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Abstract to represent them. The second issue that deserves

In this paper we focus on the problem of how infinite
belief hierarchies can be represented and reasoned
with in a computationally tractable way. When
modeling nested beliefs one usually deals with two
types of infinity: infinity of beliefs on every level of
reflection and infinity of levels. In this work we
assume that beliefs are finite at every level, while the
number of levels may still be infinite. We propose a
method for reducing the infinite regress of beliefs to a
finite structure. We identify the class of infinite belief
trees that allow finite representation. We propose a
method for deciding on an action based on this
presentation. We apply the method to the analysis of

consideration is the feasibility of decision making
based on infinitely nested beliefs.

Finite hierarchies of beliefs have been studied by
Gmytrasiewicz, Durfee and Vidal [11,12,13, 20]. The
main advantage of their recursive modeling method is
that a solution can always be derived. The recursive
modeling method is based on the assumption that
once an agent has run out of information his belief
hierarchy can be cut at the point where there is no
sufficient information. At the point of cutting,
absence of information is represented by a uniform
distribution over the space of all possible states of the
world. The absence of information with which to

auctions. We prove that if the agents’ prior beliefs model other agents implies that belief hierarchies are
are not common knowledge, the revenue equivalencdPotentially finite. In our work we take a different
theorem ceases to hold. That is, different auctionsapproach. We suppose that every belief hierarchy is
yield different expected revenue. Our method can bepotentially infinite and we consider the problem of
used to design better auction protocols, given the how such a hierarchy can be represented using a finite

participants’ belief structures.
1. Introduction

Reasoning about others and interactive knowledge
have been the subject of continuous interest in
multiagent systems  [11,12,13,20], artificial
intelligence [6,7,8] and game theory [1,3,15]. In

structure and manipulated in a computationally
tractable way. We show that some infinite belief trees
allow finite representation in the form of pointed
accessible graphs.

The most typical and the most studied example of
infinite belief hierarchies iscommon knowledge
[4,7,10]. Common knowledge means that everyone
knows that everyone knows that... Common

multiagent interaction, where an agent’s action
interferes with other agents’ actions, hierarchies o
beliefs arise in an essential way. Usually an agent’s o .
optimal decision depends on what he believes thefepetition of some event. Suc_h a.hlerarchy can be
other agents will do, which in turn depends on what reduced to a finite representation if we treat all the

he believes the other agents believe about him, and S(gepetitions in the hierarchy as identical. In this paper
on. An infinite regress of this kind gives rise to we extend this idea to infinite belief hierarchies with

several important issues. The first issue concerns théno_lfﬁ complex shtructure. din thi s closel
methods for representing infinitely nested beliefs. In e research presented in this paper is closely
order to maintain and update such beliefs, agentsrelated to the work in game theory devoted to games

need some finite and computationally tractable WayW't.h mc.omplete information [.9]‘ In our work, _th.e.
epistemic state of each agent is modeled as an infinite

¢ knowledge, however, is a very special case of a belief
hierarchy, namely, a hierarchy that consists of infinite



hierarchy of beliefs. Harsanyi suggested that each
hierarchy of beliefs could be summarized by the
notion of agent’s type [9]. Later Mertens and Zamir

1 shows a belief tree that represents first-order beliefs
of agent i.
Second order beliefs of agent i include his beliefs

proved that the space of all possible types is closed inabout the true state of the environment and his beliefs
the sense that it is large enough to include evenabout agent j's beliefs about the true state of the
higher-order beliefs about itself [15]. Brandenburger environment. A second-order belief tree for agent i is
has shown that if agents’ beliefs are coherent therepresented in Figure 2.

space of all possible types is closed [4].

The paper is organized as follows. In Section 2 we
propose the notion of balanced strategy labeling. In
Section 3 we show how regular belief trees can be
represented with finite trees. In section 4 we propose
a graph representation for infinite belief trees. We

i's level of reflection

01 Onp
apply our approach to the analysis of auctions in 9/ g\ Oy /I R
Section 5. Finally, the paper concludes by
summarizing the results and providing directions for t, ty enenn t, ty to coeenn t,

future research.

