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ABSTRACT
Combinatorial markets where bids can be submitted on bun-
dles of items can be economically desirable coordination
mechanisms in multiagent systems where the items exhibit
complementarity and substitutability. There has been a
surge of research on winner determination in combinatorial
auctions. In this paper we study a wider range of combi-
natorial market designs: auctions, reverse auctions, and ex-
changes, with one or multiple units of each item, with and
without free disposal. We first theoretically characterize the
complexity of finding a feasible, approximate, or optimal so-
lution. Reverse auctions with free disposal can be approxi-
mated (even in the multi-unit case), although auctions can-
not. When XOR-constraints between bids are allowed (to
express substitutability), the hardness turns the other way
around: even finding a feasible solution for a reverse auction
or exchanges is NP-complete, while in auctions that is triv-
ial. Finally, in all of the cases without free disposal, even
finding a feasible solution is NP-complete.

We then ran experiments on known benchmarks as well
as ones which we introduced, to study the complexity of
the market variants in practice. Cases with free disposal
tended to be easier than ones without. On many distribu-
tions, reverse auctions with free disposal were easier than
auctions with free disposal—as the approximability would
suggest—but interestingly, on one of the most realistic dis-
tributions they were harder. Single-unit exchanges were
easy, but multi-unit exchanges were extremely hard.

Categories and Subject Descriptors
I.2 [Computing methodologies]: Artificial intelligence;
I.2.11 [Artificial intelligence]: Distributed artificial in-
telligence—Multiagent systems,Coherence and coordination;
I.2.8 [Computing methodologies]: Artificial intelligence—
Problem solving, control methods, search ; F.2 [Theory of
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computation]: Analysis of algorithms and problem com-
plexity; J.4 [Computer applications]: Social and behav-
ioral sciences—Economics

1. INTRODUCTION
Combinatorial markets can be used to reach economically

efficient allocations of goods, services, tasks, resources, etc.,
in multiagent systems even when the agents’ valuations for
bundles of items are not additive. Some items can be com-
plementary, and others can be substitutes.

While combinatorial markets have major economic advan-
tages, they can be computationally complex to clear. There
has been a recent surge of interest in developing combina-
torial clearing algorithms [14, 16, 3, 10, 17, 1, 8, 2, 13, 19].
However, the bulk of this work has focused on single-unit
combinatorial auctions with free disposal, with some work
on multi-unit combinatorial auctions with free disposal [15,
17, 12, 5]. Certain other generalizations have also been dis-
cussed, but their complexity has not been analyzed theoret-
ically or experimentally [15, 17].

In this paper we study the complexity of the other main
variants of combinatorial markets. We study auctions, re-
verse auctions, and exchanges. In each setting we study the
single-unit as well as the multi-unit case. We analyze each
of these variations with and without free disposal.1 This
leads to 3 × 2 × 2 = 12 important settings, of which only
2 have received significant attention so far. We also study
the theoretical impacts of XOR-constraints among bids, in
terms of complexity of finding a feasible, approximate, or
optimal solution.

We first define the different market types. For each market
type, we theoretically determine the complexity of finding a
feasible, approximate, or optimal solution. We then compare
the types experimentally.

2. CLASSES OF COMBINATORIAL
MARKETS

In this section we introduce different combinatorial mar-
ket types, and discuss the complexity of winner determina-
tion from a theoretical perspective.

1We use a strong version of the no free disposal case. If there
is no free disposal, the sellers have to sell everything and the
buyers cannot accept anything extra beyond what they bid
on. In the future, we plan to also study the case where
disposal is neither free nor impossible, but rather between
these two ends of the spectrum. For example, disposal could
have a predetermined cost.



2.1 Single-Unit Auctions
The most basic combinatorial auction, and the type that

has received most of the attention in previous work [16, 3,
17], is a single-unit combinatorial auction with free disposal.

Definition 1. The auctioneer has a set of items, M =
{1, 2, . . . , m}, to sell, and the buyers submit a set of bids,
B = {B1, B2, . . . , Bn}. A bid is a tuple Bj = 〈Sj , pj〉, where
Sj ⊆ M is a set of items and pj ≥ 0 is a price. The bi-
nary combinatorial auction winner determination problem
(BCAWDP) is to label the bids as winning or losing so as to
maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bidder:

max

nX

j=1

pjxj s.t.
X

j|i∈Sj

xj ≤ 1, i = 1, 2, . . . , m

xj ∈ {0, 1}
If there is no free disposal (auctioneer is not willing to keep
any of the items, and bidders are not willing to take extra
items), an equality is used in place of the inequality.

