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Abstract

We investigate the problem of matching buyers and sellers in
a multi-item multi-unit combinatorial exchange so as to max-
imize either the surplus (revenue minus cost) or the trading
volume (number of units traded). In such an exchange, par-
ticipants can place bids to buy or sellbundlesof goods. While
even highly specialized cases of this problem are bothNP -
Complete and inapproximable, we show that optimal surplus
or trade volume can be achieved in polynomial time if some
bids can be satisfiedpartially. Using theory of linear pro-
gramming, we show that in exchanges trading multiple units
of k distinct items, maximum surplus is possible with at most
k partial bids, and maximum trade volume is possible with at
mostk + 1 partial bids. These bounds on the number of par-
tial bids are the best possible in the worst case. For the simple
but important case of single item exchanges, we also develop
fast combinatorial algorithms for optimal matching. The bid-
ding language that simply allows bidders to bid on alternative
(nonexclusive) combinations enables bidders to express com-
plementarity between items, but not substitutability (the value
of a bundle being less than the sum of the parts). We show that
if the bidding language is enriched withxor-constraints be-
tween bids (a common, necessary and sufficient enrichment
that achieves full expressiveness by the bidders), then allow-
ing for partial acceptance of bids does not help—even for sin-
gle item exchanges, computing the optimal matching remains
NP -Complete no matter how many partial bids are allowed.

Introduction
Auctions have been studied in economics and game the-
ory for a long time as important resource allocation mech-
anisms in distributed environments. In recent years, their
role has grown with the emergence of Internet and elec-
tronic commerce, as businesses and corporations leverage
the new medium to streamline their procurement process.
Many businesses are moving to an auction-based purchase
method where they issue a request for quotes for the goods
and services needed, and let the suppliers bid for a piece of
the business. (See, for example, the web sites of companies
such as FreeMarkets, i2 Technologies, or CommerceOne.)
Driven by these fundamentals, auctions—and algorithms re-
lated to them—have become important and popular research
topics in computer science, especially in AI.
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An exchange generalizes the auction mechanism to the
setting with multiple buyers and sellers. Some familiar
examples are the exchanges for equities and commodities,
transportation, electricity, and the business-to-business ex-
changes. Acombinatorial exchangeis an exchange where
buyers and sellers can bid on bundles (subsets) of goods.
Combinatorial markets are desirable both for the bidders and
the overall economic efficiency because items often have
complementarity, and combinatorial bidding minimizes bid-
ders’ risk of getting stuck with only a partial subset. (Some
examples of complementarity are FCC’s spectrum auctions,
where a bidder may highly value licenses in some neigh-
boring regions or wish to get a national footprint, or direct-
material procurement, where a company must acquire all the
raw materials necessary to produce its goods.)

Although combinatorial markets were proposed 20 years
ago (Rassenti, Smith, & Bulfin 1982), the last few years have
seen a surge of research, no doubt by their relevance to the
Internet and the electronic commerce (Rothkopf, Pekeč, &
Harstad 1998; Sandholm 2002a; Fujishima, Leyton-Brown,
& Shoham 1999; Sandholm & Suri 2000; Nisan 2000;
Sandholmet al. 2001; 2002). Given a set of buy-
ers and sellers, determining which set of trades leads to
the highest surplus (profit) isNP -Complete (Rothkopf,
Pekěc, & Harstad 1998) and inapproximable to a ratio bet-
ter thanΩ(n1−ε), wheren is the number of bids (Sand-
holm 2002a). Typical approaches to solving combinato-
rial auctions fall into three categories: search algorithms
(such as branch and bound) (Sandholm 2002a; Fujishima,
Leyton-Brown, & Shoham 1999; Sandholm & Suri 2000;
Nisan 2000; Sandholmet al. 2001; 2002), approxima-
tion algorithms (Lehmann, O’Callaghan, & Shoham 1999;
Hoos & Boutilier 2000), and restricted auctions where bids
on only some subsets are allowed (Rothkopf, Pekeč, &
Harstad 1998; Sandholm & Suri 2000; Tennenholtz 2000;
Penn & Tennenholtz 2000). The first approach obtains opti-
mal solutions but can be exponential in the worst-case; the
second approach is typically polynomial time but usually
can’t provide any decent guarantee on the quality of solu-
tion; the third approach suffers from the same economic in-
efficiencies as noncombinatorial markets because the bid-
ders might not be able to bid on the bundles that they really
want.