2 Figure 2. A second-order belief tree
Let o, denote the first-order beliefs of agent j that

In every multiagent interaction, an agent faces two ne trye state of the environment jsaith probability
types of unce_rtainty: basic and belief uncertainty. g, and t with probability g, and so on. Similarly, let
Basic uncertainty relates to the elements of the o, denote agent j's beliefs that the true state of the
physical environ_ment, whic_h are uncertgin to agents.enyironment is .t with probability ¢ and t with
We model basic uncertainty by a finite set T, propability r, and so on. According to Figure 2, agent
T={t,,t,....,t}, including all uncertain elements of the ; assigns probability pto the event that the true state
physical environment. We represent agents’ basicig t and the first order beliefs of agent j are At the
beliefs as a subjective probability distributions on T.  g5me time, agent i believes that with probability p

While basic uncertainty deals with the elements of ho true state is tand agent j's beliefs are,.
the physical environment, belief uncertainty relates to thgrefore, each level of a belief tree is associated
other agents’ beliefs. That is, belief uncertainty \ith one of the agents. Levels alternate: the first level
includes an agent's beliefs about other agents’cqrresponds to agent i, the second to agent j, and so
beliefs, his beliefs about other agents’ beliefs abouty, This alternation of levels produces alternation of
other agents’ beliefs, and so on. beliefs: agent i believes that agent j believes that
agent i believes, and so on.

In this paper we assume that all belief trees are
locally finite. That is, the branching factor of every
node is finite. At first sight this may seem to be a
substantial constraint. Since the cardinality of the
space of all first-order beliefs is a continuum, one
might expect that trees are not an adequate
representation of an agent's beliefs. In interactive
i _ epistemology and game theory [1,3,15] recursive

Suppose that the agents under consideration argejiefs are usually represented as nested probability
agent i and agent j. First order beliefs of agent i cangjstriputions. Such  representations, although
be represented by a discrete probability distributiontheoretica”y elegant, are not often tractable from a
0, 0=(p,P,---,p,). That is, agent i believes that the compuytational point of view. In this paper we focus
true state of the environment isviith probability p,  on the problem of how beliefs can be represented in a
t, with probability p, and so on. First order beliefs of computationally tractable way. In recursive modeling,
agent i can be represented by a belief tree. The nodegne ysually deals with two types of infinity: infinity
of the tree are labeled with the elements of T and arcsyf peliefs on every level of reflection and infinity of
are labeled with probabilities. For every node, the |eyels. In this work we assume that beliefs are finite
sum of the probabilities on outgoing arcs is 1. Figure 44 every level, while the number of levels can be

Infinite belief hierarchies
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Figure 1. A first-order belief tree



infinite. We propose a method for reducing the the following notation:

infinite regress of beliefs to a finite structure. The r*(v) returns the name of the agent whose
idea behind our approach is that some infinite belief beliefs are represented at node UN(T").
hierarchies display repetitive patterns and That is, ™ N(I')-{i,j}. For example,
regularities. This makes it possible to “merge” some r*(v) returns i for every node that is
parts of an infinite hierarchy and to “cut” other parts. located at an odd-numbered levellof
Previous research of Gmytrasiewicz and Durfee [ *%(v) denotes the set of the successors of a node
[11,20] assumes that both the number of levels of v, VON(T).

beliefs and the number of beliefs at each level are r”(v) denotes the probability distribution
finite. assigned to node v3N(I").