By now it is well known that (the decision version of)
BCAWDP with free disposal (even with integer prices) is
NP-complete [14]. It cannot even be approximated to a
ratio of n1−ε in polytime (unless P = ZPP) — as shown
in [16] via an approximation-preserving reduction from MAX
CLIQUE which is inapproximable [6]. However, finding a
feasible solution is trivial (if there is free disposal): any bid
alone constitutes a feasible solution. Another trivial feasible
solution is that where no bids are accepted.

2.2 Multi-Unit Auctions
When there are multiple indistinguishable goods for sale,

it is usually desirable (from a bid compactness and winner
determination complexity perspective) to represent these
goods as multiple units of a single item, rather than as mul-
tiple items. Different items can have multiple units each,
where units of one item are indistinguishable but units of
different items are distinguishable. This representation al-
lows a bidder to place a single bid requesting the amount
of each item that he wants, instead of placing separate bids
on the potentially enormous number of combinations that
would amount to those numbers of units of those items. An
auction that allows this type of bidding is called a multi-unit
combinatorial auction. They have been used, for example,
in the eMediator ecommerce server prototype [15], and re-
cent research has studied winner determination in this con-
text [17, 12, 5]. Multi-unit auctions have many potential
real-world applications including bandwidth allocation and
electric power markets. The winner determination problem
for multi-unit auctions follows.

Definition 2. The auctioneer has a set of items, M =
{1, 2, . . . , m}, to sell. The auctioneer has some number of
units of each item available: U = {u1, u2, . . . , um}, ui ∈ <+.
The buyers submit a set of bids, B = {B1, B2, . . . , Bn}. A
bid is a tuple Bj = 〈(λ1

j , λ
2
j , . . . , λm

j ), pj〉, where λk
j ≥ 0

is the number of units of item k that the bid requests, and
pj ≥ 0 is the price. The binary multi-unit combinatorial
auction winner determination problem (BMUCAWDP) is
to label the bids as winning or losing so as to maximize the
auctioneer’s revenue under the constraint that each unit of

an item can be allocated to at most one bidder:

max
nX

j=1

pjxj s.t.
nX

j=1

λi
jxj ≤ ui, i = 1, 2, . . . , m

xj ∈ {0, 1}
If there is no free disposal (auctioneer is not willing to keep
any units, and bidders are not willing to take extra units),
an equality is used in place of the inequality.

Proposition 2.1. Consider BMUCAWDP with free dis-
posal. The decision problem is NP-complete. The opti-
mization problem cannot be approximated to a ratio n1−ε in
polynomial time unless P = ZPP. Both claims hold even
with integer prices and integer units.

Proof. Immediate from the NP-completeness and in-
approximability of BCAWDP since that is a special case
(ui = 1 for all i ∈ {1, 2, . . . , m}).

Again, finding a feasible solution is trivial: even any bid
alone would constitute a feasible solution.

2.3 Reverse Auctions
In many market scenarios, for example in procurement,

there is a buyer who wants to obtain some goods at the
lowest possible cost, and a set of sellers who can provide
the goods. The buyer can hold a reverse auction to try
to obtain the goods. Again, if there is complementarity or
substitutability between the goods, a combinatorial reverse
auction can be beneficial. Each seller submits “asks” that
say how much the seller asks for each bundle of goods she
can provide. A single-unit combinatorial reverse auction is
a special case of a multi-unit combinatorial reverse auction,
so we only present the latter formally.

Definition 3. The auctioneer (buyer) has a set of items,
M = {1, 2, . . . , m} that she wishes to obtain. She specifies
how many units of each item she wants: U = {u1, u2, . . . , um},
ui ∈ <+. The sellers submit a set of asks, A = {A1, A2, . . . ,
An}. An ask is a tuple Aj = 〈(λ1

j , λ
2
j , . . . , λm

j ), pj〉, where

λk
j ≥ 0 is the number of units of item k offered by the ask.

The ask price is pj ≥ 0. The binary multi-unit combinato-
rial reverse auction winner determination problem (BMU-
CRAWDP) is to label the asks as winning or losing so as
to minimize the auctioneer’s cost under the constraint that
the auctioneer receives all of the units of items that she is
asking:

min

nX

j=1

pjxj s.t.

nX

j=1

λi
jxj ≥ ui, i = 1, 2, . . . , m

xj ∈ {0, 1}
If there is no free disposal (sellers are not willing to keep
any units of their winning asks, and the buyer is not will-
ing to take extra units), an equality is used in place of the
inequality.

