system μ assigns a probability
to every decision node x such that

∑
x∈h μ(x) = 1 for every information set h. A
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strategy profile σ is sequentially rational at h given belief system μ if

ui (σi , σ−i | h, μ) ≥ ui (τi , σ−i | h, μ)

for all other strategies τi , where i is the player who controls h. A basic result
[Mas-Colell et al. 1995, Proposition 9.C.1] characterizing Nash equilibria dictates
that σ is a Nash equilibrium if and only if there is a belief system μ such that for
every information set h with Pr(h | σ ) > 0, the following two conditions hold: (C1)
σ is sequentially rational at h given μ; and (C2) μ(x) = Pr(x | σ )

Pr(h | σ ) for all x ∈ h. Since
σ ′ is a Nash equilibrium of �′, there exists such a belief system μ′ for �F ′ . Using
μ′, we will construct a belief system μ for � and show that conditions C1 and C2
hold, thus supporting σ as a Nash equilibrium.

Fix some player i ∈ I . Each of i’s information sets in some round j corresponds
to filtered signals F j (α̃∗ j , β̃

∗ j
i ), history in the first j − 1 rounds (z1, . . . , z j−1) ∈∏ j−1

k=1 ωk
cont , and history so far in round j , v ∈ V j \ Z j . Let z̃ = (z1, . . . , z j−1, v)

represent all of the player actions leading to this information set. Thus, we can
uniquely specify this information set using the information (F j (α̃∗ j , β̃

∗ j
i ), z̃).

Each node in an information set corresponds to the possible private signals the
other players have received. Denote by β̃ some legal(

F j(α̃ j , β̃
j

1

)
, . . . , F j(α̃ j , β̃

j
i−1

)
, F j(α̃ j , β̃

j
i+1

)
, . . . , F j(α̃ j , β̃ j

n

))
.

In other words, there exists (α̃ j , β̃
j

1 , . . . , β̃
j

n ) such that (α̃ j , β̃
j

i ) ∈ F j (α̃∗ j , β̃
∗ j
i ),

(α̃ j , β̃
j

k ) ∈ F j (α̃ j , β̃
j

k ) for k �= i , and no signals are repeated. Using such a set of
signals (α̃ j , β̃

j
1 , . . . , β̃

j
n ), let β̂ ′ denote (F ′ j (α̃ j , β̃

j
1 ), . . . , F ′ j (α̃ j , β̃

j
i−1),

F ′ j (α̃ j , β̃
j

i+1), . . . , F ′ j (α̃ j , β̃
j

n )). (We will abuse notation and write F ′ j
−i (β̂) = β̂ ′.)

We can now compute μ directly from μ′:

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ′(β̂ ′ | F ′ j
(
α̃ j , β̃

j
i

)
, z̃

)
if F j

(
α̃ j , β̃

j
i

) �= F ′ j
(
α̃ j , β̃

j
i

)
or β̂ = β̂ ′

p∗μ′(β̂ ′ | F ′ j
(
α̃ j , β̃

j
i

)
, z̃

)
if F j

(
α̃ j , β̃

j
i

) = F ′ j
(
α̃ j , β̃

j
i

)
and β̂ �= β̂ ′

where p∗ = Pr(β̂ | F j (α̃ j ,β̃
j

i ))

Pr(β̂ ′ | F ′ j (α̃ j ,β̃
j

i ))
. The following three claims show that μ as calculated

above supports σ as a Nash equilibrium.

CLAIM 3.5. μ is a valid belief system for �F .

PROOF OF CLAIM 3.5. Let h be player i’s information set after some history
(F j (α̃ j , β̃

j
i ), z̃). Clearly, μ(β̂ | F j (α̃ j , β̃

j
i ), z̃) ≥ 0 for all β̂ ∈ h. We need to show∑

β̂∈h

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) = 1.

Case 1. F j (α̃ j , β̃
j

i ) �= F ′ j (α̃ j , β̃
j

i ). From the construction of F ′, F j (α̃ j , β̃
j

i )
is ordered game isomorphic to some F j (α̃′ j β̃

′ j
i ) with F j (α̃′ j β̃

′ j
i ) �= F j (α̃ j , β̃

j
i ).

Let h′ be player i’s information set corresponding to the history (F j (α̃′ j , β̃
′ j
i ), z̃).
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FIG. 3. Illustration of Case 1 of Claim 3.5.

By the definition of the ordered game isomorphism, there exists a perfect matching
between the nodes in the information set h and h′, where each matched pair of nodes
corresponds to a pair of ordered game isomorphic information structures. Since we
have that F ′ j (α̃ j , β̃

j
i ) = F ′ j (α̃′ j , β̃

′ j
i ), each edge in the matching corresponds to

a node in the information set corresponding to the history (F ′ j (α̃ j , β̃
)
i , z̃) in �F ′ ;

denote this information set by h′′. (See Figure 3.)
Thus, there is a bijection between h and h′′ defined by the perfect matching.

Using this matching:

∑
β̂∈h

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) =
∑
β̂∈h

μ′(F ′ j
−i

(
β̂
) | F ′ j(α̃ j , β̃

j
i

)
, z̃

)
=

∑
β̂ ′∈h′′

μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
= 1.