According to the game-theoretic tradition [1], the With each node, v, of the belief trefe, we assign
belief structure of an agent can be represented by & strategy that tells what ageRf‘(v) will do at that
hierarchy of beliefs. node. For a node corresponding to agent i's beliefs,

Definition 1. A belief hierarchy, B®, of agent i is an  the assigned strategy belongs to agent I's strategy set
infinite sequence of finite belief trees. That is, S Similarly, for a node corresponding to agent j's
B®=(b'b%b’,...), where I represents agent i's k- beliefs the strate_gy belongs tp Bormally, we denote
order beliefs. a strategy labeling byp:N(I") -~ SOS. Every strategy
labeling of I, represents agent i's beliefs about the
A belief hierarchy is a complete enumeration of all strategies of both agents. It is clear that agent i's
orders of belief. Since a rational agent can hold Strategy depends on his believes about agent j’s
beliefs of an arbitrary Order, every belief hierarChy is Strategy_ Agent j’s Strategy depends on agent j’s
inherently infinite. beliefs about agent i's strategy, and so on. That is, a
Since every k-order belief tree implicitly strategy labeling is a solution to the problem of
determines k-1-order beliefs, it is natural to assumestrategy choice for agent i given his beli€fs
that all trees in a belief hierarchy are consistent. By  For every infinite belief treel, there exists an
this we mean that,B represents the k-1-order beliefs jnfinite number of strategy labelings. However, only a
determined by b In other words, b is a subtree of  few of them (if any) meet the Bayesian rationality
b". Belief consistency says that the different levels of requirement, i.e., that a strategy at each node, v, has
beliefs do not contradict one another. to be a best response to the other agents’ strategies at
The principle of consistency allows us to reduce the successors of v. That is, if at level m of his
the infinite sequence of belief trees,”Bto a single  reflection, agent i believes that at level m+1 agent j is
infinite tree. Since in B every tree carries all the going to use some (possibly mixed) strategy, then the
information presented in the preceding trees, thestrategy of agent i at level m should be a best
sequence of belief trees is monotonica”y ianeaSing response to agent j’s Strategy given the probabmty
and we can take the limit. LEY(B”) denote the limit  distribution at level m+1. The following definition
tree that corresponds to the sequenfe [Bor the sake  introduces the class of balanced strategy labelings. A
of simplicity we will denotel (B,”) by I', whenever  strategy labeling,q, is balanced if the strategy
this is not a source of confusion. associated with each node is a best response to the
Infinity of I'; creates several problems. First, it is strategies associated with the successor nodes, given
problematic how an agent can build, update andthe probabilities assigned to the successors.
manipulate such a structure. Second, how can anFormally,

agent predict the behavior of other agents if his own )
bgliefsprun to infinity? g Definition 2. A strategy labelingp is balanced iff for

In this paper we will show that some infinite belief €very node v, UN(I'), ¢v) is a best response to the
trees can be represented by finite belief trees or byMixture of strategiesgI ™(v)), F""(v)].
finite graphs. By this, we provide a uniform way to  Another way to look at a balanced strategy
deal with uncertainty that does not depend on the|apeling @ of I is to see it as the limit of balanced
depth of agents’ beliefs. strategy labelings for finite trees of the infinite
Let § be the strategy set of agent k, k=il pjerarchy B’, B*=(b’,b%b’ ...). That is,
denotes a belief tree (infinite or finite) of agent i. We ) )
represent’, as a pair (N{),A(T")), where N[) is the lim @’=¢ (1)
set of nodes and A() is the set of arcs. We also use Koo



Here @ represents a balanced strategy labeling of b".

According to Definition 2, if the limit (1) exists, it
should be a balanced strategy labeling for I',. This
constructive interpretation of balanced strategy
labelings gives us an idea of how to compute them.
First, it is necessary to compute a balanced strategy
labeling for the first-order belief tree b' (in fact,
computation can start from any tree b). This can be
done, for example, by applying backward induction.
The strategies computed at the first stage are further
refined by computing a balanced strategy labeling for
the second-order belief tree b’ After that, the
computation proceeds with the third-order belief tree
b’, and so on. This process can stop at any time or
when some predefined solution precision is achieved.
There is no guarantee that this process of iterative
refinement is convergent. If it is convergent,
however, the limit is a balanced strategy labeling. It
is worth noting that any stage of the computation can
yield several intermediate solutions. Therefore,
unigueness of the final balanced strategy labeling is
not guaranteed. If, however, two balanced strategy
labelings exist, they will be payoff equivalent. That
is, they give agent i the same expected payoff.