Proposition 2.2. With free disposal, (the decision ver-
sion of) BMUCRAWDP is NP-complete both in the single-
unit and the multi-unit case. This holds even for integer
prices and integer units.



Proof. The decision version of BMUCRAWDP (even
in the multi-unit case) is in NP because the solution can
easily be checked in polynomial time. To prove the theo-
rem, we then only need to show that the single-unit case
is NP-hard. We observe that the single-unit case is ex-
actly the same problem as WEIGHTED SET COVERING.2

Since WEIGHTED SET COVERING is NP-complete, the
single-unit combinatorial reverse auction is NP-complete as
well.

Interestingly, while winner determination is inapproximable
in a combinatorial auction (even in the single-unit case), in
a combinatorial reverse auction the winners can be approx-
imated quite well (even in the multi-unit case)! We present
a greedy approximation algorithm for multi-unit combina-
torial reverse auctions.3 As before, let there be m items to
be bought. Let ui be the number of units of item i to be
purchased. Let size(Aj) be the total number of units in ask
Aj , that is, size(Aj) =

Pm
i=1 λi

j .
In the algorithm, Fi is the number of units remaining to be

covered for item i. Similarly, rsize(Aj) is the total number of
units in ask Aj , not counting units that are already covered.
That is, rsize(Aj) =

Pm
i=1 min{λi

j , Fi}.

Algorithm 2.1.

ACCEPTED = ∅
For all i, Fi = ui

For all j, rsize(Aj) = size(Aj)

While some Fi > 0

If every ask is in ACCEPTED, return INFEASIBLE

j∗ ← minj|Aj 6∈ACCEPTED
pj

rsize(Aj)

Add Aj∗ to ACCEPTED

For all i, Fi ← Fi − λi
j∗

For all j, rsize(Aj)←Pm
i=1 min{λi

j∗ , Fi}
Return ACCEPTED, that is, the set of accepted asks

Proposition 2.3. If a solution exists, Algorithm 2.1 finds
a solution that is within a factor (1+ln N) of optimal, where
N is the total number of units being bought in the reverse
auction.4 Otherwise the algorithm returns INFEASIBLE.

In order to prove the claim, we use the following auxiliary
fact. When the algorithm picks ask Aj , define γ =

pj

rsize(Aj)
.

Assign w(e) = γ for each unit e newly covered by Aj . Note

2This is a different problem than WEIGHTED SET PACK-
ING, which is analogous to BCAWDP with free disposal.
3The special case of this algorithm for single-unit combi-
natorial reverse auctions is the same as the classic greedy
algorithm for WEIGHTED SET COVERING. It is known
that it achieves a (1+lnm′)-approximation for the problem,
where m′ is the largest number of items that any one ask
contains [7].
4With a more complex analysis of the same algorithm, we
can tighten the approximation guarantee to (1+lnN ′) where
N ′ is the largest number of units that any one ask contains.
We omit that complex proof due to limited space. Fur-
thermore, an O(ln m) approximation ratio can be achieved
(using scaling and reduction [20]), where m is the number
of items in the auction.

that the total sum of these weights assigned when Aj is
picked is pj , because Aj covered rsize(Aj) new units.

Number the units in the order they are covered by our al-
gorithm, breaking ties arbitrarily. Let this order be e1, e2, . . . ,
eN .

Lemma 2.4. w(ek) ≤ OPT
(N−k+1)

, where OPT is the total

cost of the optimal cover.

Proof. Suppose ek was first covered when ask Aj was
picked. At this point, the number of remaining (uncovered)
units is at least N − k + 1. Now, consider any optimal
solution. Since that solution can obviously cover all these
N −k +1 units at cost OPT , there must be at least one ask
whose average cost of covering is at most OPT

(N−k+1)
. Since

our greedy algorithm chooses the set that covers most cost-
effectively, we must have that γ =

pj

rsize(Aj)
≤ OPT

(N−k+1)
.

Since the weight assigned to ek is γ, the claim follows.