Case 2. F j (α̃ j , β̃
j

i ) = F ′ j (α̃ j , β̃
j

i ). We need to treat members of h differently
depending on if they map to the same set of signals in �F ′ or not. Let h1 = {β̂ ∈
h | β̂ = F ′ j

−i (β̂)} and let h2 = {β̂ ∈ h | β̂ ⊂ F ′ j
−i (β̂)}. Clearly, (h1, h2) is a partition

of h. Let h′ be player i’s information set corresponding to the history (F ′ j (α̃ j , β̃
j

i ), z̃)
in �F ′ . We can create a partition of h′ by letting h3 = {F ′ j

−i (β̂) | β̂ ∈ h1} and

h4 = {F ′ j
−i (β̂) | β̂ ∈ h2}. Clearly, (h3, h4) partitions h′. (See Figure 4.) The rest of

the proof for this case proceeds in three steps.

Step 1. In this step, we show the following relationship between h1 and h3:

∑
β̂∈h1

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) =
∑
β̂∈h1

μ′(F ′ j
−i (β̂) | F ′ j(α̃ j , β̃

j
i

)
, z̃

)
(1)

=
∑
β̂ ′∈h3

μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)

Step 2. In this step we want to show a similar relationship between h2 and h4. In
doing so, we use the following fact: β̂ ⊂ β̂ ′ → F ′ j

−i (β̂) = β̂ ′. With this in mind,
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FIG. 4. Illustration of Case 2 of Claim 3.5.

we can write:

∑
β̂∈h2

μ
(
β̂|F j(α̃ j , β̃

j
i

)
, z̃

) =
∑
β̂∈h2

Pr
(
β̂|F j

(
α̃ j , β̃

j
i

))
Pr

(
F ′ j

−i (β̂)|F ′ j
(
α̃ j , β̃

j
i

)) ·

μ′(F ′ j
−i (β̂)|F ′ j(α̃ j , β̃

j
i

)
, z̃

)
=

∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃ j , β̃

j
i

))
Pr

(
F ′ j

−i (β̂)|F ′ j
(
α̃ j , β̃

j
i

)) ·

μ′(F ′ j
−i (β̂)|F ′ j(α̃ j , β̃

j
i

)
, z̃

)
=

∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃ j , β̃

j
i

))
Pr

(
β̂ ′|F j

(
α̃ j , β̃

j
i

)) · (2)

μ′(β̂ ′|F ′ j(α̃ j , β̃
j

i

)
, z̃

)
=

∑
β̂ ′∈h4

μ′(β̂ ′|F ′ j(α̃ j , β̃
j

i

)
, z̃

) ·

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃ j , β̃

j
i

))
Pr

(
β̂ ′|F j

(
α̃ j , β̃

j
i

))
=

∑
β̂ ′∈h4

μ′(β̂ ′|F ′ j(α̃ j , β̃
j

i

)
, z̃

)
.

Step 3. Using (2) and (3):

∑
β̂∈h

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) =
∑
β̂∈h1

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

)
+

∑
β̂∈h2

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

)
=

∑
β̂ ′∈h3

μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
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+
∑
β̂ ′∈h4

μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
=

∑
β̂ ′∈h′

μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
= 1

In both cases we have shown〈∑
β̂∈h

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) = 1.

〉

CLAIM 3.6. For all information sets h with Pr(h | σ ) > 0, μ(x) = Pr(x | σ )
Pr(h | σ ) for

all x ∈ h.

PROOF OF CLAIM 3.6. Let h be player i’s information set after some history
(F j (α̃ j , β̃

j
i ), z̃), and fix some β̂ ∈ h. Let β̂ ′ = F ′ j

−i (β̂). We need to show that

μ(β̂|F j (α̃ j , β̃
j

i ), z̃) = Pr(β̂ | σ )
Pr(h | σ ) . Let h′ be player i’s information set after history

(F ′ j (α̃ j , β̃
j

i ), z̃).

Case 1. F j (α̃ j , β̃
j

i ) �= F ′ j (α̃ j , β̃
j

i ).

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) = μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
= Pr(β̂ ′ | σ ′)

Pr(h′ | σ ′)

=
Pr
(
β̂|F j

(
α̃ j ,β̃

j
i

))
Pr
(
β̂ ′|F ′ j

(
α̃ j ,β̃

j
i

))Pr(β̂ ′ | σ ′)

Pr
(
β̂|F j

(
α̃ j ,β̃

j
i

))
Pr
(
β̂ ′|F ′ j

(
α̃ j ,β̃

j
i

))Pr(h′ | σ ′)

= Pr(β̂ | σ )

Pr(h | σ )
.

Case 2. F j (α̃ j , β̃
j

i ) = F ′ j (α̃ j , β̃
j

i ) and β̂ �= β̂ ′.

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) = Pr
(
β̃ | F j

(
α̃ j , β̃

j
i

))
Pr

(
β̃ ′ | F ′ j

(
α̃ j , β̃

j
i

))μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)

= Pr
(
β̃ | F j

(
α̃ j , β̃

j
i

))
Pr

(
β̃ ′ | F ′ j

(
α̃ j , β̃

j
i

)) Pr(β̂ ′ | σ ′)
Pr(h′ | σ ′)

= Pr
(
β̃ | F j

(
α̃ j , β̃

j
i

))
Pr

(
β̃ ′ | F ′ j

(
α̃ j , β̃

j
i

))
Pr
(
β̃ ′ | F ′ j

(
α̃ j ,β̃

j
i

))
Pr
(
β̃ | F j

(
α̃ j ,β̃

j
i

)) Pr(β̂ | σ )

Pr(h | σ )

= Pr(β̂ | σ )

Pr(h | σ )
.
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Case 3. F j (α̃ j , β̃
j

i ) = F ′ j (α̃ j , β̃
j

i ) and β̂ = β̂ ′.

