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Abstract

Mechanisms (especially on the Internet) have be-
gun allowing people or organizations to express
richer preferences in order to provide for greater
levels of overall satisfaction. In this paper, we de-
velop an operational methodology for quantifying
the expected gains in economic efficiency associ-
ated with different forms of expressiveness. We
begin by proving that the sponsored search mech-
anism (GSP) used by Google, Yahoo!, MSN, etc.
can be arbitrarily inefficient. We then experimen-
tally compare its efficiency to a slightly more ex-
pressive variant (PGSP), which solicits an extra bid
for a premium class of positions. We generate ran-
dom preference distributions based on published
industry knowledge. We determine ideal strate-
gies for the agents using a custom tree search tech-
nigue, and we also benchmark using straightfor-
ward heuristic bidding strategies. The GSP’s effi-
ciency loss is greatest in the practical case where
some advertisers (“brand advertisers”) prefer top
positions while others (“value advertisers”) prefer
middle positions, and that loss can be dramatic. Itis
also worst when agents have small profit margins.
While the PGSP is only slightly more expressive
(and thus not much more cumbersome), it removes
almost all of the efficiency loss in all of the settings
we study.
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associated with running the mechanism (e.g., time and ef-
fort to collect data, computation requiremenfsjartin et

al., 2004. For some populations, increased expressiveness
can be unnecessalf\bramset al, 2007 and can give rise

to additional equilibria of poor efficiencfMilgrom, 2007.

It can even confuse (e.g., Herb Simon’s “bounded rational-
ity” [1959), or aggravate (e.g., Barry Schwartz’s “tyranny of
choice” [2004) people. What is missing is an operational
methodology to quantify the expected efficiency gains from
increasing expressiveness.

Work on information complexity of mechanisms has a long
history (e.g., [Mount and Reiter, 1974; Hurwicz, 192
Recent theoretical work based on the notionsbéttering
from computational learning theory provided the foundadio
for studying expressiveness in a domain-independent man-
ner [Benischet al, 2009. In this paper we operationalize
that theory with a methodology for comparing mechanisms
with different degrees and forms of expressiveness. Weyappl
it to sponsored searghor ad auctions conducted online for
placement alongside search results.

The sponsored search industry accounts for tens of billions
of dollars in revenue annually. The most frequent variant of
these auctions, thgeneralized second price (GSR)echa-
nism used by Google, Yahoo!, MSN, etc. solicits a single bid
from each advertiser (i.e., agent) for a keyword and assigns
the advertisers to positions on a search result page aogprdi
to the bids (roughly speaking, with the first position going t
the highest bidder, the second position to the second Highes
etc.). Since agents cannot offer a separate bid price fdr eac
ad position, the GSP mechanism is fundamentally inexpres-
sive. We will attempt to characterize the loss of economic

Akey trend on the Internet is a move toward more expressiveefficiency caused by this inexpressiveness, and to expiere t
ness in the mechanisms that mediate interactions such as th@nditions that affect that loss.

allocation of resources, matching of peers, and elicitatib
opinions. Intuitively, one would think that more expressiv  studying expressivenefBenischet al, 2009 to analyze the

ness leads to higher efficiency (sum of the agents’ uti)itds

We begin by adapting our recent theoretical framework for

GSP. We find that for some preference distributions the GSP

the outcome (e.g., due to better matching of supply and dés arbitrarily inefficient.

mand). Efficiency improvements have indeed been reported In order to measure the inefficiency in practice we must be
from combinatorial and multi-attribute auctions (e[&and-
holm, 2007%), as well as expressive ad auction variantsrium of the GSP is known when it is assumed that agents have
(e.g., [Lahaie et al, 2008; Parkes and Sandholm, 2005;complete information (i.e., no private information aboalu
Even-Daret al., 2007; Boutilieret al, 200d). Yet, adding
expressiveness does not always improve the outcome of @ositions are always preferrddjarian, 200T; however when
mechanism in practice. It generally increases the overheade relax these somewhat restrictive assumptions, the equi-

