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Abstract We propose an iterated version of Nesterov’s first-order smoothing method
for the two-person zero-sum game equilibrium problem

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy.

This formulation applies to matrix games as well as sequential games. Our
new algorithmic scheme computes an ε-equilibrium to this min-max problem in

O
( ‖A‖

δ(A)
ln(1/ε)

)
first-order iterations, where δ(A) is a certain condition measure

of the matrix A. This improves upon the previous first-order methods which required
O(1/ε) iterations, and it matches the iteration complexity bound of interior-point meth-
ods in terms of the algorithm’s dependence on ε. Unlike interior-point methods that are
inapplicable to large games due to their memory requirements, our algorithm retains
the small memory requirements of prior first-order methods. Our scheme supplements
Nesterov’s method with an outer loop that lowers the target ε between iterations (this
target affects the amount of smoothing in the inner loop). Computational experiments
both in matrix games and sequential games show that a significant speed improvement
is obtained in practice as well, and the relative speed improvement increases with the
desired accuracy (as suggested by the complexity bounds).
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280 A. Gilpin et al.

1 Introduction

Game-theoretic solution concepts provide an appealing normative basis for designing
agents for multi-agent settings. The concepts are particularly robust in two-person
zero-sum games. Equilibrium-finding algorithms for computing approximately opti-
mal strategies have recently been successfully applied to games as large as two-person
Texas Hold’em poker [3,21,22].

The Nash equilibrium problem for a two-person zero-sum game can be formulated
as a saddle-point problem (we will describe this in detail later). The latter can in turn be
cast as a linear program (LP). However, for many interesting instances of games, such
as those that arise in real poker, these LPs are enormous and unsolvable via standard
algorithms such as the simplex or interior-point methods.

To address this computional challenge, some alternative algorithms have been
developed and have been shown to be effective in finding ε-equilibria, where nei-
ther player can benefit more than ε by deviating. These include an algorithm based
on regret minimization [22] (which has iteration-complexity O (

1/ε2
)
) and iterative

bundle-based methods [9,21].
Another recent approach [6] is based on Nesterov’s [12,13] first-order smoothing

techniques. The main strength is simplicity and low computational cost of each iter-
ation. That algorithm finds an ε-equilibrium within O(1/ε) iterations. In contrast,
interior-point methods find an ε-equilibrium within O(ln(1/ε)) iterations [19], but do
not scale to large games due to memory requirements.

In this paper we propose an iterated version of Nesterov’s smoothing technique

for nonsmooth convex optimization [13] that runs in O
( ‖A‖

δ(A)
ln(1/ε)

)
iterations. In

terms of ε, the iteration complexity is thus the same as that of interior-point methods
and exponentially better than that of prior first-order methods. The complexity also
depends on a certain condition measure, δ(A), of the payoff matrix A. Unlike interior-
point methods, we inherit the manageable memory usage of prior first-order methods.
So, our algorithm scales to large games and small ε.

Our algorithm can be applied to general linear programs via the classical reformu-
lation of a linear program as the Nash equilibrium problem of a two-person zero-sum
game (see, e.g., [2]). It is known that the set of Nash equilibria of this reformulation is
in one-to-one correspondence with the set of primal-dual optimal solutions to the lin-
ear program provided that both the primal and dual problems are strictly feasible [2].
For this class of linear programs, we obtain an infeasible primal-dual algorithm similar
in spirit to the homogeneous self-dual interior-point methods for linear programming
discussed in [19,20]. From our main complexity result, it readily follows that for a
linear program of the form

max cTx
Ax ≤ b
x ≥ 0,

our algorithm finds a primal-dual pair within ε of both feasibility and optimality in
O(cond(A, b, c) ln(1/ε)) first-order iterations. Here cond(A, b, c) is a combination
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First-order algorithm 281

of the condition measure δ(·) applied to the reformulation of the linear program as a
Nash equilibrium problem, and a measure of strict primal and dual feasibility.

2 First-order methods

Assume Q ⊆ R
n is a compact convex set and f : Q → R is convex. Consider the

convex optimization problem

min{ f (x) : x ∈ Q}. (1)

This paper is concerned with first-order methods for solving a particular form of prob-
lem (1). The defining feature of these methods is that the search direction at each
main iteration is obtained using only first-order information, such as the gradient or
subgradient of the function f . This feature makes their computational overhead per
iteration extremely low, and hence makes them attractive for large-scale problems.

The complexity of first-order methods for finding an approximate solution to (1)
depends on the properties of f and Q. For the setting where f is continuously differ-
entiable with Lipschitz gradient, Nesterov [11] proposed a gradient-based algorithm
with convergence rate O(1/

√
ε). In other words, within O(1/

√
ε) iterations, the algo-

rithm outputs a value x ∈ Q such that f (x) ≤ f (x ′) + ε for all x ′ ∈ Q, including the
optimal one. We refer to this algorithm as Nesterov’s optimal gradient algorithm since
it can be shown that for that smooth class of problems, no gradient-based algorithm has
faster convergence. A variant by Lan, Liu, and Monteiro [8] also features O(1/

√
ε)

convergence and outperformed the original in experiments.
For the setting where f is non-differentiable, subgradient algorithms are often used.