All-Or-Nothing vs. Partial Acceptance of Bids
Most research on combinatorial markets has focused on the
binary case where each bid must be either fully accepted or
rejected, which makes the problemNP -Complete. In many
real combinatorial markets, bids could be accepted partially,
but it is more desirable to accept them entirely or not at all.
For instance, spectrum licenses can be refined but at an addi-
tional cost; transportation carriers prefer full truck loads but
will carry partial truckloads; in business procurement, sup-
pliers would rather have full contracts, but given a choice
between no contract or a partial one, may prefer the partial
contract. In other possible applications, such as computa-
tional ressource markets (e.g. CPU, disk, bandwidth), there
is no inherent reason to not accept partial bids. However,
since a combinatorial market maker’s reputation is linked
to its ability to allocate full bundles, there is an incentive to
minimize the number of partial bids. Allowing bids to be ac-
cepted partially has two advantages. First, a better economic
allocation is obtained: the relaxed linear program has a bet-
ter (or same) solution than the integer program. Second, the
computational complexity of the solving the exchange might
be reduced significantly.

In this paper we study markets where bids can be accepted
partially, but it is desirable to only accept a small number of
them partially. We show how many bids have to be accepted
partially to obtain a solution of equal value as that where
all bids can be accepted partially. We also determine the
computational complexity of finding such a solution.

Clearing Objectives
We consider two natural objective functions in solving com-
binatorial exchanges:surplusand trade volume. The for-
mer is thenetmonetary gain (profit) realized by trading the
goods: the difference between the revenue collected from
the buyers and the amount paid to the sellers. Maximizing
the surplus is also equivalent to maximizing thesocial wel-
fare in an economy because it puts the goods in the hands of
the people who value them most. (When we maximize sur-
plus, we actually maximizerevealed surplus, that is, surplus
as revealed by the bidders’ bids. If the bidders bid truth-
fully, then this corresponds to actual surplus. We do not ad-
dress the question of motivating the bidders to bid truthfully.
There is a large literature on this topic in game theory, and
our algorithms can be used in conjunction with those mecha-
nisms.) The second objective function is the total number of
unitstraded over all goodswithout external subsidy. That is,
the goal is to maximize the trade volume under the constraint
that the net surplus is non-negative—with external subsidy,
all the units can be traded trivially.1

Our Results
We state our results for combinatorial exchanges; since auc-
tions and reverse auctions are special cases, our results apply
to those markets as well. In an exchange, each buyer may be

1The subsidy provider buys everything from the sellers, paying
them their ask prices, and then sells everything to the buyers, col-
lecting their bid prices; any shortfall comes out of his subsidy. We
assume here that demand equals supply for each item.

matched with multiple sellers and vice versa. A seller places
a sell bid (also called anask), which specifies the goods he
wishes to sell and at what price. Similarly, a buyer places a
buy bid(simply called abid), which specifies the goods he
wishes to buy and at what price.2

Suppose there aren participants, labeled1 throughn,
of which S = {1, 2, . . . , s} is the set of sellers, andB =
{s+ 1, . . . , n} is the set of buyers. LetP ∗ denote the max-
imum possible surplus (profit) in any matching of buyersB
and sellersS allowing any number of bids to be partially
accepted.Similarly, let V ∗ denote the maximum possible
trading volume with any number of partial bids. In these op-
timal solutions, however, a rather large number of buy or sell
bids can be fractional. A natural question is how much sur-
plus or trade volume is sacrificed if we put anupper bound
on the number of bids that can be partially accepted. Sup-
pose the market hask distinct items, each with any number
of identical units, and each bid can be an arbitrary combina-
torial bid,(G, p), whereG is the bundle of items, specifying
how many units of each item, andp is the price attached to
the bid. We show that theory of linear programming eas-
ily implies that that the maximum surplusP ∗ is achievable
with at mostk partial bids. Similarly, when the objective is
to maximize the trade volume thenV ∗ is achievable with at
most(k+1) partial bids. These bounds are the best possible
in the worst-case.

Next, we consider the special case ofk = 1—that is, mar-
kets that trade multiple identical units of one item. We derive
fast combinatorial algorithm for maximizing the surplus or
trade volume while allowing at most partial bid for the sur-
plus and at most two partial bids for the volume. (Note that,
even in this restricted setting, the problem is intractable—
both the knapsack and the subset sum are special cases.)
These result are sharp: if no partial bid is allowed, then de-
termining the exact surplus isNP -Complete, and in a worst-
case the surplus can go to zero. Similarly, if no partial bid
is allowed, then the trading volume can go to zero fromV ∗,
and with one partial bid the best guarantee on the trade vol-
ume is1

2V
∗.

Next, we consider the case of a more expressive bidding
language, where each bidder can submit multiple bids that
arexor’ed together. A bid has the form(q1, p1)⊕(q2, p2)⊕
. . . ⊕ (qj , pj), where at most one(qi, pi) is to be accepted.
Such bids are more expressive because they can encode sub-
stitutability among items and decreasing marginal utility in
units. They are also used in practice for expressingvolume
discounts. At most one bid from a bidder can be accepted,
but that bid can be accepted partially. We now ask: is there
a polynomial time algorithm for maximizing the surplus or
trade volume withXOR-bids where some fixed number` of
bids can be partially fulfilled. Surprisingly, the answer is
negative. We show that computing the optimal surplus or

2For simplicity, we assume that each participant is either a
buyer or a seller; a participant who is both selling and buying in
the same exchange can be modeled by two separate proxies, one
seller and one buyer. Our exchange algorithms can also handle the
case where a bid includes both the buy and sell component, but to
simplify the discussion, we assume that each bid is either a buy or
a sell bid.



trade volume is stillNP -Complete, even for single-item ex-
changes (actually even auctions), irrespective of how many
partial bids are allowed.