Proof. (of Proposition 2.3). Let Aj1 , Aj2 , . . . , Ajq be
the asks picked by Algorithm 2.1. The cost of this solution
is
P

r pjr . Because pjr is evenly distributed among the units
that are newly covered by Ajr , we also have that

P
r pjr =PN

j=1 w(ej). Using the previous lemma, we get:

NX

j=1

w(ej) ≤ OPT · (1 + 1/2 + 1/3 + ... + 1/N)

≤ OPT ·HN ,

where HN is the harmonic number. Finally, the claim fol-
lows from the fact that HN ≤ 1 + lnN .

With free disposal, finding a feasible solution (if one ex-
ists) to a combinatorial reverse auction is trivial, even in the
multi-unit case. For example, one can simply accept all the
asks. If this solution is not feasible, then no other solution
is either.

2.4 Exchanges
In markets with many buyers and many sellers, exchanges

are a natural choice for a market mechanism. In a combi-
natorial exchange [15, 17], the trades that the market de-
termines to occur can involve multiple buyers and multiple
sellers each. Unlike auctions and reverse auctions, there is
no auctioneer in a combinatorial exchange. Rather the par-
ticipants in the exchange are allowed to both buy and sell
items, or just buy or just sell. Both auctions and reverse
auctions are special cases of exchanges. Also, the single-
unit exchange is a special case of the multi-unit exchange
(where each demand λk

j ∈ {−1, 0, 1}) so we only present the
multi-unit exchange formally.

Definition 4. The administrator of an exchange deter-
mines which items will be available in the exchange, M =
{1, 2, . . . , m}. Only these items may be included in the bids
and asks in the exchange. A bid 5 in this setting is Bj =
〈(λ1

j , λ
2
j , . . . λ

m
j ), pj〉, where λk

j ∈ < is the requested num-
ber of units of item k, and pj ∈ < is the price. A positive

5We will often simply refer to “bids” rather than “bids” and
“asks” when the distinction between the two is unnecessary.



λk
j represents buying and a negative λk

j means selling. A
positive pj represents bidding while a negative pj means ask-
ing. The binary multi-unit combinatorial exchange winner
determination problem (BMUCEWDP) is to label the bids
as winning or losing so as to maximize surplus under the
constraint that demand does not exceed supply:

max
nX

j=1

pjxj s.t.
nX

j=1

λi
jxj ≤ 0 i = 1, 2, . . . , m

If there is no free disposal (buyers are not willing to take
extra units, and sellers are not willing to keep any units
of their winning bids), an equality is used in place of the
inequality.

Proposition 2.5. Consider BMUCEWDP with free dis-
posal (in the single- or multi-unit case). The decision prob-
lem is NP-complete. The optimization problem cannot be
approximated to a ratio n1−ε in polynomial time unless P =
ZPP. Both claims hold even with integer prices and integer
units.

Proof. Immediate from the NP-completeness and inap-
proximability of BCAWDP since that is a special case.

2.5 XOR-Constraints
Basic combinatorial auctions allow bidders to express com-

plementarity between items (value of a bundle being greater
than the values of its parts). However, consider a bidder
that has submitted a bid of $4 for {1}, a bid $5 for {2},
and a bid $7 for {1,2}. Now the auctioneer could allocate 1
and 2 to the bidder for $9. So, the basic bidding language
does not allow the bidder to express substitutability (value
of a bundle being less than the sum of its parts). Full ex-
pressivity of the bidding language is obtainable by allowing
XOR-constraints between bids [16, 3, 15, 13].

XOR-constraints can also be used in combinatorial reverse
auctions and combinatorial exchanges to achieve full expres-
siveness, but they have interesting implications on the com-
plexity of winner determination.

Remark: In our model, a bidder6 can insert XOR-constraints
between any pairs of his bids he wants, but does not have
to insert XOR-constraints between all pairs of his bids.

In combinatorial auctions, XOR-constraints do not change
the theoretical complexity of clearing. This is understand-
able since the winner determination problem with XOR-
constraints can be encoded in polynomial time and space
into a winner determination problem without XOR-constraints
(simply add a dummy item for each XOR-constraint, and
have the bids that are XOR’ed include that dummy item).
So, it is trivial to find a feasible solution (accept no bids),
hard to find an approximation better than n1−ε, and NP-
complete to solve the problem optimally.

Interestingly, although basic combinatorial reverse auc-
tions are approximable as we showed above, even finding a
feasible solution is NP-complete in a combinatorial reverse
auctions with XOR-constraints. Put in another way, without

6The auctioneer could also insert XOR-constraints. From
the perspective of winner determination, it does not matter
where the constraints come from.