μ
(
β̂ | F j(α̃ j , β̃

j
i

)
, z̃

) = μ′(β̂ ′ | F ′ j(α̃ j , β̃
j

i

)
, z̃

)
= Pr(β̂ ′ | σ ′)

Pr(h′ | σ ′)

= Pr(β̂ | σ )

Pr(h | σ )
.

Thus, we have μ(x) = Pr(x | σ )
Pr(h | σ ) for all information sets h with Pr(h | σ ) > 0.

CLAIM 3.7. For all information sets h with Pr(h | σ ) > 0, σ is sequentially
rational at h given μ.

PROOF OF CLAIM 3.7. Suppose, by way of contradiction, that σ is not se-
quentially rational given μ. Then, there exists a strategy τi such that, for some
(F j (α̃ j , β̃

j
i ), z̃),

u j
i

(
τi , σ−i |F j α̃ j , β̃

j
i

)
, z̃, μ) > u j

i

(
σi , σ−i |F j(α̃ j , β̃

j
i

)
, z̃, μ

)
. (3)

We will construct a strategy τ ′
i for player i in �F ′ such that

u j
i

(
τ ′

i , σ
′
−i |F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′) > u j

i

(
σ ′

i , σ
′
−i |F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′),

thus contradicting the fact that σ ′ is a Nash equilibrium. The proof proceeds in four
steps.

Step 1. We first construct τ ′
i from τi . For a given F ′ j (α̃ j , β̃

j
i ), let

ϒ = {
F j(α̃ j , β̃

j
i

) | F j(α̃ j , β̃
j

i

) ⊆ F ′ j(α̃ j , β̃
j

i

)}
(4)

and let

τ
′ j
i,v

(
F ′ j(α̃ j , β̃

j
i

)
, z̃

) =
∑
ϑ∈ϒ

Pr
(
ϑ | F ′ j(α̃ j , β̃

j
i

))
τ

j
i,v (ϑ, z̃).

In other words, the strategy τ ′
i is the same as τi except in situations where only

the filtered signal history is different, in which case τ ′
i is a weighted average over

the strategies at the corresponding information sets in �F .
Step 2. We need to show that u j

i (τ ′
i , σ

′
−i | F ′ j (α̃ j , β̃

j
i ), z̃, μ′) = u j

i (τi , σ−i |
F j (α̃ j , β̃

j
i ), z̃, μ) for all histories (F j (α̃ j , β̃

j
i ), z̃). Fix (F j (α̃ j , β̃

j
i ), z̃), and assume,

without loss of generality, the equality holds for all information sets coming after
this one in �.
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Case 1. F j (α̃ j , β̃
j

i ) �= F ′ j (α̃ j , β̃
j

i ). Let z j denote the current node of G j and let
ϒ as in (4).

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′)=

∑
β̂ ′∈h′

μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

=
∑
β̂∈h

μ′(F ′ j
−i (β̂)

)
u j

i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, F ′ j

−i (β̂)
)

=
∑
β̂∈h

μ(β̂)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, F ′ j

−i (β̂)
)

=
∑
β̂∈h

μ(β̂)
∑

v∈N j (z j )
τ

′ j
i,v

(
z̃, F ′ j(α̃ j , β̃

j
i

)) ·

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, (z̃, v), F ′ j

−i (β̂)
)

=
∑
β̂∈h

μ(β̂)
∑

v∈N j (z j )

∑
ϑ∈ϒ

Pr
(
ϑ | F ′ j(α̃ j , β̃

j
i

))
τ

j
i,v (z̃, ϑ) ·

[
u j

i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, (z̃, v), F ′ j

−i (β̂)
)]

=
∑
β̂∈h

μ(β̂)
∑

v∈N j (z j )

∑
ϑ∈ϒ

Pr
(
ϑ | F ′ j(α̃ j , β̃

j
i

))
τ

j
i,v (z̃, ϑ) ·

[
u j

i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, (z̃, v), β̂

)]
=

∑
β̂∈h

μ(β̂)
∑

v∈N j (z j )

u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, (z̃, v), β̂

) ·
[∑

ϑ∈ϒ

Pr
(
ϑ | F ′ j(α̃ j , β̃

j
i

))
τ

j
i,v (z̃, ϑ)

]

=
∑
β̂∈h

μ(β̂)
∑

v∈N j (z j )
τ

j
i,v

(
z̃, F j(α̃ j , β̃

j
i

)) · u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, (z̃, v), β̂

)
=

∑
β̂∈h

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
= u j

i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

)
.