Thus, we have a sharp division: markets where valuation
functions aresuperadditivecan be optimally solved using
a small number of partial bids (depending on the number
of distinct item types). But if the valuation functions are
subadditive, then even accepting bids partially does not help
clear the market.

Multi-Item Exchanges
We begin with the general multi-item multi-unit combina-
torial exchange, where each buyer or seller has a bid on a
bundleof goods. Suppose the exchange deals withk item
types (or goods). We use the notation,(qi, pi) to denote the
bid of participanti, whereqi is a vector of lengthk, and
pi is the price for the bundle. The number of units of item
j in this bid is denoted byqji . For example, a seller’s bid
(〈3, 0, 5〉, $100) is a bid to sell three units of item 1 and five
units of item 2 for $100.

Given a set ofn combinatorial bids, determining the sur-
plus maximizing matching isNP -Complete. The set pack-
ing problem is a special case of the combinatorial exchange
problem. We argue in this section that it is possible to find
a surplus or trade maximizing matching in polynomial time
where the number of bids accepted partially depends only
on k, the number of items, independent of the number of
units and the number of bidders. In particular, for surplus
maximization,k partial bids suffice; for trade maximization,
k + 1 partial bids suffice. We are implicitly assuming here
that the items are divisible (such as oil, gas, electricity, pol-
lution and logging rights) or roundable (commodities traded
in large quantities, such as equities, direct and indirect ma-
terials in business procurement) so that a partially satisfied
bid is viable. We begin by formulating the combinatorial
exchange problem as an integer program. Letxi denote the
binary variable, which represents whether the bidi is ac-
cepted (xi = 1) or rejected (xi = 0). (Recall thatB andS
are the sets denoting buyers and sellers, respectively.) The
following program maximizes the surplus.

max
∑
i∈B

pixi −
∑
i∈S

pixi (1)

s.t.
∑
i∈B

qji xi =
∑
i∈S

qji xi for j = 1, 2, . . . , k (2)

xi ∈ {0, 1} (3)

The objective function maximizes the difference between
the revenue from the buyers and the payment to the sellers.
The first constraint group ensures that demand equals supply
for each item, and the second constraint group enforces bi-
nary decision variables. (The equality in the first constraint
group can be relaxed to≥ inequality if extra items can be
freely disposed.)

The LP relaxation of this program changes the last con-
straint to0 ≤ xi ≤ 1. To show that a surplus maximizing
matching exists with at mostk partial bids, we argue that
every vertex of this LP polytope corresponds to a solution
in which at mostk variables are fractional. The argument

is quite straightforward: the linear program hasn variables
(the bids), and2n+ k constraints. (In addition to thek con-
straints of Eq. (3), there are2 constraints of typexi ≥ 0 and
xi ≤ 1 for each variable.) Each of these constraints is de-
fined by a hyperplane, and a vertex of the LP polytope corre-
sponds to the intersection ofn hyperplanes. Since there are
only k constraints of type Eq. (3), any vertex must involve
at leastn − k hyperplanes of the typexi = 0 or xi = 1.
Since the latter hyperplanes correspond to binary decisions
on bids, at leastn − k coordinates of any vertex are inte-
gral. Thus, the number of fractional coordinates, which cor-
respond to partial bids, is at mostk. Thus, any vertex of the
LP, and hence its optimal solution involves at mostk par-
tially satisfied bids.

The integer program for maximizing the trade volume is

max
∑
i∈B

k∑
j=1

qji xi

s.t.
∑
i∈B

qji xi =
∑
i∈S

qji xi for j = 1, 2, . . . , k∑
i∈B

pixi −
∑
i∈S

pixi ≥ 0

xi ∈ {0, 1}

The objective function maximizes the number of units
bought by all the buyers (which equals the number of units
sold by sellers). The first constraint group is the same as
before: matching demand and supply for each item. The
second constraint is a new one: it ensures that total net sur-
plus is non-negative. Arguing as before, it follows easily
that any vertex of the LP polytope can have at mostk + 1
fractionalxi’s, and so the trade-maximizing matching has at
mostk + 1 partially satisfied bids. (It is easy to see that our
formulation and the proof holds even if a bid contains both
the buy and sell components in it.) We conclude with the
following simple result.

Theorem 1 Consider a multi-unit combinatorial exchange
with k items. Given any set ofn combinatorial buy or sell
bids, there is a surplus-maximizing matching with at most
k partially satisfied bids, and a trade-maximizing matching
with at mostk + 1 partially satisfied bids. These matchings
can be found by solving a linear program withn variables
and2n+ k constraints.