3. Representation of infinite belief trees
with finite trees

In this section we show how regular infinite belief
trees can be represented in a finite way. Such
representation has several important advantages.
First, agents can cope with infinite belief hierarchies
by reducing them to finite graphs. Second, agents can
apply to infinite beliefs the same techniques they use
to handle finite beliefs.

Definition 3. An infinite tree is regular if and only if
the number of its distinct subtreesisfinite [5].

It is evident that a regular belief tree is a repetition
of a finite number of subtrees. This means that by
extending a regular tree to infinity we do not add new
strategically relevant information. The following
proposition states that for every regular belief tree
there exists some finite level of reflection that is
sufficient for finding a balanced strategy labeling. In
other words, analyzing the tree beyond that level is
strategically useless.

Definition 4. A subtree o of abelief tree T, is at level
of reflection n+1, if the distance between the root of
a and theroot of I, isn.

Proposition 1. For every regular belief tree I, there

exists an integer N such that for every subtree a at
level of reflection K, K>N, there exists a subtree 3 at

level of reflection M, M<N, such that a=p.

Proof. Let a,,0,,...,0, be the distinct subtrees &f.
Then N=maxp(a,), k=1,..,n, where(a,) is the level
of reflection ofa,. a

If I, is a regular tree, then every balanced strategy
labeling @ of Il will have at most N different
strategies, where N is the number from Proposition 1.
In order to findg we need to consider only the first
N+1 levels of reflection. LeE, denote the tree that is
obtained fromT", by removing all subtrees which level
of reflection is greater than N+1. Sincg is a
balanced strategy labeling, the strategyss =@(v),
assigned to a node v, should be a best response to the
strategies assigned to the successors of v. That is,

s=F(F"(V), S8-S0

where s.S,,...,S, are the strategies assigned to the
successors ,\Ww,,...,v, and f() is a best response
function.

If we write this equation for every node Bf, we
will obtain a system of N simultaneous equations:

s=f(F"(V.), 84,801--18),

s=H(F(V), 80800180,

2
S=(CV), S-S0,

where s {s,s,....s}, n=1,..,N, m=1,..p Let

S.={s.:S,-..,.S}.- Some strategies from Sappear only

on the left side of equations (2) and some strategies

appear on both sides. Le{ 8enotes the set of all

strategies from Sthat appear on the right side of at

least one equation. Without loss of generality we may

assume that ${s,s,..,s}. Solving (2) consists of

two stages. First, we should find all strategies jn S

and after that we should find \§. Since every

strategy in QS is a function of strategies from,St

is straightforward to calculate \§ having $. In

order to find Swe have to solve the following system

of simultaneous equations:

=T (V) S0Sp0--180),
ST (V. S0S0--184),
3
s=(M7 V), §082-+80)-
This means that the vector of strategies.<s> is
a fixed point of the operator F defined by

(7). S8,
(M0, SuSar-onsS))

f(F(VL), SuS0r-8)-
One way to solve (3) is by using the Banach fixed
point theorem: if the set of all strategies is a complete
metric space and F is a contraction, then F has a
unique fixed point s, s=F(s). The Banach fixed point



theorem allows us to solve (3) by iterations starting
from an arbitrary point <s’,..,5°. Other algorithms
for solving systems of nonlinear eguations are
discussed by Rheinboldt [16].