Case 2. F j (α̃ j , β̃
j

i ) = F ′ j (α̃ j , β̃
j

i ). Let h1, h2, h3, and h4 as in the proof of Case 2
of Claim 3.5. We can show

∑
β̂ ′∈h3

μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

(5)

=
∑
β̂∈h1

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
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using a procedure similar to that in Case 1. We can show the following relationship
between h2 and h4:

∑
β̂ ′∈h4

μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

=
∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂ | F j

(
α̃ j , β̃

j
i

))
Pr

(
β̂ ′ | F ′ j

(
α̃ j , β̃

j
i

)) · μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

=
∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

μ(β̂)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

=
∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

μ(β̂)
∑

v∈N j (z j )

τ
′ j
i,v

(
z̃, F ′ j(α̃ j , β̃

j
i

)) ·

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, (z̃, v), β̂ ′)

=
∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

μ(β̂)
∑

v∈N j (z j )

τ
j

i,v

(
z̃, F j(α̃ j , β̃

j
i

)) · (6)

u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, (z̃, v), β̂

)
=

∑
β̂ ′∈h4

∑
β̂∈h2
β̂⊂β̂′

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)

=
∑
β̂∈h2

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
.

Using (6) and (7):

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′)

=
∑
β̃ ′∈h′

μ′(β̃ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̃ ′)

=
∑
β̂ ′∈h3

μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

+
∑
β̂ ′∈h4

μ′(β̂ ′)u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, β̂ ′)

=
∑
β̂∈h1

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
+

∑
β̂∈h2

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
=

∑
β̂∈h

μ(β̂)u j
i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, β̂

)
= u j

i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

)
.
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FIG. 5. Example illustrating difficulty in developing a theory of equilibrium-preserving abstractions
for general extensive form games.

In both cases, we have shown:

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′) = u j

i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

)
. (7)

Step 3. We can show that

u j
i

(
σi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

) = u j
i

(
σ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′). (8)

using a procedure similar to the previous step.
Step 4. Combining (3), (7), and (8), we have:

u j
i

(
τ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′) = u j

i

(
τi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

)
> u j

i

(
σi , σ−i | F j(α̃ j , β̃

j
i

)
, z̃, μ

) = u j
i

(
σ ′

i , σ
′
−i | F ′ j(α̃ j , β̃

j
i

)
, z̃, μ′).

Thus, σ ′ is not a Nash equilibrium. Therefore, by contradiction, σ is sequentially
rational at all information sets h with Pr (h | σ ) > 0.

We can now complete the proof of Theorem 3.4. By Claims 3.5 and 3.6, we know
that condition C2 holds. By Claim 3.7, we know that condition C1 holds. Thus, σ
is a Nash equilibrium.

3.1. NONTRIVIALITY OF GENERALIZING BEYOND THIS MODEL. Our model
does not capture general sequential games of imperfect information because it
is restricted in two ways (as discussed above): (1) there is a special structure con-
necting the player actions and the chance actions (for one, the players are assumed
to observe each others’ actions, but nature’s actions might not be publicly observ-
able), and (2) there is a common ordering of signals. In this subsection we show
that removing either of these conditions can make our technique invalid.

First, we demonstrate a failure when removing the first assumption. Consider the
game in Figure 5.7 Nodes a and b are in the same information set, have the same
parent (chance) node, have isomorphic subtrees with the same payoffs, and nodes
c and d also have similar structural properties. By merging the subtrees beginning
at a and b, we get the game on the right in Figure 5. In this game, player 1’s only
Nash equilibrium strategy is to play left. But in the original game, player 1 knows
that node c will never be reached, and so should play right in that information set.

Removing the second assumption (that the utility functions are based on a com-
mon ordering of signals) can also cause failure. Consider a simple three-card game
with a deck containing two Jacks (J1 and J2) and a King (K), where player 1’s

7We thank Albert Xin Jiang for providing this example.
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utility function is based on the ordering K � J1 ∼ J2 but player 2’s utility function
is based on the ordering J2 � K � J1. It is easy to check that in the abstracted
game (where Player 1 treats J1 and J2 as being “equivalent”) the Nash equilibrium
does not correspond to a Nash equilibrium in the original game.8

4. GameShrink: An Efficient Algorithm for Computing Ordered Game Isomorphic
Abstraction Transformations

In this section we present an algorithm, GameShrink, for conducting the abstrac-
tions. The algorithm only needs to analyze the signal tree discussed above, rather
than the entire game tree.

We first present a subroutine that GameShrink uses. It is a dynamic program for
computing the ordered game isomorphic relation.9 Again, it operates on the signal
tree.

ALGORITHM 1. OrderedGameIsomorphic? (�, ϑ, ϑ ′)

(1) If ϑ and ϑ ′ are both leaves of the signal tree:

(a) If ur (ϑ | z̃) = ur (ϑ ′ | z̃) for all z̃ ∈
r−1∏
j=1

ω
j
cont × ωr

over , then return true.

(b) Otherwise, return false.
(2) Create a bipartite graph Gϑ,ϑ ′ = (V1, V2, E) with V1 = N (ϑ) and V2 = N (ϑ ′).
(3) For each v1 ∈ V1 and v2 ∈ V2:

If OrderedGameIsomorphic? (�, v1, v2)
Create edge (v1, v2)

(4) Return true if Gϑ,ϑ ′ has a perfect matching; otherwise, return false.