able to predict the outcome of the mechanism. The equilib-

ations) and monotonic preferences over positions (i.ghéni



librium behavior is unknown. In fact, it is often difficult to est bidder is assigned the first position, the second highest
characterize equilibrium behavior in less than fully exgsiee  bidder is assigned the second, etc.Yhe mechanism may
mechanisms when agents have complex preferdi@sen-  also compute the value of a payment functietg™), which
thal and Wang, 1996; Wilenius and Andersson, 2007; Szentedetermines how much each agent must pay or get paid. In
and Rosenthal, 2003 For that reason, we develop a gen- this paper, we ignore the mechanism’s payment function be-
eral tree search technique for computing an upper bound otause expressiveness is tied directly to a mechanism’s out-
a mechanism’s expected efficiency, that involves finding soeome functior?
cial welfare maximizing strategies for the agents. Intheso  We denote bylV (t",0) the social welfare of outcome
case our search algorithm takes time that is exponentibéint o when agents have private types, i.e., W(t",0) =
number of agents and types, but it can be applied to any prefs_ «,;(¢", 0). Assuming that the expression of each agent in
erence distribution and provides an upper bound that tighte the mechanism’s most efficient Nash equilibrium is given by
In an anytime manner. a functionm; (t;), we can describe the mechanism’s expected
We conclude with a series of experiments comparing thefficiency under that equilibriung,( f, ), with the following
GSP to our slightly more expressive mechanism, which solicequation (expectation is taken over the types of the agents,
its an extra bid for premium ad positions, which we cBie-  and their randomized equilibrium expressions).
mium GSP (PGSPYe generate a range of realistic synthetic
reference distributions based on published industry know " n " n "
gdge, and apply our search technpique to compareythe et l6(fm)] = tf(t ) ef(m(t ) =60") W@, f(6") (1)
ciency bounds achieved by social welfare maximizing strate
gies in the two mechanisms. We also examine the perforp 1 A framework for characterizing expressiveness
mance of the two mechanisms when agents use a straightfor-
ward heuristic bidding strategy. The theoretical framework that we developed in our earlier
While we must be careful not to read too much into ex-work [Benischet al., 2004, provides the foundations for un-
periments on synthetic data, they suggest that the GSP’s elerstanding the impact of making mechanisms more or less
ficiency loss can be dramatic. It is greatest in the practicagxpressive, by providing meaningful, general definitioha o
case where some agents (“brand advertisers”) prefer top p#rechanism’s expressiveness.
sitions while others (“value advertisers”) prefer middtesp In that work, we defined ampact vectoto capture the im-
tions (since customers who click on ads in middle positiongact of a particular expression by an agent under the differe
are more likely to take action, resulting in revenue). Ttsslo possible types of the other agents, and an expressivengss co
is also worst when agents have small profit margins. Despiteept based on a notion callstiattering which we adapted
the fact that our PGSP mechanism is only slightly more exfrom the field of computational learning thedyapnik and
pressive (and thus not much more cumbersome), it removeShervonenkis, 1971 The adapted notion captures an agent's
almost all of the efficiency loss in all of the settings we stud  ability to distinguish among each of the impact vectors in-
volving a subset of outcomes.
2 Setting and background results We also introduced a slightly weaker adaptation of shat-
tering, calledsemi-shattering for analyzing the more re-
The setting we study is a one-shot auction for a set all-  stricted setting where agents have private values. It ceptu
vertising positions that are ranked fralrto & (rank1 is the  an agent’s ability to cause each of the unordered pairs ef out
highest rank). In the model there areagents. Each agent  comes (with replacement) to be chosen for every pair of types
has some private information (not known by the mechanisnaf the other agents, but without being able to controldhe
or any other agent) denoted by a typg, (e.g., a vector of  der of the outcomes (i.e., which outcome happens for which
valuations, one for each of thiepositions) from the space of type). We defined a measure of expressiveness based on the
the agent’s possible types,. size of the largest outcome space that an agent can shatter or
Settings where each agent has a utility functiogit;, O),  semi-shatter. It is called th@emi-)shatterable outcome di-
that depends only on its own type and the outcome (matchinghension
of agents to positions)) € O, chosen by the mechanism are |y addition to defining the expressiveness notions, we tied
calledprivate valuessettings. We also discuss more generalthose notions to an upper bound on the expected efficiency
interdependent valuesettings, where,; = u; (", 0),1.e.,an  of 3 mechanism'sost efficienequilibrium. We derived the
agent's utility depends on the others’ private signals alf we hound by making the optimistic assumption that the agents
(for example, if one agent's value for a position depends orjay strategies which, taken together, attempt to maximize