These bounds are close to the best possible. The fol-
lowing example shows that the surplus can drop fromkL
to zero if the number of partial bids is reduced belowk.
Consider a single buyer, who places a combinatorial bid
(〈1, 1, . . . , 1〉, $kL) to buy one unit of each of thek items,
for a total price ofkL. There arek sellers, where selleri
has2 units of itemi, for price2ε. A surplus ofk(L − ε) is
possible by satisfying each seller partially. But if fewer than
k partial bids are allowed, then no trading is possible, and
the surplus is reduced to zero. We can extend this example
to show similar behavior for trade volume.

Next, we consider the special case of single item ex-
changes, and develop fast combinatorial algorithms for it.



This is an important setting, since many markets have ded-
icated sub-markets for individual good types (e.g. stocks,
commodities).

Single-Item Exchanges
Each bid specifies the number of units and the price for the
bid. It will be more convenient to use theper unit price in
bids, so that a bid(q, p) means that the bidder wants to buy
or sellq units at the price of $p per unit. (If fewer thanq units
are traded, then this bid is considered partially accepted.)

The exchange hass sellers andn− s buyers, and our goal
is to determine an optimal trading among them maximiz-
ing either the total surplus or the volume (number of units
traded). We use the notation(qi, pi) to denote the bid of
participanti; we will use the index setsS andB to distin-
guish between sellers and buyers. We also use the notation
(q′i, pi) to denote the portion of the bid(qi, pi) that was ac-
cepted. Amatchingbetween the buyers and sellers is defined
as abipartite graph, with nodesS ∪ B, and an edge(s, b)
if a non-zero trade occurs between the sellers and buyerb.
Each buyer may be matched with multiple sellers and vice
versa. We use the notationexch(s, b) to denote the num-
ber of units traded betweens andb. Observe that, for any
sellers,

∑
b∈B exch(s, b) = q′s ≤ qs and, for any buyerb,∑

s∈S exch(s, b) = q′b ≤ qb.
SupposeM is a matching between buyers and sellers

(with any number of partial bids), then the surplus generated
byM is written as

PM =
∑
i∈B

q′i pi −
∑
j∈S

q′j pj .

The trade volume generated byM is written as

VM =
∑
i∈B

q′i =
∑
j∈S

q′j .

The next two subsections separately deal with the objec-
tives of maximizing the surplus and the trade volume.

Surplus Maximization
Our algorithm is quite simple and based on sorting the buyer
bids in descending order of per unit price, and sorting seller
bids in ascending order of per unit price. For technical con-
venience, we will assume that the bids of all buyers have
distinct unit prices, and similarly for the sellers. Otherwise,
an appropriate tie-breaking rule can enforce a unique order-
ing. The algorithm is described below.

Single-Item-Max-Surplus

1. Sort the buyers in descending and sellers in ascending or-
der of per unit price.

2. Initially all buyers and sellers areunmarked.

3. While there is at least one unmarked buyer and one un-
marked seller, repeat the following steps:

• Let b ands be the first unmarked buyer and seller.
• If pb ≤ ps, then terminate.

• Else if qb ≤ qs, then markb, setqs = qs − qb, and
exch(s, b) = qb.
• Else if qb > qs, then marks, setqb = qb − qs, and
exch(s, b) = qs.

(10, $3)

(15, $5)

(10, $8)

(12, $6)

(20, $4)

(20, $3)

(10, $1) (4, $10)4

6
6

4

*

BuyersSellers

Figure 1: AlgorithmSingle-Item-Max-Surplus. Asterisk
marks the buyer with partial bid.

Fig. 1 illustrates the algorithm. We now prove that this
algorithm produces maximum possible surplus and results in
at most one partial bid. Assume, without loss of generality,
that the descending price order of buyers isb1, b2, . . . and
the ascending price order of sellers iss1, s2, . . .. We begin
by introducing the definition of bid contiguity, which says
that an optimal matching can’t skip bids.

Let M be a matching between buyersB and sellersS,
and suppose thatbk is the lowest price buyer with non-zero
trade, ands` is the highest price seller with non-zero trade.
We say that matchingM satisfies thebid contiguitycondi-
tions if the bids of all buyersb1, b2, . . . , bk−1 and all sellers
s1, s2, . . . , s`−1 are fully satisfied.

Lemma 1 Any surplus-maximizing matchingMopt between
B andS satisfies bid contiguity.

PROOF. The proof is by a simple swapping argument. As-
sume thatbk is the lowest price buyer with non-zero trade,
ands` is the highest price seller with non-zero trade. Sup-
pose there is a buyerbi, with pi > pk, whose bid is partially
fulfilled. Let sj be a seller withexch(sj , bk) 6= 0. Since
psj < pbk , it follows thatpsj < pbi , and so we can transfer
one unit of trade from(sj , bk) to (sj , bi), which improves
the surplus, contradicting the optimality ofMopt. Thus,bi’s
bid must be fully satisfied. An identical argument works for
the sellers. 2

Lemma 2 In a surplus-maximizing matchingMopt between
B andS, supposebk is the lowest price buyer with non-zero
trade, ands` is the highest price seller with non-zero trade.
Then,pbk > ps` .