They have complexity �(1/ε2) [4]. However, this pessimistic result is based on treat-
ing f as a black box, whose value and subgradient are available through an oracle. For
a function f with a suitable structure, Nesterov [12,13] devised a first-order method
with convergence rate O(1/ε). The method is based on a smoothing technique. The
idea is that the structure of f can be used to construct a smooth function with Lipschitz
gradient that resembles f . Then, a gradient algorithm (for example, Nesterov’s optimal
gradient algorithm) applied to the smooth function yields an approximate minimizer
for f . This latter technique in particular applies to equilibrium problems arising in
two-person zero-sum games, as explained below.

We note that first-order algorithms have also proven to be effective for finding
approximate solutions to large-scale LPs [1] and to large-scale nonlinear convex pro-
grams [17]. These approaches use O(1/ε2) iterations on non-smooth problems. For
a special class of continuously differentiable minimization problems (which is very
different from our non-differentiable setting) the first-order algorithm presented by
Smola et al. [17] runs in O(ln(1/ε)) iterations.

2.1 Smoothing scheme for matrix games

In this subsection we describe a smoothing method for the min-max matrix game
problem
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min
x∈�m

max
y∈�n

xTAy = max
y∈�n

min
x∈�m

xTAy (2)

where �m := {
x ∈ R

m : ∑m
i=1 xi = 1, x ≥ 0

}
is the set of mixed strategies for a

player with m pure strategies. The game interpretation is that if player 1 plays x ∈ �m

and player 2 plays y ∈ �n , then 1 receives payoff −xTAy and 2 receives payoff xTAy.
Nesterov [13] formulated a first-order smoothing technique for solving for each

agent’s strategy in a matrix game separately. We present that idea here, but applied to
a formulation where we solve for both players’ strategies at once.

Problem (2) can be rewritten as the primal-dual pair of nonsmooth optimization
problems

min{ f (x) : x ∈ �m} = max{φ(y) : y ∈ �n}

where

f (x) := max
{

xTAv : v ∈ �n

}
,

φ(y) := min
{

uTAy : u ∈ �m

}
.

For our purposes it will be convenient to cast this as the primal-dual nonsmooth convex
minimization problem

min{F(x, y) : (x, y) ∈ �m × �n}, (3)

where

F(x, y) = max
{

xTAv − uTAy : (u, v) ∈ �m × �n

}
. (4)

Observe that F(x, y) = f (x) − φ(y) is convex and min{F(x, y) : (x, y) ∈ �m ×
�n} = 0. Also, a point (x, y) ∈ �m × �n is an ε-solution to (2) if and only if
F(x, y) ≤ ε.

Since the objective function F(x, y) in (3) is nonsmooth, a subgradient algorithm
would be appropriate. Thus, without making any attempt to exploit the structure of
our problem, we would be faced with a worst-case bound on a subgradient-based
algorithm of O(1/ε2). However, we can get a much better bound by exploiting the
structure of our problem as we now show.

The following objects associated to Eq. (3) play a central role in the sequel. Let

Opt := Argmin{F(x, y) : (x, y) ∈ �m × �n}

be the set of all optimal solutions and let dist : �m ×�n → R be the distance function
to the set Opt, i.e.,

dist(x, y) := min{‖(x, y) − (u, v)‖ : (u, v) ∈ Opt}.
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Let (ū, v̄) ∈ �m × �n and μ > 0. Consider the following smoothed version of F :

Fμ(x, y)=max
{

xTAv − uTAy− μ

2
‖(u, v) − (ū, v̄)‖2 : (u, v) ∈ �m × �n

}
,

(5)

where ‖ · ‖ denotes the Euclidean norm.
Let (u(x, y), v(x, y)) ∈ �m × �n denote the maximizer in (5). This maximizer is

unique since the function

xTAv − uTAy − μ

2
‖(u, v) − (ū, v̄)‖2

is strictly concave in u and v [13]. It follows from [13, Theorem 1] that Fμ is smooth
with gradient

∇Fμ(x, y) =
[

0 A
−AT 0

] [
u(x, y)

v(x, y)

]
,

and ∇Fμ is Lipschitz with constant ‖A‖2

μ
, where ‖A‖ is the Euclidean matrix norm of

A. Let

D := max

{‖(u, v) − (ū, v̄)‖2

2
: (u, v) ∈ �m × �n

}
.