market estimates of the other agents). In both settingsitage social welfare. The bound is given by the following equation
report expressions to the mechanism, denétetlased only

on their own types. In the GSP mechanism each agentcam—} ., . . . :

report a single real va}lue |.nd|cat|ng his/her bid. A mapplng(c.nl_g) pg:g'r%eégﬁéﬂifir?g;etﬁgjl:ztnek?n%{ pfg’gﬁ&:ﬁ{‘yf%‘;‘ﬂ?n

from types to expressions 'S_ callegpare strate_gy weight by CTR. However, our formulation can be easily exeshtb
Based on these expressions the mechanism computes th€ount for this by multiplying each agent's original biditsyCTR.

value of an outcome functiorf,(6"), which chooses an out- 2Since the efficiency bound that we study does not directly de-

come. In the GSP mechanism the outcome function mapgend on equilibrium behavior, this is without loss of geligraas

agents to positions based on the order of their bids (the highHong as agents do not care abeath otherspayments.



(the max is taken over all possible joint pure strategies). 4 Premium GSP mechanism

. To address GSP’s inexpressiveness without making the mech-
E[E()) = maX/P(t") W(t", f(h(t"))) (2)  anism much more cumbersome, we introduce a new mecha-
h() Jn nism that only slightly increases the expressivenessrvate
show that this slight increase is extremely important irt tha
removes most of the efficiency loss entailed by GSP’s inex-
essiveness.

The new mechanism separates the positions into two
Theorem 1 (reworded fron{Benischet al, 200g). For any classes: premium and standard, and each agent can submit
setting, there exists a distribution over agent prefersrsteeh  a separate bid for each class. We call thisghemium gener-
that the upper bound on expected efficiency for the best ouglized second price (PGSR)echanism. The premium class
come function where agemthas semi-shatterable outcome might contain, for example, only the top position—as in our
dimensiond; < || is arbitrarily lower than that of the best experiments.
outcome function where ageittas semi-shatterable outcome  The premium position(s) are assigned as if a traditional
dimensiond; + 1. GSP were run on the premium bids (the top premium posi-
tion goes to the agent with the highest premium bid, etc.).
The standard positions are then assigned among the remain-
ing agents according the traditional GSP mechanism run on
In order to study the expressiveness properties of the GSPt§eir standard bids.
outcome function, we first derive a mathematical represen-
tation of the function. LetR(i,0) be the rank of the posi- 5 Computing the efficiency bound

tion given to thei'th agent in the matching of agents t0 po- The results in Section 3 prove that there exist distribution
sitions denoted by outcome For analysis purposes we will oyer agent preferences for which the GSP is arbitrarily in-

assume, without loss of generality, that each agent'sthid, efficient. However, in order to measure the inefficiency in
is restricted to be betwedhand1 (this is not a limiting as- practice we must be able to compute the value of the effi-
sumption due to the fact that we can losslessly map from aniency hound for any particular distribution over agentipre

real valued space to this interval). Under this assumptiongrences. In this section we describe two general techniques
the following is functionally equivalent to the GSP’s oute® 5 going that. They take as input a distribution over agent

Our earlier work provided several results relating this
bound to a mechanism’s expressiveness. For the purposes
this paper the following result will prove useful.