PROOF. By contradiction. We can write the surplus gener-
ated byMopt as

Popt =
k∑
i=1

q′i pi −
l∑

j=1

q′j pj .

The remaining buyers and sellers do not participate in trad-
ing, and therefore generate no surplus. Suppose, without
loss of generality, thatqbk ≥ qs` . We rearrange the terms in
the above equation as



Popt =
k−1∑
i=1

qi pi−
`−1∑
j=1

qj pj+pbk(qbk−qs`)+qs`(pbk−ps`).

This follows because, by the preceding lemma,q′i = qi for
the firstk−1 buyers and first̀−1 sellers. Now, ifpbk ≤ ps`
holds, then we can improve the surplus by modifying the
matching to one wheres`’s trade is reduced to zero, and
bk ’s trade is reduced toqbk − qs` . But that contradicts the
optimality ofMopt. 2

Next we introduce the following definition ofprice inver-
sion.We say that a matchingM , wherebk is the lowest price
buyer with non-zero trade, ands` is the highest price seller
with non-zero trade, satisfies theprice inversionif

• If buyer bk ’s bid is partially satisfied, thenpbk < ps`+1 .
• If sellers`’s bid is partially satisfied, thenpbk+1 < ps` .
• If neitherbk nors` is partial, thenpbk+1 < ps`+1 .

We have the following result.

Lemma 3 Any matchingM between buyersB and sellerS
that satisfies the bid contiguity and price inversion condi-
tions is a surplus-maximizing matching, and it has at most
one partially satisfied bid.

PROOF. We begin by showing thatM maximizes surplus.
Let Mopt be an optimal matching, with maximum surplus,
and supposebi is the lowest price buyer with non-zero trade,
andsj is the highest price seller with non-zero trade inMopt.
SinceMopt maximizes surplus, by Lemma 1, it satisfies bid
contiguity. The matchingM satisfies bid contiguity by as-
sumption. Thus, the bids of buyersb1, . . . , bk−1 and sellers
s1, . . . , s`−1 are fully satisfied inM , and, similarly, the bids
of buyersb1, . . . , bi−1 and sellerss1, . . . , sj−1 are fully sat-
isfied inMopt. SinceMopt is optimal, it must be the case
thati ≥ k andj ≥ l, which by the sorted order implies that

pbi ≤ pbk and psj ≥ ps` .

Of course, if the bids of bothbk ands` in M are fully sat-
isfied, then it must be the case thati = k andj = l, mean-
ing thatM = Mopt; this follows because price inversion
pbk+1 < ps`+1 occurs, and so there can’t be any other trades
past(s`, bk). So, without loss of generality, assume that the
bid of sellers` is partially satisfied. We get from the price
inversion thatpbk+1 < ps` . If bi 6= bk, then we must have
ps` > pbi , becausei > k and prices are descending in the
buyer sequence. Next, sincej ≥ l and the prices are increas-
ing in the seller sequence, we must have thatpsj > pbi . But
this contradicts the claim of Lemma 2. Therefore, we must
havebi = bk andsj = s`, which immediately implies that
the matchingM is optimal.

Finally, it remains to show thatM has at most one partial
bid. By Lemma 1, the only candidates for partial bids are
sellers` and buyerpk. By Lemma 2, however, the buyerbk ’s
unit price is bigger than the sellers`’s unit price, and if both
were partial, additional trade would be possible. Therefore,
at most one ofs` andbk can be partial. This completes the
proof. 2

We now show that the matching output by the algorithm
Single-Item-Max-Surplus satisfies both the bid contiguity
and price inversion, as follows. The bid contiguity follows
because we scan the bids in order (descending for buyers, as-
cending for sellers), and a new bid is considered only if the
previous bid is fully satisfied. The price inversion follows
because as long as the seller price is smaller than the buyer
price, namely,ps < pb, we set up exchange betweens and
b. The algorithm stops only when one of the following three
conditions occurs:(i) bk is fully satisfied butps` > pbk+1 ,
so next buyer is ineligible; or(ii) s` is fully satisfied but
ps`+1 > pbk , so next seller is ineligible; or(iii) bk ands`
are both fully satisfied andps`+1 > pbk+1 , and so no more
exchange among remaining buyers and sellers is possible.
But these conditions precisely state the price inversion con-
dition. We therefore have the following result.

Theorem 2 Given n buyers and sellers in a single-item,
multi-unit exchange, we can determine a surplus maximiz-
ing matching where at most one bid is partially satisfied in
timeO(n log n).

It is also easy to see that the partially satisfied bid in our
matching belongs to either the buyer with the lowest (per
unit) bid price, or to the seller with the highest (per unit) ask
price.