XOR-constraints, combinatorial reverse auctions are eas-
ier to clear than combinatorial auctions, but with XOR-
constraints, combinatorial reverse auctions are harder to clear
than combinatorial auctions! Note that with XOR-constraints,
even single-unit combinatorial reverse auctions are harder to
clear than multi-unit combinatorial auctions.

Theorem 2.6. Finding a feasible solution in a combina-
torial reverse auctions with XOR-constraints is NP-complete
(even in the single-unit case, even with integer prices).

Proof. Clearly this problem is in NP because feasibil-
ity of a given solution can easily be checked in polynomial
time. So, the beef is to prove that it is NP-hard. We
show this using a reduction from EXACT COVER BY 3-
SETS problem [4], which is NP-complete. In that problem,
there is a ground set, and a set of subsets of the ground
set, where each subset includes 3 items from the ground set.
The question is whether all the items of the ground set can
be covered by non-overlapping subsets. Given an instance
of EXACT COVER BY 3-SETS, we construct an instance
of a combinatorial reverse auctions with XOR-constraints as
follows. For every one of the subsets given in the EXACT
COVER BY 3-SETS we construct a bid that includes the
corresponding 3 items. If two subsets share items, we insert
an XOR-constraint between them. Now, the reverse auction
instance has a feasible solution if and only if the instance of
EXACT COVER BY 3-SETS has a solution.

Since combinatorial exchanges encompass combinatorial
reverse auctions as a special case, finding a feasible solu-
tion in a combinatorial exchange with XOR-constraints is
NP-complete. Since finding a feasible solution in combina-
torial reverse auctions and exchanges with XOR-constraints
is NP-complete, it follows immediately that finding any ap-
proximation to those problems is NP-complete.

Combinatorial auctions, reverse auctions and exchanges
are optimally clearable in polynomial time using linear pro-
gramming, if bids can be accepted partially. However, a re-
cent paper shows that XOR-constraints make the clearing
problem NP-complete even in that case [9]. The implica-
tions of other side constraints on market clearing complexity
have also recently been studied [18].

2.6 Lack of Free Disposal
Free disposal refers to the property that each party prefers

(possibly not strictly) more to less. In other words, for each
item, there is at least one party in the market who can dis-
pose of any number of units of that item for free. Each win-
ner determination problem discussed so far can be changed
to reflect the case where items do not exhibit free disposal by
simply changing the inequalities in the integer programming
formulations to equalities. Despite the apparent similarities
in the integer programming formulations for markets with
and without free disposal, the problems are quite different.

In general, an auction cannot be formulated as a reverse
auction (e.g., by simply changing signs) with the expectation
that the solution for the reverse auction will be the same as
for the auction. This is because in the reverse auction we
are looking for lower priced bids, while in the auction we are
looking for higher priced bids. The winning bid sets differ
even if prices were negated. In the case of no free disposal
(even without negating prices), the set of feasible solutions in



an auction is the same set as in a reverse auction, but the set
of optimal solutions is generally different. As we will show
in the experiments, the time required to solve auctions and
reverse auctions without free disposal can be very different.

We now characterize the complexity of the winner deter-
mination problem without free disposal.

Theorem 2.7. Consider the winner determination prob-
lem in a combinatorial auction (single-unit or multi-unit),
combinatorial reverse auction (single-unit or multi-unit), or
a combinatorial exchange (single-unit or multi-unit). With-
out free disposal, even finding a feasible solution is NP-
complete (even with integer prices and integer units).

Proof. Clearly these problems are in NP because fea-
sibility can easily be checked in polynomial time. So, the
beef is to prove that they are NP-hard. We do this by
showing that the following special case is already NP-hard.
Let every bid have exactly three items, and price 1. Let
the number of items be a multiple of 3. Now, if we had
a polynomial time algorithm to find a feasible solution for
this problem, we could use that algorithm directly to solve
the EXACT COVER BY 3-SETS problem [4], which is NP-
complete.

Now, let us go through an example to see how likely it is
that a randomly chosen problem instance is feasible. Con-
sider an auction (or a reverse auction) where each bid is
randomly assigned σ items without replacement (and no
duplicate bids are allowed). Modulo pricing, there are

�
m
σ

�

possible bids. Thus there are
�(m

σ )
n

�
problem instances. Now

let us compute the number of feasible instances. In a fea-
sible solution, each item is allocated to one bid. Consider
a set of winning bids, in some particular order. The first
bid’s first item could be any of m items, the second item
could be any one of the remaining m−1, etc. The first bid’s
last item could be any one of m − σ + 1. The second bid’s
first item could be any one of the remaining m− σ, etc. So,
together there are m! feasible instances. (Note that this is
independent of n and σ.) So, the fraction of instances that

are feasible is m!/
�(m

σ )
n

�
.

