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Abstract
In this paper we focus on the problem of how infinite
belief hierarchies can be represented and reasoned
with in a computationally tractable way. When
modeling nested beliefs one usually deals with two
types of infinity: infinity of beliefs on every level of
reflection and infinity of levels. In this work we
assume that beliefs are finite at every level, while the
number of levels may still be infinite.  We propose a
method for reducing the infinite regress of beliefs to a
finite structure. We identify the class of infinite belief
trees that allow finite representation. We propose a
method for deciding on an action based on this
presentation. We apply the method to the analysis of
auctions. We prove that if the agents’ prior beliefs
are not common knowledge, the revenue equivalence
theorem ceases to hold. That is, different auctions
yield different expected revenue. Our method can be
used to design better auction protocols, given the
participants’ belief structures.

1. Introduction

Reasoning about others and interactive knowledge
have been the subject of continuous interest in
multiagent systems [11,12,13,20], artificial
intelligence [6,7,8] and game theory [1,3,15]. In
multiagent interaction, where an agent’s action
interferes with other agents’ actions, hierarchies of
beliefs arise in an essential way. Usually an agent’s
optimal decision depends on what he believes the
other agents will do, which in turn depends on what
he believes the other agents believe about him, and so
on. An infinite regress of this kind gives rise to
several important issues. The first issue concerns the
methods for representing infinitely nested beliefs. In
order to maintain and update such beliefs, agents
need some finite and computationally tractable way

to represent them. The second issue that deserves
consideration is the feasibility of decision making
based on infinitely nested beliefs.

Finite hierarchies of beliefs have been studied by
Gmytrasiewicz, Durfee and Vidal [11,12,13, 20]. The
main advantage of their recursive modeling method is
that a solution can always be derived. The recursive
modeling method is based on the assumption that
once an agent has run out of information his belief
hierarchy can be cut at the point where there is no
sufficient information. At the point of cutting,
absence of information is represented by a uniform
distribution over the space of all possible states of the
world. The absence of information with which to
model other agents implies that belief hierarchies are
potentially finite. In our work we take a different
approach. We suppose that every belief hierarchy is
potentially infinite and we consider the problem of
how such a hierarchy can be represented using a finite
structure and manipulated in a computationally
tractable way. We show that some infinite belief trees
allow finite representation in the form of pointed
accessible graphs.

The most typical and the most studied example of
infinite belief hierarchies is common knowledge
[4,7,10]. Common knowledge means that everyone
knows that everyone knows that… Common
knowledge, however, is a very special case of a belief
hierarchy, namely, a hierarchy that consists of infinite
repetition of some event. Such a hierarchy can be
reduced to a finite representation if we treat all the
repetitions in the hierarchy as identical. In this paper
we extend this idea to infinite belief hierarchies with
more complex structure.

The research presented in this paper is closely
related to the work in game theory devoted to games
with incomplete information [9]. In our work, the
epistemic state of each agent is modeled as an infinite



hierarchy of beliefs. Harsanyi suggested that each
hierarchy of beliefs could be summarized by the
notion of agent’s type [9]. Later Mertens and Zamir
proved that the space of all possible types is closed in
the sense that it is large enough to include even
higher-order beliefs about itself [15]. Brandenburger
has shown that if agents’ beliefs are coherent the
space of all possible types is closed [4].

The paper is organized as follows. In Section 2 we
propose the notion of balanced strategy labeling. In
Section 3 we show how regular belief trees can be
represented with finite trees. In section 4 we propose
a graph representation for infinite belief trees. We
apply our approach to the analysis of auctions in
Section 5. Finally, the paper concludes by
summarizing the results and providing directions for
future research.

2. Infinite belief hierarchies

In every multiagent interaction, an agent faces two
types of uncertainty: basic and belief uncertainty.
Basic uncertainty relates to the elements of the
physical environment, which are uncertain to agents.
We model basic uncertainty by a finite set T,
T={t 1,t2,…,tn}, including all uncertain elements of the
physical environment. We represent agents’ basic
beliefs as a subjective probability distributions on T.