Nesterov’s optimal gradient algorithm applied to the problem

min{Fμ(x, y) : (x, y) ∈ �m × �n} (6)

yields the following algorithm. Assume (x0, y0) ∈ �m × �n and ε > 0 are given.

smoothing(A, x0, y0, ε)

1. Let μ = ε
2D and (w0, z0) = (x0, y0)

2. For k = 0, 1, . . .

(a) (uk, vk) = 2
k+2 (wk, zk) + k

k+2 (xk, yk)

(b) (xk+1, yk+1) = argmin
{
∇Fμ(uk, vk)

T((x, y) − (uk, vk))

+ ‖A‖2

2μ
‖(x, y) − (uk, vk)‖2 : (x, y) ∈ �m × �n

}

(c) If F(xk+1, yk+1) < ε Return

(d) (wk+1, zk+1) = argmin
{∑k

i=0
i+1

2 ∇Fμ(ui , vi )
T((w, z) − (ui , vi ))

+ ‖A‖2

2μ
‖(w, z) − (x0, y0)‖2 : (w, z) ∈ �m × �n

}

We note that the Algorithm smoothing is essentially identical to Algorithm (3.11) in
[13] with a shift in the indices of the sequences (xk, yk) and (uk, vk). This re-statement
of Nesterov’s algorithm was proposed by Lan, Lu, and Monteiro [8].
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Proposition 1 Algorithm smoothing finishes in at most

k =
⌈

2
√

2 · ‖A‖ · √
D · dist(x0, y0)

ε

⌉
(7)

first-order iterations.

Proof This result is similar to [8, Theorem 9]. Since this is a key step for our main
complexity result, we next present a detailed proof. Recall the following property of
Nesterov’s smoothing algorithm (see [13, Theorem 2]).

(k + 1)(k + 2)

4
Fμ(xk, yk) ≤ min

(x,y)∈�m×�n

{
‖A‖2

2μ
‖(x, y) − (x0, y0)‖2 +

k∑
i=1

i + 1

2

×
[

Fμ(xi , yi ) + ∇Fμ(xi , yi )
T((x, y) − (xi , yi ))

] }
.

In particular, since Fμ is convex, it follows that for all (x, y) ∈ �m × �n

Fμ(xk, yk) − Fμ(x, y) ≤ 2‖A‖2 · ‖(x, y) − (x0, y0)‖2

μ(k + 1)(k + 2)
.

On the other hand, by the construction (5) it follows that the smooth function Fμ

satisfies

0 ≤ F(x, y) − Fμ(x, y) ≤ μ · D for all (x, y) ∈ �m × �n .

Hence for all (x, y) ∈ �m × �n

F(xk, yk) − F(x, y) ≤ μ · D + Fμ(xk, yk) − Fμ(x, y) ≤ μ · D

+2 · ‖A‖2 · ‖(x, y) − (x0, y0)‖2

μ(k + 1)(k + 2)
.

Therefore, taking the minimum over (x, y) ∈ Opt, we obtain

F(xk, yk) ≤ μ · D + 2 · ‖A‖2 · dist(x0, y0)
2

μ(k + 1)(k + 2)
<

ε

2
+ 4 · ‖A‖2 · D · dist(x0, y0)

2

ε · k2 .

(8)

In the last step we used μ = ε
2D . The bound (7) now readily follows from (8) ��

Note that the vectors ū, v̄ can be any vectors in �m and �n . In our implementation,
we take these vectors to be those corresponding to a uniformly random strategy.
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2.2 Iterated smoothing scheme for matrix games

We are now ready to present our main contribution. The new algorithm is a simple
extension of Algorithm smoothing. At each iteration we call the basic smoothing sub-
routine with a target accuracy. Between the iterations, we reduce the target accuracy
by γ > 1. Consider the following iterated first-order method for minimizing F(x, y).

iterated(A, x0, y0, γ, ε)

1. Let ε0 = F(x0, y0)

2. For i = 0, 1, . . .

• εi+1 = εi
γ• (xi+1, yi+1) = smoothing(A, xi , yi , εi+1)

• If F(xi+1, yi+1) < ε halt

While the modification to the algorithm is simple, it yields an exponential speedup
with respect to reaching the target accuracy ε:

Theorem 2 Each call to smoothing in Algorithm iterated halts in at most

2
√

2 · γ · ‖A‖ · √D

δ(A)
(9)

first-order iterations, where δ(A) is a positive condition measure of the matrix A.
Algorithm iterated halts in at most

ln(2‖A‖/ε)
ln(γ )

outer iterations, that is, in at most

2
√

2 · γ · ‖A‖ · ln(2‖A‖/ε) · √
D

ln(γ ) · δ(A)
(10)

first-order iterations. ��
Proof See Sect. 2.4 below.

By setting γ = e ≈ 2.718 . . . the bound (10) becomes

2
√

2 · e · ‖A‖ · ln(2‖A‖/ε) · √D

δ(A)
.

It can be shown that this is the optimal setting of γ for the overall complexity bound
in Theorem 2.