By evaluating this dynamic program from bottom to top, Algorithm 1 determines,
in time polynomial in the size of the signal tree, whether or not any pair of equal
depth nodes x and y are ordered game isomorphic. The test in step 1(a) can be
computed in O(1) time by consulting the � relation from the specification of
the game. Each call to OrderedGameIsomorphic? performs at most one perfect
matching computation on a bipartite graph with O(|�|) nodes and O(|�|2) edges
(recall that � is the set of signals). Using the Ford-Fulkerson algorithm [Ford,
Jr. and Fulkerson 1962] for finding a maximal matching, this takes O(|�|3) time.
Let S be the maximum number of signals possibly revealed in the game (e.g., in
Rhode Island Hold’em, S = 4 because each of the two players has one card in the
hand plus there are two cards on the table). The number of nodes, n, in the signal
tree is O(|�|S). The dynamic program visits each node in the signal tree, with
each visit requiring O(|�|2) calls to the OrderedGameIsomorphic? routine. So,
it takes O(|�|S|�|3|�|2) = O(|�|S+5) time to compute the entire ordered game
isomorphic relation.

While this is exponential in the number of revealed signals, we now show that
it is polynomial in the size of the signal tree—and thus polynomial in the size of
the game tree because the signal tree is smaller than the game tree. The number of

8We thank an anonymous person for providing this example.
9Actually, this is computing a slightly relaxed notion since it allows nodes with different parents to be
considered ordered game isomorphic. However, the GameShrink algorithm only calls it with sibling
nodes as the arguments.
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nodes in the signal tree is

n = 1 +
S∑

i−1

i∏
j−1

(|�| − j + 1)

(Each term in the summation corresponds to the number of nodes at a specific depth
of the tree.) The number of leaves is

S∏
j=1

(|�| − j + 1) =
(|�|

S

)
S!

which is a lower bound on the number of nodes.10 For large |�| we can use the
relation

(n
k

) ∼ nk

k! to get (|�|
S

)
S! ∼

( |�|S

S!

)
S! = |�|S

and thus the number of leaves in the signal tree is �(|�|S). Therefore, O(|�|S+5) =
O(n|�|5), which proves that we can indeed compute the ordered game isomorphic
relation in time polynomial in the number of nodes, n, of the signal tree.

The algorithm often runs in sublinear time (and space) in the size of the game tree
because the signal tree is significantly smaller than the game tree in most nontrivial
games. (Note that the input to the algorithm is not an explicit game tree, but a
specification of the rules, so the algorithm does not need to read in the game tree.)
In general, if an ordered game has r rounds, and each round’s stage game has at
least b nonterminal leaves, then the size of the signal tree is at most 1

br of the size of
the game tree. For example, in Rhode Island Hold’em, the game tree has 3.1 billion
nodes while the signal tree only has 6,632,705.

Given the OrderedGameIsomorphic? routine for determining ordered game iso-
morphisms in an ordered game, we are ready to present the main algorithm,
GameShrink.

ALGORITHM 2. GameShrink (�)

(1) Initialize F to be the identity filter for �.
(2) For j from 1 to r:

For each pair of sibling nodes ϑ, ϑ ′ at either level
∑ j−1

k=1

(
κk + nγ k

)
or

∑ j
k=1 κk + ∑ j−1

k=1 nγ k in
the filtered (according to F) signal tree:

If OrderedGameI somor phic?(�, ϑ, ϑ ′), then F j (ϑ) ← F j (ϑ ′) ← F j (ϑ) ∪ F j (ϑ ′).

(3) Output F.

Given as input an ordered game � = 〈I, G, L , �, κ, γ, p, �, ω, u〉, GameShrink
applies the shrinking ideas presented above as aggressively as possible. Once it
finishes, there are no contractible nodes (since it compares every pair of nodes at
each level of the signal tree), and it outputs the corresponding information filter F .
The correctness of GameShrink follows by a repeated application of Theorem 3.4.
Thus, we have the following result:

10Using the inequality
(n

k

) ≥ ( n
k )k , we get the lower bound

(|�|
S

)
S! ≥ ( |�|

S )S S! = |�|S S!
SS .
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THEOREM 4.1. GameShrink finds all ordered game isomorphisms and applies
the associated ordered game isomorphic abstraction transformations. Furthermore,
for any Nash equilibrium, σ ′, of the abstracted game, the strategy profile constructed
for the original game from σ ′ is a Nash equilibrium.

The dominating factor in the run time of GameShrink is in the r th iteration of
the main for-loop. There are at most

(|�|
S

)
S! nodes at this level, where we again take

S to be the maximum number of signals possibly revealed in the game. Thus, the
inner for-loop executes O

(((|�|
S

)
S!

)2)
times. As discussed in the next subsection, we

use a union-find data structure to represent the information filter F . Each iteration
of the inner for-loop possibly performs a union operation on the data structure;
performing M operations on a union-find data structure containing N elements
takes O(α(M, N )) amortized time per operation, where α(M, N ) is the inverse
Ackermann’s function [Ackermann 1928; Tarjan 1975] (which grows extremely
slowly). Thus, the total time for GameShrink is O

(((|�|
S

)
S!

)2
α
(((|�|

S

)
S!

)2
, |�|S

))
.

By the inequality
(n

k

) ≤ nk

k! , this is O((|�|S)2 α((|�|S)2, |�|S)). Again, although
this is exponential in S, it is Õ(n2), where n is the number of nodes in the signal
tree. Furthermore, GameShrink tends to actually run in sublinear time and space
in the size of the game tree because the signal tree is significantly smaller than the
game tree in most nontrivial games, as discussed above.