3 Expressiveness in ad auctions

function. preferences with a finite number of types (this distribution
n . could be learned from data or approximated by a domain ex-
£(0") = argmax Y (9i 10‘R(1’°>) (3)  pert) and provide the value of the upper bound on the mech-
3€0 4 e . .
i=1 anism’s most efficient equilibrium. Although we present our

o ) ) ) techniques in the context of ad auctions, they can easily be
Each bid in the sum is weighted 11y raised to the nega- generalized for use in other domains.

tive power of the corresponding agent’s rank under the ahose

outcome. Thus, agents with higher bids will contribute sig-5.1 Integer programming formulation

nificantly more to the overall sum when they are placed in therjrst we will describe an integer programming formulation

first position. for computing the bound. The program includes a binary de-
We will now show that the outcome function of the GSP cision variablez?, for each outcome and each joint type of

mechanism is inexpressive according to the notion of outthe agents. A value of for 2t denotes that outcomewill

come semi-shattering introduced in the previous section.  be chosen by the mechanism when the agents have the joint

Theorem 2. Consider a set of outcome§4, B, C, D}, un- typet, a value of) indicates that_the outcomelwill not be.cho—
der which agent is assigned different positions. In the GSP Sen undet_ﬁ. The program’ also mcI_udes continuous variables
mechanism, agenit cannot semi-shatteoth pairs of out- 'EPresenting the agents’ expressions (bids in the confext o
comes{ A, B} and{C, D} if the other agents have more than sponsored search) under each of their typés, (We limit

. o - these expressions to be betwé@amnd1, without loss of gen-
%Q? ng)ni%p(? %r)]d the ranks satisfy(i, 4) < R(,C) < erality.) The following objective function is used to maxza

the expected efficiency of the mechanism.
This result, in conjunction with Theorem 1, implies that .
under some preference distributions the efficiency bound fo max Y P(t) Y 2L W(t,0) (4)

2zt 0.7

the GSP is arbitrarily inefficient, and since it is an upper oY teTn 0€0
bound, the inefficiency exists under any strategy profile.  The first set of constraints enforces that exactly one outcom

Corollary 1. For any setting there exists a distribution over IS chosen for each joint type. There éfé’| such constraints.
agent preferences such that the upper bound on expected effi- n ¢

ciency (Equation 2) for the GSP mechanism’s outcome func- st.(vteT™) Z 7o =1 ®)
tion is arbitrarily less than fully efficient. 0€0

The next set of constraints ensures that for edchariable

3Proof of Theorem 2 can be found in this paper’'s appendix.  thatis set td, the agents’ expressions under typo indeed



cause the outcome function to choose outceme his set /@\

includes one constraint for each joint type and each pair of ABCD
distinct outcomes. Thus there d&"| x (|O|> — |O|) such o N
inequality constraint$. These constraints depend on the out- /@\ AP
come function of the mechanism we are studying. For GSP’s ABCD
outcome function, the constraints are as follows (we use S AN
to denote a sufficiently large number such that the sum of all o0 o0
the agents’ expressions cannot exceed it): /é@\
/ t: 10—R(i,0) ABCD

(Vt,Vo,Vo' # o) Z(GZ 10~ ) > SN N

Z (9;5 10—R(i7o’)) —(1-HM  (6) g

[A,C,C]

[
Finally, we have constraints on the decision variables: : o .
y Figure 1: Part of the search tree for a distribution with

(Vt,Y0) z5 € {0, 1}, (Vi,Vt;) 0 < 6;* < 1 (7)  types,[t7, 2, 2], and4 outcomesA, B, C, D]. Circles rep-

An ad auction with: positions and: agents with two types  resent internal nodes and squares represent leaf nodes. The
each has;"; distinct outcomes an#t" joint types. Thein-  dashed nodes are not expanded, but they would be consid-
teger program ha®)| x |T"| binary decision variables, mak- ered by the algorithm. The expanded path corresponds to the
ing it prohibitively large for general purpose integer prag ~ assignment ofA, C, C] to typest?, t3, andty, respectively.
solvers, such as CPLEX, for mechanisms with more than
agents. These solvers do not explicitly take advantageref ce

tair aspects of the probtl)emr?tructufre, for i%amp'e thelfi@itt o4 a1 (o the true optimal value of any feasible assignmeatt th
only one outcome can be chosen for each joint type. descends from nodg It may overestimate this value if the