It is natural to ask whether the complexity of Algorithm iterated could be much
worse than that of Algorithm smoothing when the condition measure δ(A) is close to
zero. As Proposition 3 below states, Algorithm iterated converges in at most O(1/ε)

iterations regardless of δ(A). The dependence on ε in the same as that of Algo-
rithm smoothing. Indeed, Proposition 3 is an easy consequence of Proposition 1. The
specific complexity bound (12) therein is similar to (7).
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Proposition 3 For i = 0, 1, . . . , the i-th call to smoothing in Algorithm iter-
ated halts in at most

8 · ‖A‖ · D · γ i+1

F(x0, y0)
(11)

first-order iterations. Consequently, Algorithm iterated halts in at most

8 · γ 2 · ‖A‖ · D

(γ − 1) · ε
(12)

first-order iterations.

Proof From Proposition 1, it follows that the i-th call to smoothing in Algorithm
iterated halts in at most

2
√

2 · ‖A‖ · √
D · dist(xi , yi )

εi+1

first-order iterations. Since εi+1 = ε0/γ
i+1 = F(x0, y0)/γ

i+1 and dist(xi , yi ) ≤
2
√

2D, the bound (11) readily follows. Next, observe that Algorithm iterated will
halt after at most N outer iterations, where N is such that

ε0/γ
N = εN ≤ ε < εN−1 = ε0/γ

N−1.

Hence from (11), it follows that Algorithm iterated halts in at most

N−1∑
i=0

8 · ‖A‖ · D

ε0/γ i+1 = 8 · ‖A‖ · D

ε0
· γ (γ N − 1)

γ − 1
≤ 8 · γ 2 · ‖A‖ · D

(γ − 1) · ε0/γ N−1 ≤ 8 · γ 2 · ‖A‖ · D

(γ − 1) · ε
,

first-order iterations. ��

2.3 The condition measure δ(A)

We define the condition measure of a matrix A as

δ(A) = sup
δ

{
δ : dist(x, y) ≤ F(x, y)

δ
∀(x, y) ∈ �m × �n

}
.

Notice that δ(A) can be geometrically visualized as a measure of “steepness” of the
function F(x, y). The following technical lemma shows that δ(A) > 0 for all A. In
other words, the function F has a sharp minimum.

Lemma 4 Assume A ∈ R
m×n and F is as in (4). There exists δ > 0 such that

dist(x, y) ≤ F(x, y)

δ
for all (x, y) ∈ �m × �n . (13)
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Proof Since the function F : �m ×�n → R is polyhedral and its domain is a bounded
polytope, its epigraph epi(F) = {(x, y, t) : t ≥ F(x, y), (x, y) ∈ �m ×�n} is poly-
hedral. It thus follows that

epi(F) = conv{(xi , yi , ti ) : i = 1, . . . , M} + {0} × {0} × [0,∞)

for a finite set of points (xi , yi , ti ) ∈ �m × �n × R+, i = 1, . . . , M. Therefore F
can be expressed as

F(x, y) = min

{
M∑

i=1

tiλi :
M∑

i=1

(xi , yi )λi = (x, y), λ ∈ �M

}
. (14)

Since min {F(x, y) : (x, y) ∈ �m × �n} = 0, we have min {ti , i = 1, . . . , M} = 0.
Without loss of generality assume t1 ≥ t2 ≥ · · · ≥ tN > 0 = tN+1 = · · · = tM . We
assume N ≥ 1 as otherwise Opt = �m × �n and 13 readily holds for any δ > 0.

Thus Opt = conv{(xi , yi ) : i = N + 1, . . . , M}. Let

δ := tN

max{‖(xi , yi ) − (x, y)‖ : i = 1, . . . , N , (x, y) ∈ Opt}
= tN

max{‖(xi , yi ) − (x j , y j )‖ : i = 1, . . . , N , j = N + 1, . . . , M}

We claim that δ satisfies (13). To prove this claim, let (x, y) ∈ �m × �n be any
arbitrary point. We need to show that dist(x, y) ≤ F(x, y)/δ. Assume F(x, y) > 0
as otherwise there is nothing to show. From (14) it follows that

(x, y) =
M∑

i=1

(xi , yi )λi , F(x, y) =
M∑

i=1

tiλi =
N∑

i=1

tiλi

for some λ ∈ �M . Let μ := ∑N
i=1 λi > 0, and let λ̃ ∈ �N be the vector defined

by putting λ̃i := λi/μ, i = 1, . . . , N . In addition, let (x̂, ŷ) = ∑N
i=1(xi , yi )λ̃i =∑N

i=1(xi , yi )λi/μ ∈ �m × �n , and (x̃, ỹ) ∈ Opt be as follows

(x̃, ỹ) :=
{∑M

i=N+1
(xi , yi )λi/(1 − μ) if μ < 1

(xM , yM ) if μ = 1
.
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Then (x, y) = μ(x̂, ŷ) + (1 − μ)(x̃, ỹ) and consequently

‖(x, y) − (x̃, ỹ)‖ = μ‖(x̂, ŷ) − (x̃, ỹ)‖

= μ

∥∥∥∥∥
N∑

i=1

λ̃i ((xi , yi ) − (x̃, ỹ))

∥∥∥∥∥

≤ μ

N∑
i=1

λ̃i‖(xi , yi ) − (x̃, ỹ)‖
≤ μ max {‖(xi , yi ) − (x, y)‖ : i = 1, . . . , N , (x, y) ∈ Opt}
= μtN

δ
.

