
Safe Exchange Planner

Tuomas Sandholm and Vincent Ferrandon
fsandholm,vf1g@cs.wustl.edu

Department of Computer Science
Washington University

St. Louis, MO 63130-4899

Abstract

Nondelivery is a major problem in exchanges, especially
in electronic commerce: the supplier might not deliver the
goods or the demander might not pay. Enforcement is often
di�cult if the exchange parties are software agents, anony-
mous, bound by di�erent laws, or if litigation and escrow ser-
vices are expensive. Recently, a game-theoretic self-enforcing
method for carrying out exchanges was presented [7, 8]. The
exchange is divided into chunks, and each exchange party
delivers its next chunk only after the other party has com-
pleted the previous chunk. The chunking and chunk sequenc-
ing should be done so that at every point of the exchange,
both parties gain more by completing the exchange than by
vanishing. This paper operationalizes the theory by present-
ing a design of a safe exchange planner, which is o�ered on
the web. Exchanges di�er based on whether there is one or
multiple distinguishable items to exchange, whether there is
one or multiple indistinguishable units of each item, whether
the items are independent or not in terms of the supplier's
cost and the demander's valuation, whether the units are de-
pendent or independent in this sense, and whether the goods
are countable or uncountable. For these di�erent settings,
we present chunking and chunk sequencing algorithms that
provably �nd safe exchanges that optimize di�erent simplic-
ity criteria. We also present interface designs that minimize
the amount of information that the user has to input in each
setting.1

1 Introduction

Nondelivery is a major problem in exchanges, especially
in electronic commerce: the supplier might not deliver
the goods or the demander might not pay. A recent
study shows that 6% of consumers with on-line shop-
ping experience reported products or services that were
paid for, but never received [3]. The problem is exac-
erbated by the trend that electronic markets act only
as information services that match buyers and sellers,
while leaving the execution of the transactions up to
the contract parties. Even if attempted, enforcement of
exchanges is often di�cult if the exchange parties are
software agents (an agent can vanish easily by killing
its process and its connection to the real-world party
that it represented can be hard to trace), anonymous,
bound by di�erent laws of di�erent countries, or if liti-
gation and escrow services are expensive. For example,
current electronic commerce escrow companies, such as
i-Escrow, Inc., and Trade-Direct, Inc., charge 5%-6% of
the contract price as an escrow fee.
Most work on automated negotiation has used some

1Supported by NSF under CAREER Award IRI-9703122,
Grant IRI-9610122, and Grant IIS-9800994.

form of ex ante rationality as the agents' decision crite-
rion [5, 6]. This assumes that the deals that the agents
make are enforced. If possible, it would be desirable to
also require interim rationality, i.e., that the contracts
are self-enforcing [1, 10, 2].
Recently, a game-theoretic self-enforcing method for

carrying out exchanges was presented [7, 8]. The ex-
change is divided into chunks, and each exchange party
delivers its next chunk only after the other party has
completed the previous chunk. The method mainly
targets setting where only negligible cost is incurred
by dividing and delivering the goods and payments in
chunks. This is the case, for example, in exchanging
data (software, books, music, video-on-demand, etc.) or
computational services (e.g., Disney subcontracting to a
rendering farm, or idle CPU cycles being traded among
anonymous parties [4]). Unfortunately, the technique
may also facilitate illegal trades of drugs, arms, porn,
etc., where enforcement of the exchange is not possible
via litigation.
In order not to require the user to plan and execute

the exchange strategy of delivering one chunk at a time,
we suggest that she use an exchange manager agent.
The user inputs information about the exchange setting
to her agent. The agent then plans a safe exchange, and
carries it out so the user does not even have to know
that the exchange is carried out in chunks instead of in
one step. The agent should do the chunking and chunk
sequencing so that at every point of the exchange, both
exchange parties gain more by completing the exchange
than by vanishing. This paper operationalizes the the-
ory by presenting a design and implementation of such a
safe exchange planner. For a variety of exchange types,
we present chunking and chunk sequencing algorithms
that provably �nd safe exchanges that optimize di�er-
ent simplicity criteria. We also present interface designs
that minimize the amount of information that the user
has to input to her agent in each exchange type.