5.2 Tree search for computing the bound optimal assignment is not achievable due to inexpresssggne

To address this problem, we developed a general tree sear@iit it nas the benefit of serving as a valid upper bound on the
technique based on A* for computing the bound. We hav expeited eff|C|ency_ achievable by the mechanism. By using
applied the technique to GSP and PGSP on instances wi eA nodg ;e!ectlon strategy, our search ensures that any
up to five agents to find provable inefficiency. (In this paper"0de that it visits has a lower (or equgl)value than any

we only report results with four agents in order to provide apreviously visited node. Thus, ttfevalue of the current node
larger number of experiments.) is a contlnugll_y tlghtenln_g upper boun_d on the me_chanlsr_n’s
Each level of the search tree corresponds to a differertt joirexpected efficiency, and it can be provided at any time during
type. Each branch corresponds to the assignment of an ouhe search. _
come to the joint type. The tree has maximum dépth and ~ Whenever a node is popped off the front of the open queue,
branching factofO|. Figure 1 illustrates the search tree. its feasibility is checked. In both types of ad auction mech-
At any nodej a partial assignment of outcomes to joint anisms we study, this check involves solving a linear feasi-
types can be constructed by traversing the edges jranthe  bility problem (LFP). The LFP involves a set of constraints
root. We will denote the set of all joint types in the partial Similar to those described in Equation 6, however the assign

Thef(j) approximation is guaranteed to be greater than or

assignment at nodgas7". For each type” € 7" we will mer_lt_of outcomes to types is _fixed and _there_ are no binary
denote the outcome it is assigned under the partial assignmedecision variables. If the node is not feasible, its chitdaee

at nodej asoy,. In addition, for each joint type” we will ~ notplaced on the open queue.

denote any one of the outcomes that maximize social welfare )

asoj (i.e.,o; = argmax, W (t", 0)). 6 Experiments

As usual, our search orders the nodes in its Open queyg this section we discuss the results of experiments using o
acco.rd!ng to an_adm|SS|bIe (i.e., optlm_ls_tlc) heuristicheT  gearch technique to compute the upper bound for the GSP
heuristic approximates the expected efficiency of the l®st & y\echanism and the slightly more expressive PGSP mecha-
signment originating from a particular node under the asyjgm.
sumption that any unassigned types will be assigned opti- |n order to gain additional insight, we also discuss the
mally.> The priority of a nodej, f(j), is given by the ex-  performance of the two mechanisms when agents use the
pected welfare of its current partial assignment plus the exstraightforward strategy of always bidding their valuatior
pected welfare of the optimal assignment for any unassigneghe top position (in the PGSP they bid their valuation for the
types: top premium position and the top non-premium position as

F(i) = PHAW (£, 00.) + PHW (L, o 8 their two bids). We call the _resultmg efficien@SP heuristic

1G) t;n ()W its,0r,) t;ﬂ OW (o) (8) andPGSP heuristicrespectively.

T J Our experiments consist of collections of runs, each involv
4In practice we ensure that these inequality constraintstaie  INg randomly generated instances with different parameter
by adding a smakt term to one side. settings. The parameters are chosen to investigate circum-

SWe need only calculate o* once at the beginning of the searchstances under which the inexpressiveness of the GSP mecha-
It can be reused later by removing outcomes that are assigned ~ nism is costly (i.e., when the upper bound is low) and when



it is not. Each instance in one of our experiments represenis _Parameter | Value || Parameter Value
a single auction for a single keyword with four agents. P(cklR=1) | 10% C(clk) $1