To finish, observe that

F(x, y) =
N∑

i=1

tiλi = μ

N∑
i=1

ti λ̃i ≥ μtN .

Therefore,

dist(x, y) ≤ ‖(x, y) − (x̃, ỹ)‖ ≤ μtN /δ ≤ F(x, y)/δ.

��

2.4 Proof of Theorem 2

By construction, for each i = 0, 1, . . . we have

dist(xi , yi ) ≤ εi

δ(A)
= γ · εi+1

δ(A)
.

The iteration bound (9) then follows from Proposition 1.
After N outer iterations Algorithm iterated yields (xN , yN ) ∈ �m × �n with

F(xN , yN ) < εN = F(x0, y0)

γ N
≤ 2‖A‖

γ N
.

Thus, F(xN , yN ) < ε for N = ln(2‖A‖/ε)
ln(γ )

and (10) follows from (9). ��

2.5 The subroutine smoothing for matrix games

Algorithm smoothing involves fairly straightforward operations except for the solu-
tion of a subproblem of the form

argmin

{
1

2
‖(u, v)‖2 − (g, h)T(u, v) : (u, v) ∈ �m × �n

}
.
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This problem in turn separates into two subproblems of the form

argmin

{
1

2
‖u‖2 − gTu : u ∈ �m

}
. (15)

Problem (15) can easily be solved via its Karush-Kuhn-Tucker optimality conditions:

u − g = λ1 + μ, λ ∈ R, μ ∈ R
m+, u ∈ �m, uTμ = 0.

From these conditions it follows that the solution to (15) is given by

ui = max{0, gi − λ}, i = 1, . . . , m,

where λ ∈ R is such that
∑m

i=1 max {0, (gi − λ)} = 1. This value of λ can be computed
in O(m ln(m)) steps via a binary search in the sorted components of the vector g.

3 Smoothing scheme for sequential games

Algorithm iterated and its complexity bound can be extended to sequential games.
The Nash equilibrium problem of a two-player zero-sum sequential game with imper-
fect information can be formulated using the sequence form representation as the
following saddle-point problem [7,15,18]:

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy. (16)

In this formulation, the vectors x and y represent the strategies of players 1 and 2
respectively. The strategy spaces Qi ⊆ R

Si , i = 1, 2 are the sets of realization plans
of players 1 and 2 respectively, where Si is the set of sequences of moves of player i .

The approach we presented for equilibrium finding in matrix games extends to
sequential games in the natural way: recast (16) as a nonsmooth convex minimization
problem

min{F(x, y) : (x, y) ∈ Q1 × Q2}, (17)

for

F(x, y) = max{xTAv − uTAy : (u, v) ∈ Q1 × Q2}. (18)

Algorithms smoothing and iterated extend to this context by replacing �m and �n

with Q1 and Q2, respectively. Proposition 1 and Theorem 2 also extend in the same
fashion. However, the critical subproblem in the subroutine smoothing becomes more
challenging, as described next.
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3.1 The subroutine smoothing for sequential games

Here we describe how to solve each of the two argmin subproblems of smoothing
in the sequential game case. Each of those two subproblems decomposes into two
subproblems of the form

argmin

{
1

2
‖u‖2 − gTu : u ∈ Q

}
, (19)

where Q is a set of realization plans.
Our algorithm for this is a generalization of the solution approach described above

for the case Q = �k . In order to describe it, we use some features of the sets of
realization plans in the sequence form representation of sequential games. A detailed
discussion of the sequence form can be found in [18]. Recall that an extensive form
sequential game is given by a tree, payoffs at the leaves, chance moves, and informa-
tion sets [14]. Each node in the tree determines a unique sequence of choices from the
root to that node for each one of the players. Under the assumption of perfect recall,
all nodes in an information set u of a player define the same sequence σu of choices.

Assume U is the set of information sets of a particular player. For each u ∈ U let
Cu denote the set of choices for that player. Then the set of sequences S of the player
can be written as

S = {∅} ∪ {σuc : u ∈ U, c ∈ Cu}

where the notation σuc denotes the sequence of moves σu followed by the move c. A
realization plan for this player is a non-negative mapping x : S → R that satisfies
x(∅) = 1, and

−x(σu) +
∑
c∈Cu

x(σuc) = 0

for all u ∈ U . A realization plan x can be seen as an |S|-dimensional vector whose
entries are indexed by the set of sequences S. Under this interpretation, x(σ ) is the
component of x indexed by an element σ ∈ S.