While basic uncertainty deals with the elements of
the physical environment, belief uncertainty relates to
other agents’ beliefs. That is, belief uncertainty
includes an agent’s beliefs about other agents’
beliefs, his beliefs about other agents’ beliefs about
other agents’ beliefs, and so on.

Figure 1. A first-order belief tree

Suppose that the agents under consideration are
agent i and agent j. First order beliefs of agent i can
be represented by a discrete probability distribution
σ, σ=(p1,p2,…,pn). That is, agent i believes that the
true state of the environment is t1 with probability p1,
t2 with probability p2, and so on. First order beliefs of
agent i can be represented by a belief tree. The nodes
of the tree are labeled with the elements of T and arcs
are labeled with probabilities. For every node, the
sum of the probabilities on outgoing arcs is 1. Figure

1 shows a belief tree that represents first-order beliefs
of agent i.

Second order beliefs of agent i include his beliefs
about the true state of the environment and his beliefs
about agent j’s beliefs about the true state of the
environment. A second-order belief tree for agent i is
represented in Figure 2.

Figure 2. A second-order belief tree

Let σ1 denote the first-order beliefs of agent j that
the true state of the environment is t1 with probability
q1 and t2 with probability q2, and so on. Similarly, let
σn denote agent j’s beliefs that the true state of the
environment is t1 with probability r1 and t2 with
probability r2, and so on. According to Figure 2, agent
i assigns probability p1 to the event that the true state
is t1 and the first order beliefs of agent j are σ1. At the
same time, agent i believes that with probability pn

the true state is tn and agent j’s beliefs are σn.
Therefore, each level of a belief tree is associated
with one of the agents. Levels alternate: the first level
corresponds to agent i, the second to agent j, and so
an. This alternation of levels produces alternation of
beliefs: agent i believes that agent j believes that
agent i believes, and so on.

In this paper we assume that all belief trees are
locally finite. That is, the branching factor of every
node is finite. At first sight this may seem to be a
substantial constraint. Since the cardinality of the
space of all first-order beliefs is a continuum, one
might expect that trees are not an adequate
representation of an agent’s beliefs. In interactive
epistemology and game theory [1,3,15] recursive
beliefs are usually represented as nested probability
distributions. Such representations, although
theoretically elegant, are not often tractable from a
computational point of view. In this paper we focus
on the problem of how beliefs can be represented in a
computationally tractable way. In recursive modeling,
one usually deals with two types of infinity: infinity
of beliefs on every level of reflection and infinity of
levels. In this work we assume that beliefs are finite
at every level, while the number of levels can be
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infinite. We propose a method for reducing the
infinite regress of beliefs to a finite structure. The
idea behind our approach is that some infinite belief
hierarchies display repetitive patterns and
regularities. This makes it possible to “merge” some
parts of an infinite hierarchy and to “cut” other parts.
Previous research of Gmytrasiewicz and Durfee
[11,20] assumes that both the number of levels of
beliefs and the number of beliefs at each level are
finite.

According to the game-theoretic tradition [1], the
belief structure of an agent can be represented by a
hierarchy of beliefs.

Definition 1. A belief hierarchy, Bi
∞, of agent i is an

infinite sequence of finite belief trees. That is,
Bi

∞=(bi

1,bi

2,bi

3,…), where bi
k represents agent i’s k-

order beliefs.

A belief hierarchy is a complete enumeration of all
orders of belief. Since a rational agent can hold
beliefs of an arbitrary order, every belief hierarchy is
inherently infinite.

Since every k-order belief tree implicitly
determines k-1-order beliefs, it is natural to assume
that all trees in a belief hierarchy are consistent. By
this we mean that bi

k-1 represents the k-1-order beliefs
determined by bi

k. In other words, bi
k-1 is a subtree of

bi

k. Belief consistency says that the different levels of
beliefs do not contradict one another.