The most typical example of finding a balanced
strategy labeling includes a tree that represents
common knowledge. Figure 3 shows such a belief tree
for agent i. According to Figure 3, agent i believes
that both agents, i and j, believe that the true state of
the environment is t, with probability p and t, with
probability 1-p. Agent i also believes that p and 1-p
are common knowledge between agents. That is,
everyone knows them, everyone knows that everyone
knows them, and so on.

i's level D 1p

i's level

i'slevel 1
Ap y\-p L/\l-f N
ty bty b 4 bty

Figure 3. A tree representing common
knowledge

The tree shown in Figure 3 consists of infinite
repetitions of the left subtree a and the right subtree
. Therefore any extension of the belief tree one level
beyond the third level does not add any strategically
relevant information. If we are looking for a strategy
labeling for that tree, we can ignore the infiniteness

of the tree and can “cut” the tree between the third
and fourth level of reflection. By this we obtain a
finite tree for which we can find a solution. By
lose any
strategically relevant information, since the concept

“cutting” an infinite tree we do not

Definition 5. Two nodes of yand v, of belief treel’,
areidentical iff:
(i) they are labeled with the samet{(T,
(i) T®(v)=T2(v,), i.e., v and y are both on an
even or an odd-numbered level of reflection,
(iii) [>(v)=T"(v,), i.e., vy and v have the same
sSuccessors,
(iv) FP(v)=T"*(v,), i.e., every two arcs starting
at v, and v, that point to the same successor,
are labeled with equal probabilities.

Definition 6. An elementary contraction of a graph G
is obtained by identifying two identical nodesand
v, by removing yand v, and by adding a new node v
adjacent to those nodes to which and vy were
adjacent.

After an elementary contraction the arcs starting at
node v are labeled with the same probabilities as the
deleted arcs starting at &nd v. If, as a result of an
elementary contraction, two arcs pointing tcand \
are merged, then the new arc is labeled with the sum
of probabilities on the deleted arcs.

Definition 7. A graph G iscontractible to a graph G’
if G’ can be obtained from G by applying elementary
contractions.

Agent i

Agent j

Agent i

Figure 4. An acceSS|bIe pomted graph
If we look at the tree represented in Figure 3, we

of balanced labeling guarantees that the strategiesyij| notice that this tree contains many identical
along the cutting line convey all the relevant podes. For example, all nodes that are labeled with t

information belonging to the infinite part of the tree.

4. Representation of infinite belief trees
with finite graphs

and that correspond to agent i are identical. Similarly,
all nodes that are labeled withand that correspond

to agent j are identical. If we contract all identical
nodes we will obtain the graph shown in Figure 4. In

In this section we present another representationorder to compute a balanced strategy labeling for this
that can be used to solve the same problem. Instead ddraph we have to consider only 5 nodes, instead of
cutting a regular belief tree we can represent it with a@nalyzing infinitely many nodes of the original belief
finite graph. Definition 5 and Definition 6 show how tree.

this can be done.

In general, it is not true that for any graph there



exists a belief tree (infinite or finite) that is
contractible to that graph. Therefore, some graphs
cannot represent belief hierarchies. As we will soon
show an accessible pointed graph [2] aways
represents some belief hierarchy.

Definition 8. A pointed graph is a graph together with
a distinguished node called its point. A pointed graph
is accessible if for every node, which is different
from the point, there is a path from the point to that
node.

If this path is always unique, then the pointed
graph is a tree and the point is the root of the tree.
The nodes of every pointed accessible graph are
labeled with the elements of the space of basic
uncertainty, T. The arcs are labeled with
probabilities. For every node, the sum of the
probabilities on outgoing arcsis 1.

Proposition 2. If a belief tree is contractible to a
graph, then the graph is pointed and accessible.

Proof. Since  every contraction preserves
accessibility, the proposition follows from the
definition of tree as an acyclic and connected graph
and Definition 8. 1

According to Proposition 2, the notion of an
accessible pointed graph is a generalization of both
finite and infinite belief trees. This, however, does
not imply that every accessible pointed graph
represents some beliefs. Nevertheless, thisisthe case:

Proposition 3. For every accessible pointed graph G
there exists a belief tree that is contractible to G.