It is immediate that the set of realization plans of the player as above, seen as
|S|-dimensional vectors, can be written in the form

{x ≥ 0 : Ex = e}

for some (1+|U |)×|S| matrix E with entries {0, 1,−1} and the (1+|U |)-dimensional
vector e = (1, 0, . . . , 0)T. It also follows that sets of realization plans are treeplexes.
A treeplex is a generalization of a simplex, and can be recursively defined as follows:

(C1) The empty set ∅ is a treeplex.
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(C2) Assume Q j ⊆ R
d j for j = 1, . . . , k are treeplexes. Then the following set is

a treeplex

{(
u0, u1, . . . , uk

)
∈ R

k+d1+···+dk : u0 ∈ �k, u j ∈ u0
j · Q j , j = 1, . . . , k

}
.

(The operation u0
j · Q j multiplies all elements of Q j by the j-th entry of u0,

that is, u0
j .)

(C3) Assume Q j ⊆ R
d j for j = 1, . . . , k are treeplexes. Then the following set

(their Cartesian product) is a treeplex

{(
u1, . . . , uk

)
∈ R

d1+···+dk : u j ∈ Q j , j = 1, . . . , k
}

.

Note that any simplex is a treeplex: �k is obtained by applying (C2) with Q j =
∅, j = 1, . . . , k.

A slightly different definition of treeplexes was given in [6]. It is easy to see that the
two definitions are equivalent, but the above definition is better suited for the purposes
of this paper.

Given a treeplex Q ⊆ R
d and a vector g ∈ R

d , define the value function vQ,g :
R+ → R as

vQ,g(t) := min

{
1

2
‖u‖2 − gTu : u ∈ t · Q

}
.

Theorem 5 below shows that vQ,g is differentiable in R+ and its derivative is strictly
increasing in R+. Let λQ,g = v′

Q,g and let θQ,g be the inverse function of λQ,g . Since
λQ,g is strictly increasing in R+, its minimum value is λQ,g(0). The function θQ,g can
be defined in all of R by putting θQ,g(λ) := 0 for all λ ≤ λQ,g(0). Finally, define the
minimizer function uQ,g : R+ → Q as

uQ,g(t) := argmin

{
1

2
‖u‖2 − gTu : u ∈ t · Q

}
.

The recursive algorithm TreeplexSubproblem below computes the functions
vQ,g, λQ,g, θQ,g, and uQ,g for any given treeplex Q. In particular, it computes the solu-
tion uQ,g(1) to the subproblem (19). The algorithm assumes that either Q is as in (C2)
and g = (

g0, g1, . . . , gk
) ∈ R

k+d1+···+dk , or Q is as in (C3) and g = (
g1, . . . , gk

) ∈
R

d1+···+dk .
TreeplexSubproblem(Q, g)

1. If Q is as in (C2) then
(a) For i = 1, . . . , k let λ̃i : R+ → R and θ̃i : R → R+ be

λ̃i (t) := t − g0
i + λQi ,gi (t), θ̃i := λ̃−1

i .

(b) Let θQ,g := ∑k
i=1 θ̃i and λQ,g := θ−1

Q,g
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(c) Let uQ,g : R+ → Q be

uQ,g(t)
0
i := θ̃i (λQ,g(t))

and

uQ,g(t)
i := uQi ,gi

(
uQ,g(t)

0
i

)

for i = 1, . . . , k.
2. If Q is as in (C3) then

(a) Let λQ,g := ∑k
i=1 λQi ,gi and θQ,g = λ−1

Q,g
(b) Let uQ,g : R+ → Q be

uQ,g(t)
i := uQi ,gi (t)

for i = 1, . . . , k.

While we presented Algorithm TreeplexSubproblem in recursive form for ped-
agogical reasons, for efficiency purposes we implemented it as a dynamic program.
The implementation first performs a bottom-up pass that computes and stores the func-
tions λQ,g . Subsequently a top-down pass computes the components of the minimizer
uQ,g(t).

Theorem 5 Algorithm TreeplexSubproblem is correct. In particular, the function
λQ,g = v′

Q,g exists and is piecewise linear. Furthermore, if Q is as in (C2) or is as in
(C3), then the total number of breakpoints B(Q, g) of λQ,g is at most

k∑
i=1

max{B(Qi , gi ), 1}.

If the breakpoints of λQi ,gi are available, then the breakpoints of λQ,g can be con-
structed in

O(B(Q, g) ln(B(Q, g)))

steps, i.e., this is the run time of Algorithm TreeplexSubproblem.

Proof First, assume that Q is as in (C2). Then the value function vQ,g(t) can be written
as

vQ,g(t) = min

⎧⎨
⎩

1

2

∥∥∥u0
∥∥∥

2 −
(

g0
)T

u0 +
k∑

j=1

vQ j ,g j

(
u0

j

)
: u0 ∈ t · �k

⎫⎬
⎭ . (20)
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This is a constrained optimization problem in the variables u0. Its Karush-Kuhn-Tucker
optimality conditions are

u0
j − g0

j + λQ j ,g j

(
u0

j

)
= λ + μ j ,

λ ∈ R, μ ∈ R
k+, (21)

u0 ∈ t · �k, μTu0 = 0.