The principle of consistency allows us to reduce
the infinite sequence of belief trees, Bi

∞, to a single
infinite tree. Since in Bi

∞ every tree carries all the
information presented in the preceding trees, the
sequence of belief trees is monotonically increasing
and we can take the limit. Let Γ(Bi

∞) denote the limit
tree that corresponds to the sequence Bi

∞. For the sake
of simplicity we will denote Γ(Bi

∞) by Γi whenever
this is not a source of confusion.

Infinity of Γi creates several problems. First, it is
problematic how an agent can build, update and
manipulate such a structure. Second, how can an
agent predict the behavior of other agents if his own
beliefs run to infinity?

In this paper we will show that some infinite belief
trees can be represented by finite belief trees or by
finite graphs. By this, we provide a uniform way to
deal with uncertainty that does not depend on the
depth of agents’ beliefs.

Let Sk be the strategy set of agent k, k=i,j. Γi

denotes a belief tree (infinite or finite) of agent i. We
represent Γi as a pair (N(Γi),A(Γi)), where N(Γi) is the
set of nodes and A(Γi) is the set of arcs. We also use

the following notation:
Γi

ag(v) returns the name of the agent whose
beliefs are represented at node v, v∈N(Γi).
That is, Γi

ag: N(Γi)→{i,j}. For example,
Γi

ag(v) returns i for every node that is
located at an odd-numbered level of Γi.

Γi

succ(v) denotes the set of the successors of a node
v, v∈N(Γi).

Γi

prob(v) denotes the probability distribution
assigned to node v, v∈N(Γi).

With each node, v, of the belief tree, Γi, we assign
a strategy that tells what agent Γi

ag(v) will do at that
node. For a node corresponding to agent i’s beliefs,
the assigned strategy belongs to agent i’s strategy set
Si. Similarly, for a node corresponding to agent j’s
beliefs the strategy belongs to Sj. Formally, we denote
a strategy labeling by φ:N(Γi)→Si∪Sj. Every strategy
labeling of  Γi  represents agent i’s beliefs about the
strategies of both agents. It is clear that agent i’s
strategy depends on his believes about agent j’s
strategy. Agent j’s strategy depends on agent j’s
beliefs about agent i’s strategy, and so on. That is, a
strategy labeling is a solution to the problem of
strategy choice for agent i given his beliefs Γi.

For every infinite belief tree, Γi, there exists an
infinite number of strategy labelings. However, only a
few of them (if any) meet the Bayesian rationality
requirement, i.e., that a strategy at each node, v, has
to be a best response to the other agents’ strategies at
the successors of v. That is, if at level m of his
reflection, agent i believes that at level m+1 agent j is
going to use some (possibly mixed) strategy, then the
strategy of agent i at level m should be a best
response to agent j’s strategy given the probability
distribution at level m+1.  The following definition
introduces the class of balanced strategy labelings. A
strategy labeling, φ, is balanced if the strategy
associated with each node is a best response to the
strategies associated with the successor nodes, given
the probabilities assigned to the successors.
Formally,

Definition 2. A strategy labeling φ is balanced iff for
every node v, v∈N(Γi), φ(v) is a best response to the
mixture of strategies [φ(Γi

succ(v)), Γi

prob(v)].

Another way to look at a balanced strategy
labeling φ of Γi is to see it as the limit of balanced
strategy labelings for finite trees of the infinite
hierarchy Bi

∞, Bi
∞=(bi

1,bi

2,bi

3,…). That is,

lim φi

k=φ (1)
k→∞



Here φi

k represents a balanced strategy labeling of bi

k.
According to Definition 2, if the limit (1) exists, it

should be a balanced strategy labeling for Γi. This
constructive interpretation of balanced strategy
labelings gives us an idea of how to compute them.
First, it is necessary to compute a balanced strategy
labeling for the first-order belief tree bi

1 (in fact,
computation can start from any tree bi

k). This can be
done, for example, by applying backward induction.
The strategies computed at the first stage are further
refined by computing a balanced strategy labeling for
the second-order belief tree bi

2. After that, the
computation proceeds with the third-order belief tree
bi

3, and so on. This process can stop at any time or
when some predefined solution precision is achieved.
There is no guarantee that this process of iterative
refinement is convergent. If it is convergent,
however, the limit is a balanced strategy labeling. It
is worth noting that any stage of the computation can
yield several intermediate solutions. Therefore,
uniqueness of the final balanced strategy labeling is
not guaranteed. If, however, two balanced strategy
labelings exist, they will be payoff equivalent. That
is, they give agent i the same expected payoff.