4.1. EFFICIENCY ENHANCEMENTS. We designed several speed enhancement
techniques for GameShrink, and all of them are incorporated into our implemen-
tation. One technique is the use of the union-find data structure [Cormen et al.
2001, Chap. 21] for storing the information filter F . This data structure uses time
almost linear in the number of operations [Tarjan 1975]. Initially each node in the
signalling tree is its own set (this corresponds to the identity information filter);
when two nodes are contracted they are joined into a new set. Upon termination,
the filtered signals for the abstracted game correspond exactly to the disjoint sets
in the data structure. This is an efficient method of recording contractions within
the game tree, and the memory requirements are only linear in the size of the signal
tree.

Determining whether two nodes are ordered game isomorphic requires us to
determine if a bipartite graph has a perfect matching. We can eliminate some of
these computations by using easy-to-check necessary conditions for the ordered
game isomorphic relation to hold. One such condition is to check that the nodes
have the same number of chances as being ranked (according to �) higher than,
lower than, and the same as the opponents. We can precompute these frequencies
for every game tree node. This substantially speeds up GameShrink, and we can
leverage this database across multiple runs of the algorithm (e.g., when trying
different abstraction levels; see next section). The indices for this database depend
on the private and public signals, but not the order in which they were revealed, and
thus two nodes may have the same corresponding database entry. This makes the
database significantly more compact. (For example in Texas Hold’em, the database
is reduced by a factor

(50
3

)(47
1

)(46
1

)
/
(50

5

) = 20.) We store the histograms in a 2-
dimensional database. The first dimension is indexed by the private signals, the
second by the public signals. The problem of computing the index in (either) one
of the dimensions is exactly the problem of computing a bijection between all
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subsets of size r from a set of size n and integers in [0, . . . ,
(n

r

) − 1]. We efficiently
compute this using the subsets’ colexicographical ordering [Bollobás 1986]. Let
{c1, . . . , cr }, ci ∈ {0, . . . , n − 1}, denote the r signals and assume that ci < ci+1.
We compute a unique index for this set of signals as follows:

index(c1, . . . , cr ) =
r∑

i=1

(
ci

i

)
.

5. Approximation Methods

Some games are too large to compute an exact equilibrium, even after using the
presented abstraction technique. In this section, we discuss general techniques for
computing approximately optimal strategy profiles. For a two-player game, we
can always evaluate the worst-case performance of a strategy, thus providing some
objective evaluation of the strength of the strategy. To illustrate this, suppose we
know player 2’s planned strategy for some game. We can then fix the probabilities
of player 2’s actions in the game tree as if they were chance moves. Then player
1 is faced with a single-agent decision problem, which can be solved bottom-up,
maximizing expected payoff at every node. Thus, we can objectively determine the
expected worst-case performance of player 2’s strategy. This will be most useful
when we want to evaluate how well a given strategy performs when we know that it
is not an equilibrium strategy. (A variation of this technique may also be applied in
n-person games where only one player’s strategies are held fixed.) This technique
provides ex post guarantees about the worst-case performance of a strategy, and
can be used independently of the method that is used to compute the strategies in
the first place.

5.1. STATE-SPACE APPROXIMATIONS. By slightly modifying the GameShrink
algorithm, we can obtain an algorithm that yields even smaller game trees, at the
expense of losing the equilibrium guarantees of Theorem 3.4. Instead of requiring
the payoffs at terminal nodes to match exactly, we can instead compute a penalty
that increases as the difference in utility between two nodes increases.

There are many ways in which the penalty function could be defined and im-
plemented. One possibility is to create edge weights in the bipartite graphs used
in Algorithm 1, and then instead of requiring perfect matchings in the unweighted
graph we would instead require perfect matchings with low cost (i.e., only con-
sider two nodes to be ordered game isomorphic if the corresponding bipartite graph
has a perfect matching with cost below some threshold). Thus, with this thresh-
old as a parameter, we have a knob to turn that in one extreme (threshold = 0)
yields an optimal abstraction and in the other extreme (threshold = ∞) yields a
highly abstracted game (this would in effect restrict players to ignoring all sig-
nals, but still observing actions). This knob also begets an anytime algorithm.
One can solve increasingly less abstracted versions of the game, and evaluate
the quality of the solution at every iteration using the ex post method discussed
above.

5.2. ALGORITHMIC APPROXIMATIONS. In the case of two-player zero-sum
games, the equilibrium computation can be modeled as a linear program (LP), which
can in turn be solved using the simplex method. This approach has inherent features
which we can leverage into desirable properties in the context of solving games.
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In the LP, primal solutions correspond to strategies of player 2, and dual solu-
tions correspond to strategies of player 1. There are two versions of the simplex
method: the primal simplex and the dual simplex. The primal simplex maintains
primal feasibility and proceeds by finding better and better primal solutions until
the dual solution vector is feasible, at which point optimality has been reached.
Analogously, the dual simplex maintains dual feasibility and proceeds by finding
increasingly better dual solutions until the primal solution vector is feasible. (The
dual simplex method can be thought of as running the primal simplex method on
the dual problem.) Thus, the primal and dual simplex methods serve as anytime
algorithms (for a given abstraction) for players 2 and 1, respectively. At any point
in time, they can output the best strategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the quality of
the strategies by examining the primal and dual solutions. (When using the primal
simplex method, dual solutions may be read off of the LP tableau.) Every feasible
solution of the dual yields an upper bound on the optimal value of the primal, and
vice-versa [Chvátal 1983, p. 57]. Thus, without requiring further computation, we
get lower bounds on the expected utility of each agent’s strategy against that agent’s
worst-case opponent.