In particular, the multiplier λ ∈ R is the unique solution to

k∑
j=1

max{g0
j − λQ j ,g j (u0

j ) + λ, 0} = t. (22)

Since this λ is unique, by basic differentiability properties from convex analysis (see,
e.g., [5, Chapter D]), it follows that v′

Q,g(t) = λQ,g(t) exists and is precisely the value
of λ that solves (22). Furthermore, from (22) it readily follows that λQ,g is strictly
increasing. From the optimality conditions (21), we get u0

j = θ̃ j (λ), j = 1, . . . , k

for the functions θ̃ j constructed in step 1 of Algorithm TreeplexSubproblem. Hence

t =
k∑

j=1

u0
j =

k∑
j=1

θ̃ j (λ).

Therefore, θQ,g = ∑k
j=1 θ̃ j . This shows the correctness of Steps 1.a and 1.b of Algo-

rithm TreeplexSubproblem. Finally, the correctness of Step 1.c follows from (20)
and (21).

On the other hand, if Q is as in (C3) then the value function vQ,g(t) can be decoupled
as follows

vQ,g(t) =
k∑

i=1

min

{
1

2

∥∥∥ui
∥∥∥

2 −
(

gi
)T

ui : ui ∈ t · Qi

}
=

k∑
i=1

vQi ,gi (t). (23)

This yields the correctness of Steps 2.a and 2.b.
The piecewise linearity of λQ,g readily follows from the correctness of Algorithm

TreeplexSubproblem. As for the number of breakpoints, consider first the case when
Q is as in (C2). Observe that the number of breakpoints of θ̃i is the same as that of λ̃i ,
which is either the same as that of λQi ,gi (if Qi �= ∅) or 1 (if Qi = ∅). To get the bound
on B(Q, g), note that the total number of breakpoints of λQ,g is the same as that of
θQ,g , which is at most the sum of the number of breakpoints of all θ̃i , i = 1, . . . , k.

The breakpoints of θQ,g can be obtained by sorting the breakpoints of all of the θi

together. This can be done in O(B(Q, g) ln(B(Q, g))) steps. In the case when Q is as
in (C3) the number of breakpoints of λQ,g is at most the sum of the number of break-
points of all λi , i = 1, . . . , k. The breakpoints of λQ,g can be obtained by sorting
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the breakpoints of all of the λi together. This can be done in O(B(Q, g) ln(B(Q, g)))

steps. ��

3.2 TreeplexSubproblem example

We include a simple example to illustrate Algorithm TreeplexSubproblem, as well
as the use of our recursive definition of treeplexes. For simplicity of the example, let
Q1 = �2 and Q2 = ∅. Then applying the recursive definition of treeplexes, (C2), we
get that Q is the set

{(
u0, u1

)
: u0 ∈ �2, u1 ∈ u0

1 · Q1

}
.

In a sequential game corresponding to this set of realization plans, the player first
chooses among actions a0

1 and a0
2 , with probabilities u0

1 and u0
2, respectively, and con-

ditioned on choosing action a0
1 , the player may be asked to choose among actions a1

1
and a1

2 , which are played with probabilities u1
1/u0

1 and u1
2/u0

1, respectively. (Note that
there is no u2 in the above equation since Q2 = ∅, i.e., if the agent plays a0

2 , he will
have no further actions.) The treeplex Q can also be written as {x ≥ 0 : Ex = e} for

E =
[

1 1 0 0
−1 0 1 1

]
, e =

[
1
0

]
.

Now, given input vector g1 ∈ R
2, we define the value function for Q1 as

vQ1,g1

(
u0

1

)
:= min

{
1

2

∥∥∥u1
∥∥∥

2 −
(

g1
)T

u1 : u1 ∈ u0
1 · Q1

}
.

Then, as was done in the proof of Theorem 5, we can write the value function for Q as

vQ,g(t) := min

{
1

2

∥∥∥u0
∥∥∥

2 −
(

g0
)T

u0 + vQ1,g1

(
u0

1

)
: u0 ∈ t · �2

}

for g = (
g0, g1

) ∈ R
4. This is the problem that TreeplexSubproblem is trying to

solve in our example.
We first demonstrate the algorithm as it executes TreeplexSubproblem(Q1, g1),

i.e., the bottom of the recursion. Since Q1 has no “sub-treeplexes”, we have

λ̃1(t) := t − g1
1,

λ̃2(t) := t − g1
2 .

The equations are graphed on the left in Fig. 1. Step 1 of the algorithm constructs the
θ̃i functions to be the inverse of the λ̃i (t) functions. Once these inverses are computed,
Step 2 of the algorithm adds the θ̃i functions to obtain the θQ1,g1 function, which is in
turn inverted to construct the λQ1,g1 function. This process of inverting, adding, and
inverting again has a more intuitive description in the form of a “horizontal addition”

123



First-order algorithm 295

Fig. 1 An illustration of Steps 1 and 2 of Algorithm TreeplexSubproblem applied to Q1 and g1

Fig. 2 An illustration of Steps 1 and 2 of Algorithm TreeplexSubproblem applied to Q and g

operation on the λ̃i functions. In such an operation, two functions are added as normal,
except we flip the axis of the graph so that the x-axis and y-axis are switched. This
operation is illustrated in Fig. 1. The graph on the left in Fig. 1 contains the λ̃i (t)
functions. These functions are “horizontally added” to obtain λQ1,g1 on the right in
Fig. 1.