3. Representation of infinite belief trees
with finite trees

In this section we show how regular infinite belief
trees can be represented in a finite way. Such
representation has several important advantages.
First, agents can cope with infinite belief hierarchies
by reducing them to finite graphs. Second, agents can
apply to infinite beliefs the same techniques they use
to handle finite beliefs.

Definition 3. An infinite tree is regular if and only if
the number of its distinct subtrees is finite [5].

It is evident that a regular belief tree is a repetition
of a finite number of subtrees. This means that by
extending a regular tree to infinity we do not add new
strategically relevant information. The following
proposition states that for every regular belief tree
there exists some finite level of reflection that is
sufficient for finding a balanced strategy labeling. In
other words, analyzing the tree beyond that level is
strategically useless.

Definition 4. A subtree α of a belief tree Γi is at level
of reflection n+1, if the distance between the root of
α and the root of Γi is n.

Proposition 1. For every regular belief tree Γi there
exists an integer N such that for every subtree α at
level of reflection K, K>N, there exists a subtree β at

level of reflection M, M≤N, such that α=β.

Proof. Let α1,α2,…,αn be the distinct subtrees of Γi.
Then N=max ρ(αk), k=1,..,n, where ρ(αk) is the level
of reflection of αk.

     
   o

If Γi is a regular tree, then every balanced strategy
labeling φ of Γi will have at most N different
strategies, where N is the number from Proposition 1.
In order to find φ we need to consider only the first
N+1 levels of reflection. Let Γi

*  denote the tree that is
obtained from Γi

 by removing all subtrees which level
of reflection is greater than N+1. Since φ is a
balanced strategy labeling, the strategy sv, sv =φ(v),
assigned to a node v, should be a best response to the
strategies assigned to the successors of v. That is,

sv=f(Γi

prob(v), sv1,sv2,…,svk),
where sv1,sv2,…,svk are the strategies assigned to the
successors v1,v2,…,vk and f() is a best response
function.

If we write this equation for every node of Γi

*, we
will obtain a system of N simultaneous equations:

s1=f(Γi

prob(v1), s11,s12,…,s1k),
s2=f(Γi

prob(v2), s21,s22,…,s2k),
                 …  (2)
sN=f(Γi

prob(vN), sN1,sN2,…,sNk),

where snm∈{s1,s2,…,sN}, n=1,..,N, m=1,..,nk. Let
SN={s1,s2,…,sN}. Some strategies from SN appear only
on the left side of equations (2) and some strategies
appear on both sides. Let SL denotes the set of all
strategies from SN that appear on the right side of at
least one equation. Without loss of generality we may
assume that SL={s1,s2,..,sL}. Solving (2) consists of
two stages. First, we should find all strategies in SL

and after that we should find SN\SL. Since every
strategy in SN\SL is a function of strategies from SL, it
is straightforward to calculate SN\SL having SL. In
order to find SL we have to solve the following system
of simultaneous equations:

s1=f(Γi

prob(v1), s11,s12,…,s1k),
s2=f(Γi

prob(v2), s21,s22,…,s2k),
                 … (3)
sL=f(Γi

prob(vL), sL1,sL2,…,sLk).

This means that the vector of strategies <s1,..,sL> is
a fixed point of the operator F defined by

(f(Γi

prob(v1), s11,s12,…,s1k),
f(Γi

prob(v2), s21,s22,…,s2k),
                 …
f(Γi

prob(vL), sL1,sL2,…,sLk)).
One way to solve (3) is by using the Banach fixed
point theorem: if the set of all strategies is a complete
metric space and F is a contraction, then F has a
unique fixed point s, s=F(s). The Banach fixed point



theorem allows us to solve (3) by iterations starting
from an arbitrary point <s1

0,..,sL

0>. Other algorithms
for solving systems of nonlinear equations are
discussed by Rheinboldt [16].