2 Our model of an exchange

In our model, the exchange occurs between two agents:
a supplier and a demander. The supplier is delivering
n distinguishable items (n 2 Z+), with �i, i 2 f1::ng,
units per item. The units of any given item are in-
distinguishable from each other. We denote a state of
delivery by x = (x1; : : : ; xn). The initial delivery state
is (0; : : : ; 0), and a completed delivery is (�1; : : : ; �n).
For countable goods (such as software licenses, stocks,
and barrels of oil), the set of delivery states is S =
f0; 1; : : : ; �1g � f0; 1; : : : ; �2g � : : :� f0; 1; : : : ; �ng and

for uncountable goods (such as consulting time, mu-
tual funds, and electricity), it is S = [0; �1] � [0; �2] �
: : :� [0; �n]. The demander is paying for these goods.
Initially the payment is 0, the complete payment of
the contract is pcontr, and the state of payment is
p 2 [0; pcontr]. Put together, the state of the exchange
is (x1; :::; xn; p).
Whenever the exchange ends|possibly prematurely

because an agent defected by vanishing|the supplier's
utility is us(x; p) = p � vs(x) if she did not defect and
us(x; p) = p�vs(x)�cdefs if she did. The nondecreasing
function vs(x) 2 <+ is the supplier's cost of generating
and delivering the goods x.2 The constant cdefs � 0 is
the supplier's exogenous disutility of defecting. Such
disutility can stem from inherent honesty, risk of be-
ing litigated, reputation e�ects that may lead to loss of
future business, etc.
The demander's utility is ud(x; p) = vd(x) � p if she

did not defect and us(x; p) = vd(x) � p � c
def
d if she

did. The nondecreasing function vd(x) 2 <+ is the

demander's valuation of the goods x, and c
def

d � 0 is
the demander's exogenous disutility of defecting.
We want to ensure that at any state of the exchange,

(x; p), that is reached, the supplier's utility from com-
pleting the exchange (assuming that the demander does
not defect) is no less than his utility from defecting:

pcontr � vs(�1; : : : ; �n) � p� vs(x)� cdefs

So, we want to maintain p � pmax(x) throughout the
exchange, where

pmax(x)
def
= pcontr � vs(�1; : : : ; �n) + vs(x) + cdefs (1)

We also want to ensure that at any state of the exchange
that is reached, the demander's utility from completing
the exchange (assuming that the supplier does not de-
fect) is no less than his utility from defecting:3

vd(�1; : : : ; �n) � pcontr � vd(x)� p � c
def

d

So, we want to maintain p � pmin(x) throughout the
exchange, where

pmin(x)
def
= pcontr � vd(�1; : : : ; �n) + vd(x) � c

def
d (2)

It was recently shown that the exchange strategies
Ss and Sd (de�ned below) for the agents|where each
agent sends the other as much as it can while honoring

2We assume that this cost (and any other input to the
safe exchange planner) does not depend on the number of
chunks into which the exchange is split.

3If the agents do not know each other's value functions,
they can use bounds they know to compute pmax(x) and

pmin(x). The supplier is safe using an upper bound for

pmin(x), i.e. a lower bound for vd(�1; : : : ; �n) and an up-
per bound for vd(x). The demander is safe using a lower
bound for pmax(x). Although the agents are safe using such
bounds, even possible exchanges are disabled if the bounds
are too far o�.

(1) and (2)|lead to completion of the exchange in sub-
game perfect Nash equilibrium (SPNE) if for every two
consecutive delivery states4

x; x0 2 S; pmax(x) � pmin(x0) (3)

(otherwise no exchange strategies can proceed safely
without violating (1) or (2)) [7, 8]. We call delivery
states x and x0 consecutive if 9k 2 [1; n] such that x0k =
xk + " and x0l = xl for l 6= k, where " = 1 if the good k
is countable, and " � � if the good k is uncountable (�
is a positive constant).
Say that the delivery order of the di�erent units of

the di�erent items has been �xed (we will present al-
gorithms for determining a good order later). Then
the state of the exchange, (x1; : : : ; xn; p), can be cap-
tured uniquely by (�; p) where � =

Pn

i=1 xi 2 X,
and X = f0; : : : ;

Pn

i=1 �ig for countable goods and
X = [0;

Pn

i=1 �i] for uncountables. Therefore, with a
slight abuse of notation, we allow pmax(�) and pmin(�)
to be called with either an argument x or an argument
�. Now we are ready to state the exchange strategies:

De�nition. 2.1 (Supplier's strategy Ss) At
any point (�t; pt) of the exchange, if pmin(�t) � pt �
pmax(�t), deliver an amount such that cumulative de-
livery �t+1 = maxf� 2 X : pmin(�) � ptg.5 Else exit.