Proof. Every pointed graph, G, can be unfolded into a
belief tree, I', whose root is the point of the graph.
The nodes of " are the finite paths that start from the
point of G. 1

5. An example: auction analysis

With the growing impact of electronic commerce,
auctions are going to play an increasingly important
role in multiagent systems and distributed artificial
intelligence  [17,18,14]. In this section we
demonstrate how the belief graph reasoning,
presented here, can be applied to the analysis of
auctions.

Most theoretical results in auction theory draw
crucially on the revenue equivalence theorem [19].
According to the theorem, the first-price sealed bid,
second-price sealed bid, English and Dutch auctions
are all optimal selling mechanisms, provided that
they are supplemented by an optimally set reserve

price. The revenue equivalence theorem is based on

the following assumptions: the bidders are risk
neutral, payment is a function of bids alone, the
auction is regarded in isolation of other auctions, the
bidders’ private valuations are independently and
identically distributed random variables, every bidder
knows his own valuation, and there is common
knowledge about the distribution from which the
valuations are drawn.

In this example the common knowledge
assumption about prior beliefs is dropped, but all
other classic assumptions are kept intact. In
particular, the assumption that the agents’ valuations
are drawn from the same prior is kept. We will show
that without common knowledge, the revenue
equivalence theorem ceases to hold. This is
particularly noteworthy since common knowledge is
unobtainable with any amount of communication [8].

Consider the following simple auction setting.
There are two risk-neutral buyers in an auction for a
single indivisible object. Suppose that each buyer has
one of two possible valuations of the objectot t,
(with t,<t,). Each bidder knows his own valuation, but
is uncertain about his rival's valuation. Therefore, in
our example, the space of basic uncertainty is
T={t,,t,}. Assume that valations are independent and
that there exists some objective distributios(p,1-p)
from which valuations are drawn. That is, with
probability p each bidder’s valuation is &and with
probability 1-p it is £ Since 1 is not common
knowledge, each bidder can hold some private beliefs
aboutrt

Suppose now that at some momaept before the
beginning of the auction, the actual distributimias
been (1/2,1/2) andt has been common knowledge.
Just before the action, at tinte, 1,<t,, some event
occurs that changes distributianfrom (1/2,1/2) to
(p,1-p), where p1/2. This event is not mutually
observable and the fact that has changed is not
common knowledge. In this situation each agent
believes that the actual distribution is (p,1-p) and that
the other agent still believes that there is common
knowledge about (1/2,1/2). This is a realistic
assumption, since in many electronic commerce
applications bidders do not have sufficient
information about their rivals.

The belief structure of each bidder can be
represented by the infinite belief tree shown in Figure
5. In order to find a balanced strategy labeling for
that tree we need to analyze the first four levels of the
tree (N=3). That is, we should look for 31 strategies
corresponding to the first 31 nodes of the tree. Instead
of doing so, we look for the accessible pointed graph



H that corresponds to the tree. The graph H is
represented in Figure 6. It shows that there are only 5
non-identical nodes: the root, t,- and t,- nodes for the
first bidder and t,- and t,- nodes for the second bidder.
Now, instead of analyzing 31 nodes we need to
consider only 5.

Agent i

Agent |

t

Agent i

Agent |

Agent i

Figure 6. The belief"é’féaﬁ/of bidder i

The solution for the first-price sealed bid auction
without common knowledge about prior beliefs is
provided by the following proposition.

Proposition 4. When the prior beliefs are not
common knowledge for the given auction setting, the
first-price sealed bid auction yields expected utility O

to the bidder with valuation t, and .(}-t,) to the
bidder with valuation ,t The optimal bid and the
expected utility do not depend on the bidders’ first-
order prior beliefs.