Based on recent work examining different advertising atti{ £(CIk|R =2) | 7.74% || Brandu | ~ Uniform[.8, 1]
tudes on the Internet, in our experiments each agent isreithe (clk|R = 3) | 6.66% || Brando 25% of pu
abrand advertise(with probabilitypz) or avalue advertiser | P(clk|R =4) | 5.74% || Valuep | ~ Uniform|[.4,.6]
(with probability1 — pg) [Baye and Morgan, 2005 Brand P(cnviclk) 10% || Valueo 25% of i
advertisers always prefer higher positions over lower oneg DB 50% Vi(cnv) $35 to $150

A value advertiser generally does not prefer the highest posTaple 1: Default settings for each parameter in our instance
tions because middle positions tend to have higbewersion  generation model.

rates(e.g., the user’s probability of buying something condi-

tional on having clicked is higher). Figure 2 illustrate®pr

totypical brand and value preferences over different st ~ for each agent, once for the case where she is a brand adver-
based on their rank. tiser and once for the case where she is a value advertiser.

(We also normalize the value @t to be betweer) and 1,
so that, for example, the third position out of four has rank

A

$0.25 0.25.) Values ofy closer tol indicate that the agent’s con-

. Brand advertiser versions tend to come from higher ranked ads, those closer to
g s015 —B— Value advertiser 0 indicate that conversions tend to come from lower ranked
s 7 ads. The values qgf for the brand and value advertisers are
2 given in Table 1, unless otherwise specified.
5 $005 /./_\\ We transform P(R|cnv,7) into P(cnviclk, R,i) using
‘g = = = = = > Rank Bayes' rule (and the observation that the cnv event implies
X -$0.05 Op6 20%/ 40% o-60%  80% \Q)% the clk event):

P(cnviclk, R, i) o< P(R|cnv,i)P(cnviclk, i) (10)

-$0.15

Each data point in each figure below is the average over 50
instance$. The confidence intervals represent standard error.
(They are often so tight that they are barely visible.)

Figure 2: Example of prototypical valuations for brand and
value advertisers. The brand advertiser shownfas 1 and
the value advertiser hgas = 0.5. Valuations are shown in ex-
ectation, not per-click. Rank 0% means the bottom positio ; . : ) ; ;
gnd iy 10050 means the top position. POSMO 1 Experiment 1: Varying agents’ profit margin
In our first set of results we vary the expected value of a con-
We now describe how we generate preferences for brangersion,V (cnv), between $35 and $150 (i.e., 35 to 150 times
and value advertisers. Let “clk” denote the event that this ad the cost per click of running the site), Figure 3.

clicked, and “cnv” denote that the click results in a coniars

(e.g., a sale or user registration). &tdenote the amortized 100%
cost per click of running agei's web site, and’; (cnv) be the S 95% — *
expected value of a conversion to agenthen, the expected g E 90% e e :
value to agent of having an ad in position rankedis £z gg:f ST : -
T o ) ]i" —+—PGSP bound
_ : ; «  75% .
E[Vi(R)] = P(ck|R.i) [Plenvick, R, i)Vi(ev) - Ci] () 35 7% _ 5P baund
: . £ 65% ----PGSP heuristic
In order to keep the experiments simple and to focus & 60% ] GSP heuristic
on the impact of expressiveness, we assume that agents 55% R ; ; ; ;
the same instance are relatively similar. For one, we as $25 $50 $75  $100 $125  $150

sume that the marginal cost of a clidk;, = C = $1

for all agents. Unless otherwise specified, we assume thay .
Vi(cnv) = V(cnv) = $50 for all agents. We assume that Figure 3:The value of the upper bound on expected efficiency
P(cnviclk, i) = P(cnvclk) = 10% for all agents. We also and the efficiency of the heuristic bidding strategy for t18FG

assume that click-through rates conditional on the ranknof a@nd PGSP mechanisms.