Corollary 2.1. Without free disposal, the winner de-
termination problem in a combinatorial auction (single-unit
or multi-unit), combinatorial reverse auction (single-unit or
multi-unit), or a combinatorial exchange (single-unit or multi-
unit) cannot even be approximated in polynomial time (un-
less P = NP), even with integer prices and integer units.

Proof. Immediate from Theorem 2.7

In the rest of the paper we present experiments to see how
hard these variants of the winner determination problem are
in practice.

3. EXPERIMENTS
We designed the experiments so that each one would help

illustrate the computational differences between a feature
of an auction or exchange. We compared auctions and re-
verse auctions to see whether the fundamental difference in
approximability shows up in practice. We compared free
disposal and no free disposal. We also showed the hardness

of exchanges. In our experiments, the units are integers, but
the prices are reals.

All of the tests were run on a Pentium III 933 MHz pro-
cessor, with 512 MB RAM. The test machine was running
Linux 2.2. The algorithm that was used to solve the prob-
lems was CPLEX 7.0, a general-purpose mixed integer pro-
gramming package.7 CPLEX has recently been used to
benchmark winner determination in the context of combina-
torial auctions [1]. CPLEX uses a variant of A* search as its
search algorithm (other search strategies are also available
in CPLEX, but the default strategy turned out to be faster
than any of the other variants that we experimented with).
At every search node, a linear programming (LP) relaxation
of the remaining subproblem is used to construct a heuristic
upper bound. If the LP happens to return an integer solu-
tion, that is the optimal solution to that subproblem, so the
subtree rooted at that node need not be searched. Quite
frequently this occurs already at the root, in which case no
search is conducted [19].

In all of our experiments, for any given parameter set-
ting, it took CPLEX significantly longer to find an optimal
solution than it took to prove infeasibility. In the cases
with free disposal, the problem was never infeasible (infea-
sibility could only happen if in a reverse auction there are
not enough units of some item in all of the bids combined).
In the cases without free disposal, the constraints are all
equalities, and CPLEX is quite effective at using them alge-
braically to reduce search. On distributions where CPLEX
tended to find an integer solution with LP directly (and
search was therefore not needed), CPLEX also was able
to prove infeasibility without search. On the other hand,
on distributions where CPLEX conducted search to find an
optimal solution, it tended to also require search to prove
infeasibility. To keep the times comparable, in all of the
experiments, we only report execution times for feasible in-
stances.

We ran experiments on several benchmark distributions.
All of the values reported in the graphs are means over 50
instances.

3.1 Single-Unit Auctions and Reverse Auctions
We used the following common benchmark distributions

for single-unit auctions [16]:

• Random: For each bid, pick the number of items ran-
domly from 1, 2, ..., m. Randomly choose that many
items without replacement. Pick the price randomly
from [0, 1].

• Weighted random: As above, but pick the price be-
tween 0 and the number of items in the bid.

• Uniform: Draw the same number of randomly chosen
items for each bid. Pick the prices from [0, 1].

• Decay: Give the bid one random item. Then repeat-
edly add a new random item with probability α until
an item is not added or the bid includes all m items.
Pick the price between 0 and the number of items in

7Recently ILOG released CPLEX version 7.1. To make sure
that the problems that we claimed to be hard are hard for
the newest version also, we reran all the hard cases (multi-
unit exchanges), and some of the easy cases, using CPLEX
7.1. Figure 3 top left, Figure 7, and Figure 8 are for CPLEX
7.1.



the bid. In the tests we used α = .75 since the graphs
in [16] show that this setting leads to the hardest (at
least for their algorithm) instances on average.

Previously these distributions have only been used for
single-unit auctions with free disposal. We use these distri-
butions to benchmark reverse auctions as well. When using
the uniform distribution with no free disposal, we show ex-
periments where the bid size is a factor of the total number
of items—otherwise there is no feasible solution.

It is clear from Figure 1 that there is a complexity differ-
ence between auctions with and without free disposal. In
fact, CPLEX takes two orders of magnitude longer to solve
no free disposal auctions and reverse auctions on the ran-
dom distribution. Although the difference is less dramatic
on the weighted random distribution, it is still present.
On both random and weighted random, reverse auction
with free disposal rarely require search, and if they do, only
a few nodes. Auctions with free disposal require search a
bit more often, and use a somewhat larger number of nodes
when search does occur. In free disposal settings, auctions
and reverse auctions lead to search almost every time, and
the search trees are large.
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Figure 1: Run times on the random and weighted ran-
dom distributions.