The most typical example of finding a balanced
strategy labeling includes a tree that represents
common knowledge. Figure 3 shows such a belief tree
for agent i. According to Figure 3, agent i believes
that both agents, i and j, believe that the true state of
the environment is t1 with probability p and t2 with
probability 1-p.  Agent i also believes that p and 1-p
are common knowledge between agents. That is,
everyone knows them, everyone knows that everyone
knows them, and so on.

Figure 3. A tree representing common
knowledge

The tree shown in Figure 3 consists of infinite
repetitions of the left subtree α and the right subtree
β. Therefore any extension of the belief tree one level
beyond the third level does not add any strategically
relevant information. If we are looking for a strategy
labeling for that tree, we can ignore the infiniteness
of the tree and can “cut” the tree between the third
and fourth level of reflection. By this we obtain a
finite tree for which we can find a solution. By
“cutting” an infinite tree we do not lose any
strategically relevant information, since the concept
of balanced labeling guarantees that the strategies
along the cutting line convey all the relevant
information belonging to the infinite part of the tree.

4. Representation of infinite belief trees
with finite graphs

In this section we present another representation
that can be used to solve the same problem. Instead of
cutting a regular belief tree we can represent it with a
finite graph. Definition 5 and Definition 6 show how
this can be done.

Definition 5. Two nodes of v1 and v2 of belief tree Γi

are identical iff:
(i) they are labeled with the same tk, tk∈T,
(ii)  Γi

ag(v1)= Γi

ag(v2), i.e., v1 and v2 are both on an
even or an odd-numbered level of reflection,

(iii)  Γi

succ(v1)= Γi

succ(v2), i.e., v1 and v2 have the same
successors,

(iv) Γi

prob(v1)= Γi

prob(v2), i.e., every two arcs starting
at v1 and v2, that point to the same successor,
are labeled with equal probabilities.

Definition 6. An elementary contraction of a graph G
is obtained by identifying two identical nodes v1 and
v2 by removing v1 and v2, and by adding a new node v
adjacent to those nodes to which v1 and v2 were
adjacent.

After an elementary contraction the arcs starting at
node v are labeled with the same probabilities as the
deleted arcs starting at v1 and v2. If, as a result of an
elementary contraction, two arcs pointing to v1 and v2

are merged, then the new arc is labeled with the sum
of probabilities on the deleted arcs.

Definition 7. A graph G is contractible to a graph G’
if G’ can be obtained from G by applying elementary
contractions.

Figure 4. An accessible pointed graph

If we look at the tree represented in Figure 3, we
will notice that this tree contains many identical
nodes. For example, all nodes that are labeled with t1

and that correspond to agent i are identical. Similarly,
all nodes that are labeled with t1 and that correspond
to agent j are identical. If we contract all identical
nodes we will obtain the graph shown in Figure 4. In
order to compute a balanced strategy labeling for this
graph we have to consider only 5 nodes, instead of
analyzing infinitely many nodes of the original belief
tree.

In general, it is not true that for any graph there
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exists a belief tree (infinite or finite) that is
contractible to that graph. Therefore, some graphs
cannot represent belief hierarchies. As we will soon
show an accessible pointed graph [2] always
represents some belief hierarchy.

Definition 8. A pointed graph is a graph together with
a distinguished node called its point. A pointed graph
is accessible if for every node, which is different
from the point, there is a path from the point to that
node.

If this path is always unique, then the pointed
graph is a tree and the point is the root of the tree.
The nodes of every pointed accessible graph are
labeled with the elements of the space of basic
uncertainty, T. The arcs are labeled with
probabilities. For every node, the sum of the
probabilities on outgoing arcs is 1.

Proposition 2. If a belief tree is contractible to a
graph, then the graph is pointed and accessible.

Proof. Since every contraction preserves
accessibility, the proposition follows from the
definition of tree as an acyclic and connected graph
and Definition 8. o

According to Proposition 2, the notion of an
accessible pointed graph is a generalization of both
finite and infinite belief trees. This, however, does
not imply that every accessible pointed graph
represents some beliefs. Nevertheless, this is the case:

Proposition 3. For every accessible pointed graph G
there exists a belief tree that is contractible to G.