De�nition. 2.2 (Demander's strategy Sd) At any
point (�t; pt) of the exchange, if pmin(�t) � pt �
pmax(�t), pay an amount such that cumulative payment
pt+1 = pmax(�t). Else exit.

It was previously shown that for any given order of
delivering the di�erent units of di�erent items, no other
strategies can lead to completion of the exchange in
SPNE in fewer steps (a step can include both a deliv-
ery and a payment) than strategies Ss and Sd do [7].
We now show that, alternatively, with slight modi�ca-
tions to the strategies, the exchange can be completed
in SPNE in the minimal number of payments, mini-
mal number of deliveries, or minimal sum of payments
and deliveries. To minimize the number of payments,
we simply try to force the �rst step of the exchange
to include a delivery only. The exchange will then al-
ternate between payments and deliveries. To minimize
the number of deliveries, we simply try to force the �rst
step of the exchange to include a payment only. The ex-
change will then alternate between deliveries and pay-
ments. To minimize the sum of payments and deliveries,
we try both ways of forcing and see which leads to the
smaller sum.

Theorem 2.1 Assume that the exchange can be com-
pleted in SPNE using the given order of delivering the

4Two strategies are in SPNE if neither agent wants to
deviate from its strategy in any subgame of the game tree,
given that the other party does not deviate [9].

5For uncountable goods, this max may not be de�ned,
so we use max(�t; supf� 2 X : pmin(�) � ptg � �) instead,
where � < �.

units of the di�erent items. If at (�0; p0) = (0; 0),
the agents apply strategies that immediately lead to
(�1; p1) = (maxf� 2 X : pmin(�) � p0g; p0), and
Ss and Sd from then on, the exchange is completed
in SPNE in the minimal number of payments. If at
(�0; p0) = (0; 0), the agents apply strategies that imme-
diately lead to (�1; p1) = (�0; pmax(�0)), the exchange is
completed in SPNE in the minimal number of deliver-
ies. To complete the exchange in SPNE with a minimal
sum of payments and deliveries, it su�ces to try both
of these variants and select the one that leads to the
smaller sum.

We call the items of an exchange indepen-
dent if vs(x1; x2; : : : ; xn) =

P
i2f1::ng v

i
s(xi) and

vd(x1; x2; : : : ; xn) =
P

i2f1::ng v
i
d(xi). Otherwise the

items are dependent.
We call the units of items independent if 8i 2 f1::ng,
vs(x1; : : : ; xi; : : : ; xn) = vs(x1; : : : ; 0; : : : ; xn) + xi �

�vs
�xi

and vd(x1; : : : ; xi; : : : ; xn) = vd(x1; : : : ; 0; : : : ; xn) + xi �
�vd
�xi

, where �vs
�xi

and �vd
�xi

are constants that depend only
on i. Otherwise the units are dependent.
We call an exchange safe if it can be completed in

SPNE. Exchanges di�er based on whether there is one
or multiple items to exchange, whether there is one or
multiple units of each item, whether the items are de-
pendent or independent, whether the units are depen-
dent or independent, and whether the goods are count-
able or uncountable. In the rest of the paper, we present
chunking and chunk sequencing algorithms for the dif-
ferent settings. We also present interface designs that
minimize the amount of information that the user has to
input in each setting. For every exchange type, the user
starts by inputting the contract price, pcontr, and the

defection disutilities, cdefs and cdefd . However, the rest of
the input depends on the exchange type. Section 3 cov-
ers independent items and independent units. Section 4
handles independent items and dependent units. Sec-
tion 5 covers dependent items and dependent units. Sec-
tion 6 handles dependent items and independent units.
Finally, Section 7 presents conclusions.