Trade Volume Maximization
We now consider a matching between buyers and sellers that
maximizes the number of units traded. We require that the
matching must produce a non-negative surplus; otherwise,
the problem is trivial. Recall that the trade volume gener-
ated by a matchingM is VM =

∑
i∈B q

′
i, whereq′i is the

number of units bought by buyeri. We begin with a sim-
ple algorithm that achieves optimal trade volumebut it may
result in an unbounded number of partial bids,as shown in
Fig. 2. We then show how to use a sequence of swaps that
reduces the number of partial bids to two without reducing
the trade volume.

Single-Item-Max-Trade

1. Sort the buyers and sellers in descending order of per unit
price.

2. Initially all buyers and sellers areunmarked.

3. While there is at least one unmarked buyer and one un-
marked seller, repeat the following steps:

• Let b ands be the first unmarked buyer and seller.
• If pb < ps, then mark sellers.
• Else if qb ≤ qs, then markb, setqs = qs − qb, and
exch(s, b) = qb.
• Else if qb > qs, then marks, setqb = qb − qs, and
exch(s, b) = qs.

It is easy to see that this algorithm produces at most one
buyer with partially satisfied bid, but the number ofpartial
sellers can be arbitrarily large, as shown by the example
in Figure 2. In order to prove that this algorithm realizes
the maximum possible trade volume, we first show that it is



BuyersSellers

(10, $7) (9, $8)9*

(10, $5) (9, $6)9*

(10, $3) (9, $4)9
*

(10, $1) (9, $2)999*

Figure 2: Illustration of the algorithmSingle-Item-Max-
Trade. All the sellers are partially satisfied.

sufficient to restrict our attention to “non-crossing” match-
ings. More precisely, consider an embedded bipartite graph,
where the seller nodes are listed in descending price or-
der along the linex = 0, and the buyer nodes are listed
in descending price order along the linex = 1. Given a
matchingm, put an edge between buyerb and sellers if
exch(b, s) 6= 0. We say thatM is non-crossing if the bipar-
tite graph ofM does not contain any crossing edges.

Lemma 4 There exists a trade-maximizing non-crossing
matching.

PROOF. Given a matchingM , let the cross-trade ofM be the
number of units corresponding to edges that are crossed by
some other edge. We want to show that there is a matching
with cross-trade zero. For the sake of contradiction, assume
thatM is a trade-maximizing matching with the smallest
cross-trade. Consider the highest price buyerb1 that has a
crossing edge incident to it in the bipartite graph. Consider
two trading pairs(b1, s1) and (b2, s2) that are crossing in
the bipartite graph ofM . Assume, without loss of general-
ity, thatpb1 ≥ pb2 , and thereforeps2 ≥ ps1 . By definition of
feasible trade, we havepb2 ≥ ps2 , and thereforepb1 ≥ ps2 .
Similarly, pb2 ≥ ps1 . We can “uncross” one unit of trade,
wheres1 sells tob2 ands2 sells tob1. This does not de-
crease the total trade volume, but reduces the cross-trade by
at least one unit, since the unit traded betweenb1 ands2 is
not crossed by any other edge. This contradicts the choice
of M . Thus,M must be non-crossing. 2

Lemma 5 The matching found bySingle-Item-Max-Trade
is trade-maximizing.

PROOF. By the preceding lemma, it is sufficient to show that
among all non-crossing matchings, the algorithm find the
one with maximum trade. We prove this by contradiction.
Suppose there is a matchingM ′ with VM ′ > VM , where
M is the output of our algorithm. Letsi be the smallest
indexed seller such that the total number of units sold by
{s1, s2, . . . , si} in M is smaller than the units sold inM ′.
Thus, the bid ofsi must be partially satisfied. But this can
only happen in our algorithm if all buyersbj with unit price
pbj ≥ psi are completely satisfied. Since these are the only
buyers that can trade with sellers in{s1, s2, . . . , si}, we have
a contradiction that sellers in{s1, s2, . . . , si} realize a larger
trade inM ′ than inM . 2

We now show how to execute a sequence of swaps on
the matching returned by the algorithmSingle-Item-Max-
Trade so that the trade volume remains the same but the
number of partial bids can be reduced to at most two. We
pointed out earlier that the number of partial buyer bids is
at most one, and we will show that a suitable sequence of
swaps can reduce the number of partial seller bids to at most
one as well.

Theorem 3 Given n buyers and sellers in a single-item,
multi-unit exchange, we can determine a trade-maximizing
matching where at most one seller bid and one buyer is par-
tially satisfied in timeO(n log n).
PROOF. We first compute the trade-maximizing matching
using the algorithmSingle-Item-Max-Trade. This takes
O(n log n) time, and the matching has at most one buyer
partial bid, but possibly many seller partial bids. Suppose
there are at least two partially satisfied sellers. In the de-
scending price sorted order of sellers, lets` be the last seller
whose bid is partially satisfied, and letsi be the seller with
partial bid befores`. We use the notationqs andq′s to de-
note the quantity bid and quantity traded by sellers. Thus,
q′s` < qs` andq′si < qsi .