Proof. Every pointed graph, G, can be unfolded into a
belief tree, Γ, whose root is the point of the graph.
The nodes of Γ are the finite paths that start from the
point of G. o

5. An example: auction analysis

With the growing impact of electronic commerce,
auctions are going to play an increasingly important
role in multiagent systems and distributed artificial
intelligence [17,18,14]. In this section we
demonstrate how the belief graph reasoning,
presented here, can be applied to the analysis of
auctions.

Most theoretical results in auction theory draw
crucially on the revenue equivalence theorem [19].
According to the theorem, the first-price sealed bid,
second-price sealed bid, English and Dutch auctions
are all optimal selling mechanisms, provided that
they are supplemented by an optimally set reserve

price. The revenue equivalence theorem is based on
the following assumptions: the bidders are risk
neutral, payment is a function of bids alone, the
auction is regarded in isolation of other auctions, the
bidders’ private valuations are independently and
identically distributed random variables, every bidder
knows his own valuation, and there is common
knowledge about the distribution from which the
valuations are drawn.

In this example the common knowledge
assumption about prior beliefs is dropped, but all
other classic assumptions are kept intact. In
particular, the assumption that the agents’ valuations
are drawn from the same prior is kept. We will show
that without common knowledge, the revenue
equivalence theorem ceases to hold. This is
particularly noteworthy since common knowledge is
unobtainable with any amount of communication [8].

Consider the following simple auction setting.
There are two risk-neutral buyers in an auction for a
single indivisible object. Suppose that each buyer has
one of two possible valuations of the object: t1 or t2
(with t1<t2). Each bidder knows his own valuation, but
is uncertain about his rival’s valuation. Therefore, in
our example, the space of basic uncertainty is
T={t 1,t2}. Assume that valuations are independent and
that there exists some objective distribution π=(p,1-p)
from which valuations are drawn. That is, with
probability p each bidder’s valuation is t1, and with
probability 1-p it is t2. Since π is not common
knowledge, each bidder can hold some private beliefs
about π.

Suppose now that at some moment τ0, before the
beginning of the auction, the actual distribution π has
been (1/2,1/2) and π has been common knowledge.
Just before the action, at time τ1, τ0<τ1, some event
occurs that changes distribution π from (1/2,1/2) to
(p,1-p), where p≠1/2. This event is not mutually
observable and the fact that π has changed is not
common knowledge. In this situation each agent
believes that the actual distribution is (p,1-p) and that
the other agent still believes that there is common
knowledge about (1/2,1/2). This is a realistic
assumption, since in many electronic commerce
applications bidders do not have sufficient
information about their rivals.

The belief structure of each bidder can be
represented by the infinite belief tree shown in Figure
5. In order to find a balanced strategy labeling for
that tree we need to analyze the first four levels of the
tree (N=3). That is, we should look for 31 strategies
corresponding to the first 31 nodes of the tree. Instead
of doing so, we look for the accessible pointed graph



H that corresponds to the tree. The graph H is
represented in Figure 6. It shows that there are only 5
non-identical nodes: the root, t1- and t2- nodes for the
first bidder and t1- and t2- nodes for the second bidder.
Now, instead of analyzing 31 nodes we need to
consider only 5.

Figure 5. The belief tree of bidder i.

 Figure 6. The belief graph of bidder i

The solution for the first-price sealed bid auction
without common knowledge about prior beliefs is
provided by the following proposition.

Proposition 4. When the prior beliefs are not
common knowledge for the given auction setting, the
first-price sealed bid auction yields expected utility 0
to the bidder with valuation t1 and ½(t2-t1) to the
bidder with valuation t2. The optimal bid and the
expected utility do not depend on the bidders’ first-
order prior beliefs.