Another interesting thing to note is that auctions without
free disposal almost consistently take longer to solve than
reverse auctions without free disposal for these two distri-
butions. The easiest market type to solve was the reverse
auction with free disposal. This is not surprising in light of
its approximability.

In Figure 2 we again see the clear difference in execution
time with and without free disposal. What is surprising
here is that in the decay distribution, reverse auctions take
much longer than standard auctions, even in the case with
free disposal. This is the exact opposite of what we saw
in Figure 1 and what we see on the uniform distribution.
That shows that the theoretical approximability does not
always translate to shorter solution times when going for an
optimal solution.
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Figure 2: Run times on the decay and uniform distribu-
tions.

On the uniform distribution, for auctions and reverse
auctions with no free disposal, there are no instances repre-
sented for bid size 15. That is because all of those instances
were infeasible.

3.2 Multi-Unit Auctions and Reverse Auctions
We ran multi-unit auction experiments on two distribu-

tions. We used the same distributions for reverse auctions
(by negating the prices of the bids)—a setting on which we
have not seen any benchmark results before.

• Decay-decay: First assign the number of units for
each item i: let item i have 1 unit. Repeatedly add
another unit with probability α0. Then, give the bid
one random item. Then repeatedly add a new random
item (without repetition) with probability α1. Finally,
for each item i in the bid, give that item quantity 1,
then repeatedly add 1 to the quantity with probability
α2. If the quantity is greater than ui, then set the
quantity equal to ui. The price is computed by taking
a random number between and 0 and 1 and multiplying
by the total number of units in the bid. (A similar
distribution appeared in [12].) We used α0 = .99, and
varied α1 and α2.

• CATS multipaths: This distribution models what
might happen in an auction such as network band-
width allocation [11]. As far as we know there have
not been any performance results published for this
distribution.

Figure 3 shows that optimal clearing scales well on multi-
unit auctions and reverse auctions on the decay-decay dis-
tribution. In each of the graphs we see that reverse auctions
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Figure 3: Top left: scaling of optimal clearing on the
decay-decay distribution. We used α1 = α2 = 0.8 (this
is the hardest setting according to our experiments). Other
figures: run-time of optimal clearing on the decay-decay
distribution with varying α1 ∈ {.4, .6, .8}.

with free disposal are routinely solved the fastest. Reverse
auctions without free disposal are the slowest. In auctions,
free disposal is only slightly faster than no free disposal. Be-
fore we ran these experiments we thought that auctions and
reverse auctions without free disposal would have very simi-
lar run times since the set of feasible solutions is identical in



these problems (the optimal solution is generally a different
solution within that set). We conjecture that a specialized
algorithm could mitigate the difference between the two. In
any case, all of these instances were easy. For example at
α1 = .6, α2 = .9, the LP solver of CPLEX returned integer
solutions up front (and therefore, no search was needed) on
74% of the reverse auctions with free disposal, on 52% of the
auctions with free disposal, on 50% of the auctions without
free disposal, and on 22% of the reverse auctions without
free disposal.

Without free disposal (and in reverse auctions even with
free disposal), the instances from CATS multipaths were
almost all infeasible. On auctions with free disposal, Fig-
ure 4 shows that CPLEX’s execution time grows rapidly
with the number of bids. We observed that with as few as
2,000 bids, the main memory of our test machine could get
exhausted, resulting in very poor performance due to pag-
ing. Clearly there is room for improvement in scalability on
this distribution.
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Figure 4: Run times on multi-unit combinatorial auctions
with free disposal from the CATS multipaths distribution.

3.3 Single- and Multi-Unit Exchanges
We have not seen any benchmarks on combinatorial ex-

changes before. Therefore, we introduce a new benchmark
distribution which is similar to the decay-decay distribu-
tion for multi-unit auctions.

• Exchange decay-decay: For each bid, assign it one
item. Repeatedly add an additional item with proba-
bility α1. For each item i in the bid, assign one initial
unit and repeatedly add an additional unit of that item
with probability α2. With probability .5, negate the
quantity of the item to indicate selling the item. The
price is a random number between 0 and 1, multiplied
by the net number of units in the bid (which is nega-
tive as often as it is positive). This distribution yields
a single-unit exchange when α2 = 0.