ad's pQSI_}_IOSI arle thle samigotrhall(?%enff. Tlhe S‘?ec'f'lf raesa  Thege results demonstrate that when conversions generate
givenin fabie 1, along wi € aetault values for a param'relatively low profits, the efficiency loss due to inexpressi

eters. These click-through rates are from an Atlas Institut : ;

S ; o9 ness in the GSP mechanism, as measured by the upper bound,
Digital Marketing publication[Brooks, 200T. They were 5" more than 30%. As the profit margin ofythe agznts in-
also used by Even-Dat al. in their experiment§Even-Dar creases, this loss decreases to around 10%.

etal, 2007.
Rather than generating arbitrary valuesttnviclk, R, i), ®0n occasion the search does not find the optimal value within

we assume that the probability of a conversion coming fromour time limit of 20 minutes; this occurred on approximat@fe

a particular rank,P(R|cnv, ), is normally distributed. The of the instances evenly distributed between mechanismsthBee

mean,u, of this distribution is randomly chosen froff, 1] instances we use the lowegtalue discovered prior to termination.

Expected value of a conversion, V(cnv)



Additionally, the results show that the efficiency boundalways improve the outcome of a mechanism in practice. In
for the slightly more expressive PGSP mechanism is nearlthis paper we operationalized a recent theoretical framlewo
100% in all cases. This suggests that the added expressiviar studying expressiveness with a methodology for compar-
ness in the PGSP is well suited to capture all the differening mechanisms with different degrees and forms of expres-
types of preferences we generated. siveness, and applied it to sponsored search.

We also see that the efficiency of the heuristic biddingstrat  We began by proving that for some preference distributions
egy follows a similar qualitative pattern to the upper bound the most commonly used sponsored search mechanism, GSP,
which lends additional support to our findings. Specifically is arbitrarily inefficient. In order to measure the ineffiny
this suggests that 1) the bound is meaningful in describingn practice we developed a general tree search technique for
the efficiency of the mechanism, and 2) the conclusions applgomputing an upper bound on a mechanism’s expected effi-
more broadly than for fully rational game-theoretic agents  ciency. We concluded with a series of experiments comparing

. . . . the GSP to our slightly more expressive mechanism, PGSP,
6.2 Experiment 2: Varying agent diversity which solicits an extra bid for premium ad positions. We gen-
The second experiment examines how the loss due to inexrated a range of realistic preference distributions based
pressiveness depends on how similar value advertisers apaiblished industry knowledge, and applied our search tech-
to brand advertisers. Specifically, we vary the positiort thanique to compare the efficiency bounds in the two mecha-
generates the most value for value advertisers. (Brand-advenisms. We also examined the performance of the mechanisms
tisers still always prefer the highest position the mosn) | when agents use a straightforward heuristic bidding gjyate
each run the mean dP(R|cnv, ) for each value advertiser  Our results suggest that the GSP’s efficiency loss due to
is drawn uniformly from an interval of size.2 (i.e., u ~  inexpressiveness can be dramatic. It is greatest in theiprac
Uniform(a, a + 0.2]). The results are shown in Figure 4. The cal case where some agents (“brand advertisers”) prefer top
x-axis indicates the mid-point of the interval used in eaoh r  positions while others (“value advertisers”) prefer midb-
which is also the expected value pffor each value adver- sitions. The loss is also worst when agents have small profit
tiser. margins. Despite the fact that our PGSP mechanism is only
slightly more expressive (and thus not much more cumber-
some), it removes almost all of the efficiency loss in all & th

0, .
> 100% — 7 = settings we studly.
gz % Future research includes using our methodology to study
£ £ 0% e - efficiency in sponsored search with real data. We also plan
[ S ’ . . .
] § 85% =y ——PGSP bound to apply our methodology to other dor_nams in or(_jer to design
S e 809 GSP bound mechanisms that are not unnecessarily expressive yet emov
2R 8% z . _ e . -
2 J55% ----pGsP heuristic  most of the inefficiency of today’s inexpressive mechanisms

v T GSP heuristic

70% : : : :

10%  30%  50%  70%  90% 8 Acknowledgement
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