Proof. Since the situation is symmetric, we are
looking for a symmetric solution. Therefore every
balanced strategy labeling consist of 3 strategies: one
for the point of the graph H, one for t1-nodes and one
for t2-nodes. The strategies assigned to t1 and t2-nodes
should be in equilibrium. That is, each of them should

be a best response to the other. Since there does not
exist an equilibrium in pure strategies, we look for an
equilibrium where each bidder with valuation t1 bids
t1 (t1<t2), and each bidder with valuation t2 randomizes
according to a continuous cumulative distribution
function F(x) with continuous support on [a1,a2],
where t1≤a1≤a2≤t2. It can be shown that this
equilibrium is unique. Clearly, a1=t1. If a1>t1, then a
bidder with valuation t2 would be better off bidding
t1+ε rather than bidding a1. In order for a bidder with
valuation t2 to play a mixed strategy in the interval
[a1,a2] he must be indifferent ex ante between all bids
in this interval. Hence, for every bid x∈[a1,a2] it holds
that

(t2-x)( ½ + ½F(x))=c,

where c is constant. Here t2-x is the bidder’s utility if
he wins and ½ + ½F(x) is the probability of winning.
Because F(t1)=0, it follows that c= ½ (t2-t1). Thus, the
continuous distribution function F(x) is implicitly
defined by

(t2-x)( ½+ ½)F(x)= ½ (t2-t1) (4)

Substituting a2 for x in Equation (4) and taking into
account that F(a2)=1, we obtain

a2= ½t1+ ½t2.

What remains to be done is to find a bidding
strategy b* corresponding to the root of the tree. It is
clear that b* must be a best response to the strategy
mixture [p,t1;1-p,b**], where b** is the strategy
defined by Equation (4). We can solve Equation (4)
for F(x), thereby obtaining

F(x)=(x-t1)/(t2-x).

The expected utility of submitting bid x, given that
the rival adheres to the strategy mixture [p,t1;1-p,b**]
is:

(t2-x)(p+(1-p)(x-t1)/(t2-x)) if t 1≤x≤½(t1+t2)
and
t2-x if  ½(t1+t2)<x.

In order to obtain an optimal bid we have to
maximize the expected utility function. There are
three possible cases:

(i) p<½: the optimal bid is ½(t1+t2). The
expected utility is ½(t2-t1);

(ii)  p=½: every bid in the interval [t1,½(t1+t2)]
is optimal. The expected utility is ½(t2-t1);

(iii)  p>½: the optimal bid is ½(t1+t2). The
expected utility is ½(t2-t1).  r

Proposition 5. When there does not exist common
knowledge about private beliefs, the revenue
equivalence theorem ceases to hold. The bidder’s
expected utility is different in the first price sealed
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bid auction and Vickrey auction.

Proof. Consider the first-price sealed bid auction and
the second-price sealed bid auction. It follows from
Proposition 4 that the expected utility for the bidder
with valuation t2 is ½(t2-t1) in the first-price sealed bid
auction without common knowledge about prior
beliefs. On the other hand, for the second-price
auction the dominant strategy for every bidder is to
bid his own valuation. Therefore, in the second-price
auction the expected utility for the bidder with
valuation t2 is (t2-t1)p, where p is the subjective
probability that the other bidder’s valuation is t1.
Thus, the two auctions yield different expected
utility. r

6.  Conclusions

In this paper we identified a class of infinite belief
trees that allow finite representation. Such
representation has several important advantages.
First, agents can cope with infinite belief hierarchies
by reducing them to finite trees or finite graphs.
Second, agents can apply to infinite beliefs the same
techniques they use to handle finite beliefs.

As an example of our approach we showed that
without common knowledge about prior beliefs, the
revenue equivalence theorem of auctions ceases to
hold. Since different auctions yield different
revenues, auction designers should be careful when
choosing auction rules. Our solution concept for
infinite belief trees provides an analytic tool for
comparing different auction forms and more general
interaction mechanisms

Most mechanism design today is based on Nash
equilibrium which assumes common knowledge of
priors. At the same time it is known that common
knowledge is not obtainable with any amount of
communication. Therefore, our method that does not
rely on common knowledge holds promise as a future
analysis and design tool.
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