Figure 5 (left) shows that free disposal makes almost no
difference in single-unit exchanges (for any value of α1). The
graph on the right shows that CPLEX scales very well on
single-unit exchanges.
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Figure 5: Run times on the exchange decay-decay dis-
tribution with single-unit items.

However, CPLEX scales extremely poorly on multi-unit
exchanges. Even with just 10 items and 100 bids, it takes
a long time. As the number of bids increases further, the
run time increases extremely rapidly. CPLEX quickly be-
comes unusable for the harder parameter settings in the dis-
tribution (the hardest setting is α1 = α2 = .8). Figure 6
shows that the complexity increases drastically in both α1

and α2, i.e., when each bid specifies supply and demand on
a large number of items and units. Both with and without
free disposal, the run time increases super-exponentially in
those parameters. The parameter α1 is especially critical,
as shown by the run time difference between Figure 6 Left
and Figure 6 Right.
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Figure 6: Run times on the exchange decay-decay dis-
tribution with multi-unit items.

As Figure 7 shows, optimal clearing scales extremely poorly
on exchanges. As the number of bids increases further, the
run time increases extremely rapidly. Even with only 12
items and 120 bids, winner determination takes a long time,
even with free disposal.
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Figure 7: Using CPLEX, optimal clearing of exchanges
scales very poorly. We used a bids to items ratio of 10,
and the values of the constants in the bid generation were
α1 = α2 = 0.8. Left: each bid can buy some items while
selling other items as the bid generation method, described
above, does. Right: each bid either sells items or buys items,
but does not do both. In both settings, exchanges with free
disposal were easier to clear, but scaling was very poor even
in that case.

The clearing algorithms also keep track of the best so-
lution found so far. This means that they implement the
anytime property: the solution improves over time. In com-
binatorial auctions, the anytime property tends to work
well in practice (although theoretically the inapproximabil-
ity shows that no algorithm can guarantee a solution close
to optimal in polynomial time). A good solution (within
99% of optimum) is often reached quickly [19]. However, as
Figure 8 shows, the anytime property works very poorly in
exchanges—even if there is free disposal. Solution quality
tends to stagnate at around 85% of optimal. Wasting 15% of
the economic value is clearly unacceptable in practice. Fur-



thermore, without free disposal, it takes impractically long
to find any feasible solution, not to mention a good one.
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Figure 8: Anytime performance of clearing combinatorial
exchanges using CPLEX (50 items, 500 bids, α1 = α2 =
0.8). Left: each bid can buy some items while selling other
items (the bids were generated using the method described
above). Right: each bid either sells items or buys items, but
does not do both. Each curve is for one problem instance.
In both cases, CPLEX failed to find an optimal solution in
48 hours, at which time we terminated the runs.

To summarize, the experiments show that combinatorial
auctions and reverse auctions have reached the scalability
that is needed in practice for many applications, but on
combinatorial exchanges, even the fastest general-purpose
commercial optimization package scales so poorly that it is
far from being able to run combinatorial exchanges in prac-
tice. This suggests developing special-purpose algorithms
for combinatorial exchanges.

4. CONCLUSIONS
We showed how different features of a combinatorial mar-

ket affect the complexity of determining the winners. We
studied auctions, reverse auction, and exchanges, with one
or multiple units of each item, with and without free dis-
posal. We theoretically analyzed the complexity of finding
a feasible, approximate, or optimal solution.

The most interesting results were the following. Reverse
auctions with free disposal can be approximated (even in
the multi-unit case), although auctions cannot. When XOR-
constraints between bids are allowed (to express substitutabil-
ity), the hardness turns the other way around: even finding
a feasible solution for a reverse auction or exchanges is NP-
complete, while in auctions that is trivial. Finally, in all
of the cases without free disposal, even finding a feasible
solution is NP-complete.

We then studied the practical clearing time experimen-
tally using a general-purpose mixed integer program solver
on a variety of known benchmarks as well as ones which we
introduced. As expected, cases with free disposal tended to
be easier than ones without. On many distributions, reverse
auctions with free disposal were easier than auctions with
free disposal—as the approximability result would suggest—
but interestingly, on one of the most realistic distributions
they were harder. Single-unit exchanges were easy, but
multi-unit exchanges were extremely hard. This suggests
that faster, more specialized, algorithms are called for to
scale winner determination to exchanges in practice.
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