3 Independent item(s) with indepen-

dent unit(s)

In this section we discuss an exchange involving one
or many independent items, where the units of each
item are independent. If there is only one item to be
delivered (n = 1), we simply need to decide, for every
step of the exchange, how many units of that item are
to be delivered and how much is to be paid, i.e., we
need to decide the chunking of the exchange. In the
case of multiple items, we �rst need to decide the order
in which the items are to be delivered, and then decide,
for every step of the exchange, how many units of that
item are to be delivered and howmuch is to be paid, i.e.,
the chunking. Since both settings require chunking, we
present our chunking algorithm in the next subsection.
The second subsection covers the setting with a single

item. The third subsection discusses multiple items.

3.1 Chunking algorithm
Say that there are � units to be delivered. In the set-
ting with one item, these are all units of the same item
(� = �1). In the case of multiple items, these are se-
quenced units of di�erent items (� =

Pn

i=1 �i). Since
the units are sequenced before the algorithm is exe-
cuted, the state of the exchange can be compressed to
be (�; p) instead of (x1; :::; xn; p), where � =

Pn

i=1 xi.
Here pmax is represented

by line segments flsmax
j gj2f1::rmaxg

, and pmin is rep-

resented by line segments flsmin
i gi2f1::rming

. We also
de�ne

�(lsmax
j) = �-coordinate of the left tip of lsmax

j

!(lsmax
j) = �-coordinate of the right tip of lsmax

j

and 8� 2 [�(lsmax
j); !(lsmax

j)] (or

f�(lsmax
j) : : : !(lsmax

j)g in the case of countable goods),

lsmax
j (�) = p, and (lsmax

j)�1(p) = �. Furthermore,

8j; !(lsmax
j) = �(lsmax

j+1) (analogously for ls
min
i).

Let COUNTABLE be a Boolean vector of length
rmin so that 8i 2 f1::rming, COUNTABLE[i] is true
if the goods on the interval lsmin

i are countable, and
false if they are uncountable. Finally, let F (�; i) = �
if COUNTABLE[i] = false, and F (�; i) = b�c if
COUNTABLE[i] = true.
If no exchange can proceed beyond line segment

lsmin
i , and the good involved in that segment is count-

able, the algorithm below stops and reports \NO SO-
LUTION". However, if the good involved in that seg-
ment is uncountable, it may be that the exchange keeps
approaching some delivery amount with an in�nite se-
quence of progressively decreasing steps. In that case,
the algorithm below would never stop. Therefore, be-
fore running the algorithmbelow, a separate check is ex-
ecuted for every line segment that involves an uncount-
able good. Speci�cally, 8i s.t. COUNTABLE[i] =
false, we run an algorithm that looks for � and j such
that lsmax

j (�) = lsmin
i (�) with �(lsmax

j) < �. A safe ex-
change is impossible if lsmax

j (�(lsmax
j)) < lsmax

j (�) or if

lsmin
i (!(lsmin

i)) > lsmin
i (�). In that case, execution of

the algorithm below is not attempted.

Algorithm 3.1 DETERMINE-CHUNKING
(flsmax

i gi2f1;rmaxg, fls
min
i gi2f1;rming

; COUNTABLE[])
1. �0 = 0; p0 = 0; i = 1; j = 1 // initialize
2. while (i � rmin AND lsmin

i (!(lsmin
i)) < p0) do

i = i + 1
3. if i > rmin then �1 = � else �1 = F ((lsmin

i)�1(0); i)
4. while (!(lsmax

j) < 0) do

j = j + 1 // here j � rmax always
5. p1 = min(lsmax

j (0); pcontr)
6. t = 2
7. while (�t�1 < � OR pt�1 < pcontr) do // main loop

while (i � rmin AND lsmin
i (!(lsmin

i)) < pt�1) do
i = i + 1

if i > rmin then �t = �
else �t = F ((lsmin

i)�1(pt�1); i)
while (!(lsmax

j)) < �t�1) do
j = j + 1

pt = min(lsmax
j (�t�1); pcontr)

if COUNTABLE[i] = true AND (�t = �t�1 =
�t�2), return "NO SOLUTION"
t = t + 1

8. return (�1; �2; : : : ; ��) and (p1; p2; : : : ; p�)

Theorem 3.1 For a given order of delivering the units,
for countable or uncountable goods, for nondecreas-
ing pmax and pmin, DETERMINE-CHUNKING �nds
a safe exchange plan that minimizes the number of ex-
change steps. By forcing the exchange to start with a
payment only (by setting �1 = 0 in step 3), the algorithm
�nds a safe exchange with minimal number of deliveries.
By forcing the exchange to start with a delivery only (by
setting p1 = 0 in step 5) the algorithm �nds a safe ex-
change with a minimal number of payments. To pick a
safe exchange that minimizes the sum of deliveries and
payments, pick that solution given by the two variants of
the algorithm that minimizes the sum. For all of these
variants, the algorithm runs in O(� max(rmin; rmax))
time and O(max(�; rmin; rmax)) space, where � is the
number of chunks in the output.

