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ABSTRACT

Combinatorial auctions where agents can bid on bundles of items
are desirable because they allow the agents to express complemen-
tarity and substitutability between the items. However, express-
ing one’s preferences can require bidding on all bundles. Selective
incremental preference elicitation by the auctioneer was recently
proposed to address this problem but the idea was not experimen-
tally validated. This paper evaluates several approaches and finds
that in many cases, automated elicitation is in fact beneficial: as
the number of items for sale increases, the amount of information
elicited is a small and diminishing fraction of the information col-
lected in traditional “direct revelation mechanisms” where bidders
reveal all their valuation information. In forward auctions, the ben-
efit is slightly reduced by increasing the number of agents, while in
reverse auctions the benefit increases with both agents and items.
The exception is with rank-based elicitors, which limit themselves
to eliciting the next-best bundle: these do not scale as the number
of agents grows.

A full-length version of this paper is on-line at http://www.
cs.cmu.edu/"sandholm/generalizing03.pdf
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1. INTRODUCTION

Combinatorial auctions, where agents can submit bids on bun-
dles of items, are attractive when the bidders’ valuations on bun-
dles exhibit complementarity (a bundle of items is worth more than
the sum of its parts) and/or substitutability (a bundle is worth less
than the sum of its parts). Determining the winners in such auc-
tions is a complex optimization problem that has recently received
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considerable attention. However, bidding in such an auction is it-
self a difficult problem: there are exponentially many bundles, and
each agent may need to bid on all of them to fully express its pref-
erences [5]. Appropriate bidding languages can reduce the com-
munication overhead in some cases. We investigate the orthogonal
approach of having the auctioneer propose to the agents what bun-
dles they should bid on [1,2]. That is, the auctioneer incrementally
elicits information from the bidders, stopping when enough infor-
mation has been elicited to determine the winners of the auction.

We ran experiments to evaluate both previously proposed and
novel elicitation algorithms. In addition, we study the complex-
ity of determining the bidders’ payments. Along with combinato-
rial auctions we study combinatorial reverse auctions (procurement
auctions). Our experiments show that only a very small fraction of
the bidders’ preference information needs to be elicited in order to
determine the provably optimal allocation and the VCG payments.
The full-length version of the paper also proves some propositions
useful in designing practical elicitors.

2. ELICITOR’S CONSTRAINT NETWORK

The elicitor, as we implemented it, never asks a query whose
answer could be inferred from the answers to previous queries. To
support the storing and propagation of information received from
the agents, we have the elicitor store its information in a constraint
network. Specifically, the elicitor stores, for each agent, for each
bundle, an interval [LB;(b), UB;(b)]. The lower bound LB;(b) is
the highest lower bound the elicitor can prove on the true v;(b)
given the answers received to queries so far. Analogously, UB; (b)
is the lowest upper bound. We say a bound is tight when it is equal
to the true value. A bound can be tightened by learning something
about the value of that bundle, or by learning something about the
value of a bundle related to it by the links in the constraint network.

3. RANK LATTICE BASED ELICITATION

In rank lattice based elicitation, each bidder ranks its bundles in
order of decreasing valuation. The ranked lists of bundles induce a
lattice of rank vectors (one entry per bidder). To find the optimal
allocation, the elicitor searches the lattice in best-first order. This
means that the elicitor only ever asks a bidder what its next-most-
valuable bundle is and what its value is.

Figure 1 shows the result of running this elicitation policy on
auctions with a varying number of agents and items. Each point
in the graph is the average of 100 randomly generated experiments.
As the number of items in the auction increases, the elicitation ratio
decreases quickly.

Unfortunately, Figure 1 also shows that as the number of agents
grows, the elicitation ratio quickly approaches 1. This phenomenon
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Figure 1: Performance of rank lattice based elicitation. The

curvesfor 4 and 5 agents are barely visible, being at an €licita-
tion ratio of almost 1.
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Figure 2: Elicitation using bound-approximation queries. The
2-agent, 2-item instances average an €licitation ratio greater
than 1 because the method can incur up to cost 2 per bundle
(1 each for tight upper and lower bounds)

can be explained as follows: as the number of agents increases, we
expect agents to win, lower-ranked bundles. Because rank lattice
based elicitors require the agents to reveal all high-rank bundles
before any low-rank bundles, as the number of agents increases,
each agent reveals a greater number of bundle values. Indeed, if
there are more agents than items, at least one agent will fail to win
any items and thus will reveal its entire set of preferences.

4. BOUND-APPROXIMATION QUERIES

In many settings, the bidders can easily compute rough estimates
of the valuations, but the more accurate the estimate, the more
costly it is to determine. In this sense, the bidders determine their
valuations using anytime algorithms [4, 6]. For this reason, we in-
troduce a new query type: a bound-approximation query. In such a
query, the elicitor asks an agent 4 to spend some amount of time ¢
tightening the agent’s upper bound UB; (b) or lower bound LB; ()
on the value of a given bundle b. This query type leads to more
incremental elicitation in that queries are not answered with exact
information, and the information is only refined as needed.

We evaluated bound-approximation queries using an elicitation
policy that seeks to maximize the change in bounds occasioned by a
query, and using a reasonable model for agents’ computation. Fig-
ure 2 shows that as the number of items increases, the fraction of
the overall computation cost actually incurred diminishes: the opti-
mal allocation is determined while querying only very approximate
valuations on most bundle-agent pairs. The method also maintains
its benefit as the number of agents increases.
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Figure 3: Bound-approximation queriesin reverse auctions.

5. DETERMINING VCG PAYMENTS

Having allocated the items to the agents, the auctioneer needs to
specify how much each agent should pay for its bundle. Requiring
an agent to pay the amount it revealed during the elicitation algo-
rithm has the disadvantage that agents will be motivated to lie about
their preferences (and may need to spend additional computational
resources to compute what preferences they should reveal). In the
Vickrey-Clarke-Groves (VCG) mechanism [3] applied to a com-
binatorial auction (this mechanism is also known as the General-
ized Vickrey Auction), the auctioneer charges each agent an amount
equal to the negative externality that agent imposed on the other
bidders; this removes agents’ incentive to lie.

In general, computing the VCG payments requires more infor-
mation than is elicited to compute the winners of the auction. How-
ever, the qualitative results remain the same: the elicitation ratio
falls with the number of items and increases slightly with the num-
ber of agents. For example, determining winners using the bound-
approximation policy on auctions with 3 agents and 5 items re-
quires an elicitation ratio 60%, while computing VCG payments
increases the ratio to 71%.

6. REVERSE AUCTIONS

While earlier work on preference elicitation has primarily fo-
cused on combinatorial forward auctions, the methodology can be
adapted with very slight modifications for combinatorial reverse
auctions as well, where there is one buyer and multiple sellers (bid-
ders). Figure 3 shows some of the results of running our elicitors
on reverse auctions with bound-approximation queries. As happens
with forward auctions, the elicitation ratio in reverse auctions falls
as the number of items increases. Interestingly, the experiments
indicate that adding more agents to a reverse auction tends to de-
crease the elicitation ratio, unlike in forward auctions where the
ratio slightly increases with agents.
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