One problem with the simplex method is that it is not a primal-dual algorithm,
that is, it does not maintain both primal and dual feasibility throughout its execution.
(In fact, it only obtains primal and dual feasibility at the very end of execution.)
In contrast, there are interior-point methods for linear programming that maintain
primal and dual feasibility throughout the execution. For example, many interior-
point path-following algorithms have this property [Wright 1997, Chap. 5]. We
observe that running such a linear programming method yields a method for finding
ε-equilibria (i.e., strategy profiles in which no agent can increase her expected utility
by more than ε by deviating). A threshold on ε can also be used as a termination
criterion for using the method as an anytime algorithm. Furthermore, interior-point
methods in this class have polynomial-time worst-case run time, as opposed to the
simplex algorithm, which takes exponentially many steps in the worst case.

6. Related Research

The main technique applied in this paper is that of transforming large extensive
form games into smaller extensive form games for which an equilibrium can be
computed. Then, the equilibrium strategies of the smaller game are mapped back
into the original larger game. One of the first pieces of research addressing functions
which transform extensive form games into other extensive form games, although
not for the purpose of making the game smaller, was in an early paper [Thompson
1952], which was later extended [Elmes and Reny 1994]. In these papers, several
distinct transformations, now known as Thompson-Elmes-Reny transformations,
are defined. The main result is that one game can be derived from another game by
a sequence of those transformations if and only if the games have the same pure
reduced normal form. The pure reduced normal form is the extensive form game
represented as a game in normal form where duplicates of pure strategies (i.e.,
ones with identical payoffs) are removed and players essentially select equivalence
classes of strategies [Kuhn 1950a]. An extension to this work shows a similar
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result, but for slightly different transformations and mixed reduced normal form
games [Kohlberg and Mertens 1986]. Modern treatments of this previous work on
game transformations have also been written [Perea 2001, Ch. 6; de Bruin 1999].

The notion of weak isomorphism in extensive form games [Casajus 2003] is
related to our notion of restricted game isomorphism. The motivation of that
work was to justify solution concepts by arguing that they are invariant with
respect to isomorphic transformations. Indeed, the author shows, among other
things, that many solution concepts, including Nash, perfect, subgame perfect,
and sequential equilibrium, are invariant with respect to weak isomorphisms. How-
ever, that definition requires that the games to be tested for weak isomorphism
are of the same size. Our focus is totally different: we find strategically equiva-
lent smaller games. Another difference is that their paper does not provide any
algorithms.

Abstraction techniques have been used in artificial intelligence research before.
In contrast to our work, most (but not all) research involving abstraction has been
for single-agent problems (e.g., Knoblock [1994] and Liu and Wellman [1996]).
Furthermore, the use of abstraction typically leads to sub-optimal solutions, unlike
the techniques presented in this article, which yield optimal solutions. A notable
exception is the use of abstraction to compute optimal strategies for the game of
Sprouts [Applegate et al. 1991]. However, a significant difference to our work is
that Sprouts is a game of perfect information.

One of the first pieces of research to use abstraction in multi-agent settings
was the development of partition search, which is the algorithm behind GIB, the
world’s first expert-level computer bridge player [Ginsberg 1996, 1999]. In contrast
to other game tree search algorithms which store a particular game position at
each node of the search tree, partition search stores groups of positions that are
similar. (Typically, the similarity of two game positions is computed by ignoring
the less important components of each game position and then checking whether the
abstracted positions are similar—in some domain-specific expert-defined sense—
to each other.) Partition search can lead to substantial speed improvements over
α-β-search. However, it is not game theory-based (it does not consider information
sets in the game tree), and thus does not solve for the equilibrium of a game of
imperfect information, such as poker.11 Another difference is that the abstraction is
defined by an expert human while our abstractions are determined automatically.

There has been some research on the use of abstraction for imperfect informa-
tion games. Most notably, Billings et al. [2003] describe a manually constructed
abstraction for the game of Texas Hold’em poker, and include promising results
against expert players. However, this approach has significant drawbacks. First, it
is highly specialized for Texas Hold’em. Second, a large amount of expert knowl-
edge and effort was used in constructing the abstraction. Third, the abstraction does
not preserve equilibrium: even if applied to a smaller game, it might not yield a

11Bridge is also a game of imperfect information, and partition search does not find the equilibrium for
that game either. Instead, partition search is used in conjunction with statistical sampling to simulate
the uncertainty in bridge. There are also other bridge programs that use search techniques for perfect
information games in conjunction with statistical sampling and expert-defined abstraction [Smith
et al. 1998]. Such (non-game-theoretic) techniques are unlikely to be competitive in poker because
of the greater importance of information hiding and bluffing.
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game-theoretic equilibrium. Promising ideas for abstraction in the context of gen-
eral extensive form games have been described in an extended abstract [Pfeffer
et al. 2000], but to our knowledge, have not been fully developed.

7. Conclusions and Discussion

We introduced the ordered game isomorphic abstraction transformation and gave
an algorithm, GameShrink, for abstracting the game using the isomorphism exhaus-
tively. We proved that in games with ordered signals, any Nash equilibrium in the
smaller abstracted game maps directly to a Nash equilibrium in the original game.