At non-bottom parts of the recursion (λQ,g in our example) we construct the
piecewise linear functions similarly, except that we have to take into account subse-
quent actions using the piecewise linear functions (function λQ1,g1(t) in our example)
already computed for the nodes below the current node in the recursion tree:

λ̃1(t) := t − g0
1 + λQ1,g1(t),

λ̃2(t) := t − g0
2

The “horizontal addition” operation for this case is depicted in Fig. 2.
Since λQ1,g1(t) and λQ,g are piecewise linear, our implementation simply repre-

sents them as a set of breakpoints, which are represented by solid circles in Figs. 1
and 2. Given that we have finally constructed the piecewise linear function at the root,
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we can determine the values of u0 and u1 that solve the optimization problem in (19)
as described in Step 3 of Algorithm TreeplexSubproblem. Specifically, we first take
t = 1 and solve for u0. To do this, we evaluate λQ,g(1). Then we find the values of
u0

1 and u0
2 such that

λ̃1(u
0
1) = λQ,g(1),

λ̃2(u
0
2) = λQ,g(1).

This last operation is straightforward since the functions in question are monotonically
increasing and piecewise linear.

Once we have computed u0
1, we can evaluate λQ1,g1(u0

1) and find u1
1 and u1

2 that
satisfy

λ̃1(u
1
1) = λQ1,g1(u0

1),

λ̃2(u
1
2) = λQ1,g1(u0

1).

Again, this operation is easy due to the functions being monotonically increasing and
piecewise linear. This completes the execution of Algorithm TreeplexSubproblem
on our example.

4 Computational experiments

In this section we report on our computational experience with our new method. We
compared our iterated algorithm against the basic smoothing algorithm. We tested
the algorithms on matrix games as well as sequential games.

For matrix games, we generated 100 games of three different sizes where the pay-
offs are drawn uniformly at random from the interval [−1, 1]. This is the same instance
generator as in Nesterov’s [13] experiments.

For sequential games, we used the benchmark instances 81, 10k, and 160k
which have been used in the past for benchmarking equilibrium-finding algorithms
for sequential imperfect-information games [6]. These instances are all abstracted ver-
sions of Rhode Island Hold’em poker [16], and they are named to indicate the number
of variables in each player’s strategy vector.

Figure 3 displays the results. Each graph is plotted with ε on the x-axis (using an
inverse logarithmic scale). The y-axis is the number of seconds (using a logarithmic
scale) needed to find ε-equilibrium for the given ε. The matrix game graphs also
display the standard deviation.

In all settings we see that our iterated algorithm indeed outperforms the
smoothing algorithm (as the worst-case complexity results would suggest). In fact, as
the desired accuracy increases, the relative speed difference also increases.

We also tested a version of our iterated smoothing algorithm that used the
Lan et al. [8] variant of Nesterov’s algorithm for smooth optimization (subroutine
smoothing). The only difference in that subroutine is in Step 2(d) of smoothing.
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Fig. 3 Time taken (in seconds) for each algorithm to find an ε-equilibrium for various values of ε

Although the guarantee of Theorem 2 does not hold, that version performed almost
identically.

5 Conclusions

We presented a new algorithm for finding ε-equilibria in two-person zero-sum games.
It applies to both matrix and sequential games. The algorithm has convergence rate

O
( ‖A‖

δ(A)
ln(1/ε)

)
, where δ(A) is a condition measure of the matrix A. In terms of

the dependence on ε, this matches the complexity of interior-point methods and is
exponentially faster than prior first-order methods. Furthermore, our algorithm, like
other first-order methods, uses dramatically less memory than interior-point methods,
indicating that it can scale to games much larger than previously possible.

Our scheme supplements Nesterov’s first-order smoothing method with an outer
loop that lowers the target ε between iterations (this target affects the amount of
smoothing in the inner loop). We find it surprising that such a simple modification
yields an exponential speed improvement, and wonder whether a similar phenomenon
might occur in other optimization settings as well.

Finally, computational experiments both in matrix games and sequential games
show that a significant speed improvement is obtained in practice as well, and the
relative speed improvement increases with the desired accuracy (as suggested by the
complexity bounds).

Some recent work by Mordukhovich, Peña, and Roshchina [10] gives additional
insight into the condition measure δ(A). In particular, this article gives an explicit
characterization of δ(A) by relying on tools from variational analysis. This may lead
to further understanding of the condition measure δ(A) such as lower bounds on δ(A)

for particular classes of matrices A, or lower bounds on the expected value of δ(A)

for randomly chosen A.
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