Supposebj is a buyer such thatexch(si, bj) 6= 0. Let
δ` = qs` − q′s` be the number of unfulfilled units for the
sellers`. If exch(si, bj) > δ`, then setexch(si, bj) =
exch(si, bj) − δ`, andexch(s`, bj) = exch(s`, bj) + δ`.
Otherwise, setexch(s`, bj) = exch(s`, bj)+exch(si, bj),
and setexch(si, bj) = 0. In the former case, sellers`’s
bid is fully satisfied, and in the latter, the sellersi’s bid is no
longer accepted, thus the number of partial bids reduces by
one, while the trade volume remains unchanged. We repeat
this process until at most seller bid is partially satisfied.

The time complexity of the algorithm isO(n) after the
initial sorting of buyers and sellers, because in each step at
least one partial bid is eliminated in constant time. 2

Exchanges withxor-Bids
Combinatorial exchanges where items havesubstitutability
(negative complementarity) or where units havedecreasing
marginal utility require a more expressive form of bidding.
For instance, if a buyer values objectA at $10, objectB at
$5, but the bundle〈A,B〉 at only $12, then with straight-
forward method of placing all three bids is inadequate. A
seller can sell itemsA andB to a buyer and expect the pay-
ment of $15, arguing he sold the items separately. A more
expressive form of bidding usingxors is needed (Sand-
holm 2002a; Fujishima, Leyton-Brown, & Shoham 1999;
Sandholm 2002b; Nisan 2000). In our example, the buyer
will like to bid (A, $10)⊕ (B, $5)⊕ (〈A,B〉, $12).

The xor-bids are also used for volume discount in
multi-unit exchanges, such as a bid(10, $10) ⊕ (25, $8) ⊕
(100, $5), indicating a desire to buy larger quantities as the
per unit price drops. Of all the bids that are linked byxors,
at most one can be accepted. Even for single-item multi-
unit exchanges, with or withoutxors, the problem of maxi-
mizing the surplus or trade volume isNP -Complete; for in-
stance, both the knapsack and subset sum are special cases.
But can allowing some partial bids help, as we found to



be the case withoutxors? Surprisingly, the answer turns
out to be negative. We show that even for a single-item ex-
change, determining the maximum surplus matching isNP -
Complete even allowing (any number of) partial bids. Our
reduction is from thesubset sum problem.

Consider an instance of the subset sum problem:
(a1, a2, . . . , an, Z), whereai’s andZ are positive integers,
and the problem is to decide if there is a subset ofai’s that
sum to exactlyZ. We create an instance of the one-sided
single-item exchange, with a single seller (the auctioneer)
who hasn + Z units to sell, andn bidders. The bidderi
places anxor-bid of the form

(1, $A)⊕
(
ai + 1, $

(
A+ ai
ai + 1

))
,

whereA ≥ max{a1, a2, . . . , an}. (Recall that the bid price
is per unit price.) We assume that the auctioneer’s selling
price is zero, and thus maximizing the surplus is the same as
maximizing the auctioneer’s revenue. A feasible matching
is one where at most one bid in eachxor pair is accepted,
but it can be accepted partially.

Our reduction will show that this exchange yields a rev-
enue≥ nA + Z if and only if the subset sum problem has
a solution. Furthermore, we show that for this particular
exchange, partial bids do not help, in fact,they worsenthe
revenue. In order to argue this more formally, let us call a
solution of the exchange problemstrictly integral if it con-
tains no partially satisfied bid, andfractional if at least one
bid is accepted partially. We prove the following theorem.
For convenience, for each bidderi, let us call the(1, $A) bid
hishigh bid, and the(ai+1, $(A+ai)/(ai+1) bid hislow
bid.

Theorem 4 Suppose that the subset
sum problem(a1, a2, . . . , an, Z) has a solution. Then, the
associated exchange problem has a strictly integral solution
with surplus≥ nA+Z, while every fractional solution of it
has surplus< nA+ Z. If the subset sum problem does not
have a solution, then every solution of the exchange problem
(integral or fractional) has surplus< nA+ Z.

PROOF. If the subset sum problem has a solution, then let
I be the index set of elements that sum toZ. We obtain a
strictly integral solution with surplusnA + Z, as follows.
The auctioneer sellsai + 1 units to each bidderi ∈ I, and
one unit to each remaining bidder. The total number of units
sold is

∑
i∈I(ai + 1) + (n− I) = Z + I + n− I = n+Z.

The total surplus is
∑
i∈I(A+ ai) + (n− I)A = nA+ Z.