Proof. Since the situation is symmetric, we are
looking for a symmetric solution. Therefore every
balanced strategy labeling consist of 3 strategies: on
for the point of the graph H, one fgrrtodes and one
for t,-nodes. The strategies assigned,tarnd {-nodes

should be in equilibrium. That is, each of them should

be a best response to the other. Since there does not
exist an equilibrium in pure strategies, we look for an
equilibrium where each bidder with valuationbtds
t, (t,<t,), and each bidder with valuationrandomizes
according to a continuous cumulative distribution
function F(x) with continuous support on @],
where f<a<ast, It can be shown that this
equilibrium is unique. Clearly, at,. If a>t,, then a
bidder with valuation twould be better off bidding
t,+€ rather than bidding,aln order for a bidder with
valuation i to play a mixed strategy in the interval
[a,a] he must be indifferenéx ante between all bids
in this interval. Hence, for every bidla,a)] it holds
that

(t-x)(¥2 + ¥2F(x))=c,
where c is constant. Hergx is the bidder’s utility if
he wins and Y2 + Y%F(x) is the probability of winning.
Because F(J=0, it follows that c= % (tt,). Thus, the
continuous distribution function F(x) is implicitly
defined by

(LX) ( Yo+ Y2)F(X)= V2 (1) (4)

Substituting afor x in Equation (4) and taking into
account that F(g=1, we obtain

a,= Yot + Yat,.

What remains to be done is to find a bidding
strategy b* corresponding to the root of the tree. It is
clear that b* must be a best response to the strategy
mixture [p,t;1-p,b**], where b** is the strategy
defined by Equation (4). We can solve Equation (4)
for F(x), thereby obtaining

F(X)=(x-1)/(t,-x).
The expected utility of submitting bid x, given that

the rival adheres to the strategy mixture [f;p,b**]
is:

() (p+(1-p)(X-1)/(t,-x)) if  t,<x<Ya(t+t)
and
t,-x if YAt +t)<x.

In order to obtain an optimal bid we have to
maximize the expected utility function. There are
three possible cases:

(i) p<%: the optimal bid is %Yftt). The
expected utility is Ya(tt,);

(i) p=%: every bid in the interval [t5(t+t,)]
is optimal. The expected utility is %{t);

(i)  p>%: the optimal bid is %ftt). The

expected utility is Y%a(tt). O
eProposition 5. When there does not exist common
knowledge about private beliefs, the revenue
equivalence theorem ceases to hold. The bidder’'s
expected utility is different in the first price sealed



bid auction and Vickrey auction.

(3]

Proof. Consider the first-price sealed bid auction and
the second-price sealed bid auction. It follows from
Proposition 4 that the expected utility for the bidder
with valuation t, is %2(t-t,) in the first-price sealed bid
auction without common knowledge about prior [7]
beliefs. On the other hand, for the second-price
auction the dominant strategy for every bidder is to
bid his own valuation. Therefore, in the second-price [8]
auction the expected utility for the bidder with
valuation § is (t-t,)p, where p is the subjective
probability that the other bidder’'s valuation is t
Thus, the two auctions vyield different expected
utility. 3

(6]

(9]

6. Conclusions [10]

In this paper we identified a class of infinite belief
trees that allow finite representation. Such [11]
representation has several important advantages.
First, agents can cope with infinite belief hierarchies
by reducing them to finite trees or finite graphs. [12]
Second, agents can apply to infinite beliefs the same
techniques they use to handle finite beliefs.

As an example of our approach we showed that
without common knowledge about prior beliefs, the
revenue equivalence theorem of auctions ceases t913]
hold. Since different auctions vyield different
revenues, auction designers should be careful when
choosing auction rules. Our solution concept for
infinite belief trees provides an analytic tool for [14]
comparing different auction forms and more general
interaction mechanisms

Most mechanism design today is based on Nash
equilibrium which assumes common knowledge of [15]
priors. At the same time it is known that common
knowledge is not obtainable with any amount of
communication. Therefore, our method that does not
rely on common knowledge holds promise as a future[16]
analysis and design tool.
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