The complexity of GameShrink is Õ(n2), where n is the number of nodes in the
signal tree. It is no larger than the game tree, and on nontrivial games it is drastically
smaller, so GameShrink has time and space complexity sublinear in the size of the
game tree. Using GameShrink, we found a minimax equilibrium to Rhode Island
Hold’em, a poker game with 3.1 billion nodes in the game tree—over four orders
of magnitude more than in the largest poker game solved previously.

To further improve scalability, we introduced an approximation variant of
GameShrink, which can be used as an anytime algorithm by varying a parameter
that controls the coarseness of abstraction. We also discussed how (in a two-player
zero-sum game), linear programming can be used in an anytime manner to gener-
ate approximately optimal strategies of increasing quality. The method also yields
bounds on the suboptimality of the resulting strategies. We are currently work-
ing on using these techniques for full-scale 2-player limit Texas Hold’em poker, a
highly popular card game whose game tree has about 1018 nodes. That game tree
size has required us to use the approximation version of GameShrink discussed in
Section 5 [Gilpin and Sandholm 2006]. More recently we have also applied other
lossy abstraction techniques [Gilpin and Sandholm 2007; Gilpin et al. 2007b] and
custom equilibrium-finding algorithms [Gilpin et al. 2007a] to that problem. These
techniques have yielded highly competitive software programs for that game.

While our main motivation was games of private information, our abstraction
method can also be used in games where there is no private information. The method
can be helpful even if all signals that are revealed during the game are public (such
as public cards drawn from a deck, or throws of dice). However, in such games,
expectiminimax search [Michie 1966] (possibly supplemented with α-β-pruning)
can be used to solve the game in linear time in n. In contrast, solving games with
private information takes significantly longer: the time to solve an O(n) × O(n)
linear program in the two-person zero-sum setting, and longer in more general
games. Therefore, our abstraction method will pay off as a preprocessor in games
with no private information only if the signal tree of the game is significantly smaller
than the game tree.

Furthermore, while our method applies our isomorphism-based abstraction—
which abstracts away the unnecessary aspects of the signals—exhaustively, there
exist “abstractions” that our method does not capture, such as transpositions (that is,
different sequences of the same moves leading to equivalent positions, as in tic-tac-
toe, checkers, chess, and Go) and symmetries (e.g., rotating the pieces by 90 degrees
on a Go board or in a chess endgame with no pawns). To address this, one could
use our method first, and then use classic techniques—such as transposition tables
and mapping symmetries to a canonical orientation—for dealing with such, more
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traditional, “abstraction” opportunities. While we do not know of any popular games
that have both types of abstraction opportunities, we can construct such games to
prove existence. For example, consider playing a game of tic-tac-toe to determine
who goes first in a poker game that follows (a tie in the tic-tac-toe game could be
broken, for example, in favor of player 1).

Appendix

A. Extensive Form Games and Perfect Recall

Our model of an extensive form game is defined as usual.

Definition A.1. An n-person game in extensive form is a tuple � = (I, V, E ,
P, H, A, u, p) satisfying the following conditions:

(1) I = {0, 1, . . . , n} is a finite set of players. By convention, player 0 is the chance
player.

(2) The pair (V, E) is a finite directed tree with nodes V and edges E . Z denotes
the leaves of the tree, called terminal nodes. V \ Z are decision nodes. N (x)
denotes x’s children and N ∗(x) denotes x’s descendants.

(3) P : V \ Z → I determines which player moves at each decision node. P
induces a partition of V \ Z and we define Pi = {x ∈ V \ Z | P(x) = i}.

(4) H = {H0, . . . , Hn} where each Hi is a partition of Pi . For each of player i’s
information sets h ∈ Hi and for x, y ∈ h, we have |N (x)| = |N (y)|. We denote
the information set of a node x as h(x) and the player who controls h is i(h).

(5) A = {A0, . . . , An}, Ai : Hi → 2E where for each h ∈ Hi , Ai (h) is a partition
of the set of edges {(x, y) ∈ E | x ∈ h} leaving the information set h such that
the cardinalities of the sets in Ai (h) are the same and the edges are disjoint.
Each a ∈ Ai (h) is called an action at h.

(6) u : Z → IRN is the payoff function. For x ∈ Z , ui (x) is the payoff to player i
in the event that the game ends at node x .

(7) p : H0 × {a ∈ A0(h) | h ∈ H0} → [0, 1] where∑
a∈A0(h)

p(h, a) = 1

for all h ∈ H0 is the transition probability for chance nodes.

In this article, we restrict our attention to games with perfect recall (formally
defined in Kuhn [1953]), which means that players never forget information.

Definition A.2. An n-person game in extensive form satisfies perfect recall if
the following two constraints hold:

(1) Every path in (V, E) intersects h at most once.
(2) If v and w are nodes in the same information set and there is a node u that

preceeds v and P(u) = P(v), then there must be some node x that is in the
same information set as u and preceeds v and the paths taken from u to v is the
same as from x to w .

A straightforward representation for strategies in extensive form games is the
behavior strategy representation. This is without loss of generality since Kuhn’s
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theorem [Kuhn 1953] states that for any mixed strategy there is a payoff-equivalent
behavioral strategy in games with perfect recall. For each information set h ∈ Hi ,
a behavior strategy is σi (h) ∈ 
(Ai (h)) where 
(Ai (h)) is the set of all probability
distributions over actions available at information set h. A group of strategies
σ = (σ1, . . . , σn) consisting of strategies for each player is a strategy profile.
We sometimes write

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn)

and

(σ ′
i , σ−i ) = (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn).
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