We now show that every fractional solution is worse.
The argument depends on two observations:(i) in an op-

timal matching, there can be at most one partial bid; and(ii)
if buyer i’s low bid is fully satisfied, then we can interpret
that bid as “$A for for the first unit, and $1 for each of the
remainingai units.” (Note that this interpretation isincor-
rect if the low bid is partially satisfied.) An argument for
the first observation is as follows. In an optimal matching,
all high bids must be fully satisfied, because there aren+Z
units, and onlyn high bids, and the per unit price of any
high bid is strictly larger than that of any low bid. Secondly,
if there two partially satisfied low bids, then we can improve

the solution by transferring units from the buyer with lower
per unit price to the buyer with higher per unit price. The
second observation follows from elementary algebra.

Now, let us consider a fractional solution of the exchange.
Let i be a buyer whose bid is partially satisfied. We first ar-
gue that the partial bid must be the low bid ofi. Otherwise,
we can raise the surplus by increasing the partial high bid of
i by ε and reducing any other buyer’slow bid by the same
amount. Since the unit price of a high bid is strictly greater
than the unit price of every low bid, this increases the sur-
plus. Observe that there must be at least one buyer whole
low bid is satisfied, since otherwise the total surplus can’t
exceednA.

Thus, the partial bid is a low bid, and suppose that buyeri
receivedm > 1 units for this bid. By Observation(i) above,
the bids of the remainingn − 1 buyers are fully satisfied.
Thus, each of the remainingn − 1 buyers gets at least one
unit. In addition, these buyers have at most(n+ Z)− (n−
1) − m = Z − m + 1 additional units among them. Any
bidder that receives strictly more than one unit has hislow
bid satisfied. Now, by Observation(ii), theseZ − m + 1
units generate a surplus of $1 each. Thus, the total surplus
by then− 1 buyers is at most

(n− 1)A+ (Z −m+ 1).

The ith bidder’s bid is partially satisfied, and therefore
he generates the surplus ofm(A + ai)/(ai + 1). Thus, for
the fractional solution under consideration, the surplus is at
most

(n− 1)A+ (Z −m+ 1) +m(
A+ ai
ai + 1

)

≤ (n− 1)A+ Z +
(

(1−m) +m(
A+ ai
ai + 1

)
)

< (n− 1)A+ Z +A

= nA+ Z

This proves that every fractional solution of the exchange
has surplus< nA + Z. Finally, if the subset sum does not
have a solution, then it is easy to see that both an integral
and a fractional solution must have value< nA+ Z. 2

The preceding theorem shows that determining a surplus-
maximizing matching in a single-item exchange isNP -
Completeeven if (any number of) partial bids are permis-
sible.

Conclusions
We investigated the problem of matching buyers and sellers
in a combinatorial exchange with the objective of maximiz-
ing either the surplus or the number of units traded. These
problems areNP -Complete, and prior work has focused
on tree search algorithms, approximation schemes, and re-
stricted classes of exchanges. In this paper, we took a new
approach, and showed that even multi-item multi-unit ex-
changes can be solved optimally if we allow a small num-
ber of bids to bepartially satisfied. Our optimal solution



has value equal to the optimal solution that is obtainable if
all bids were partially acceptable, which is generally higher
(and never lower) than the value when bids have to be en-
tirely accepted or rejected. The polynomial solution time
should be contrasted with the fact that, in general, combina-
torial exchanges are at least as hard as weighted set packing,
which cannot even be approximated within a factor better
thanΩ(n1−ε) (Håstad 1999).

The bidding language that simply allows bidders to bid on
multiple (nonexclusive) combinations enables bidders to ex-
press complementarity between items, but not substitutabil-
ity (the value of a bundle being less than the sum of the
parts). We show that if the bidding language is enriched
with xor-constraints between bids (a common, necessary
and sufficient enrichment that achieves full expressiveness
by the bidders), then allowing for partial acceptance of bids
does not help—even for single item exchanges, computing
the optimal matching remainsNP -Complete no matter how
many partial bids are allowed.

To address this difficulty, one interesting avenue of future
research includes studying whether a market can be cleared
if only restricted substitutability (and unrestricted comple-
mentarity through bundle bidding) is allowed. For exam-
ple, to achieve polynomial-time clearability, how many bids
need to be accepted partially if substitutability only comes
in the form of a capacity constraint from each seller and/or
a budget constraint from each buyer? Our LP hyperplane-
based analysis approach can easily be extended to answer
questions of this type.

Acknowledgments
This work was supported in part by the National Science
Foundation under ITR grant IIS-0121678. Kothari and Suri
were also supported in part by National Science Foundation
grants IIS-0121562 and CCR-9901958. Sandholm was also
supported in part by National Science Foundation CAREER
Award IRI-9703122, and grants IIS-9800994 and ITR IIS-
0081246.

References
Fujishima, Y.; Leyton-Brown, K.; and Shoham, Y. 1999.
Taming the computational complexity of combinatorial
auctions: Optimal and approximate approaches. InPro-
ceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI), 548–553.
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