3.2 Single item, independent unit(s)

Exchanges of a single item with independent units
(countable or uncountable) are the simplest. The in-
put interface is a table where the user �lls two cells

(Table 1). Since the units are independent, �vs(x)

�x1
and

�vd(x)

�x1
do not depend on x1 by de�nition. Thus pmax

and pmin are lines. The optimal safe exchange is com-
puted by running DETERMINE-CHUNKING on this
input.

item name supplier's cost per unit demander's value per unit

item
�vs(x)

�x1

�vd(x)

�x1

Table 1: Input form for a single independent item with
independent units.

3.3 Many independent items, independent
units

For exchanges with multiple independent items (count-
able or uncountable) with independent units, the
user enters how much one unit of each item in-
creases vs and vd (Table 2). Therefore, we have

item name supplier's cost per unit demander's value per unit

item1
�vs
�x1

�vd
�x1

item2
�vs
�x2

�vd
�x2

.

itemn
�vs
�xn

�vd
�xn

Table 2: Input form for independent items, independent
units.

the following line segments (the quantity before the
comma is the increase in xi, the one after the
comma is the increase in p): f(�i; �i

�vs
�xi

)gi2f1::ng and

f(�i; �i
�vd
�xi

)gi2f1::ng. To simplify the notation, de-

�ne f(�i;�pmax
i)gi2f1::ng = f(�i; �i

�vs
�xi

)gi2f1::ng and

f(�i;�pmin
i)gi2f1::ng = f(�i; �i

�vd
�xi

)gi2f1::ng. For both
countable and uncountable goods, the algorithm be-
low �nds a safe ordering of f(�i;�pmax

i)gi2f1::ng (resp.

pmin) if one exists.

Algorithm 3.2
SEQUENCE-SEGMENTS(f(�i;�pmax

i)gi2f1::ng,

f(�i;�pmin
i)gi2f1::ng, pcontr, cdefs , c

def
d , COUNT-

ABLE[])

1. pmax
init = pcontr + cdefs ; pmin

init = pcontr � c
def

d

2. 8i 2 f1::ng do /* Sets bounds for p at x = 0 */
pmax
init = pmax

init ��pmax
i ; pmin

init = pmin
init ��pmin

i

3. if pmax
init < 0 OR pmin

init > 0, return \NO SOLUTION"
4. Divide f1::ng into two sets POS and NEG s.t.

POS = fi 2 f1::ng : �pmax
i ��pmin

i � 0g and
NEG = fi 2 f1::ng : �pmax

i ��pmin
i < 0g

5. pmax=pmax
init ; p

min=pmin
init ;np=jPOSj;nn=jNEGj

6. for t = 1 to np
FEASIBLES =
fi 2 POS : (COUNTABLE[i] = true AND

pmin+
�pmin

i

�i
� pmax) OR (COUNTABLE[i] =

false AND (pmax > pmin OR �pmin
i = 0))g

if FEASIBLES = ;, return \NO SOLUTION"
i� = argmaxi2FEASIBLES �p

max
i ��pmin

i

segment[t] = i�

pmax = pmax +�pmax
i� ; pmin = pmin +�pmin

i� .
POS = POS � fi�g

7. pmax = pcontr + cdefs ; pmin = pcontr � c
def
d

8. for t = nn + np down to np + 1
FEASIBLES =
fi 2 NEG : (COUNTABLE[i] = true AND

pmin � pmax�
�pmax

i

�i
) OR (COUNTABLE[i] =

false AND (pmax > pmin OR �pmax
i = 0))g

if FEASIBLES = ;, return \NO SOLUTION"
i� = argmaxi2FEASIBLES �p

min
i ��pmax

i

segment[t] = i�

pmax = pmax ��pmax
i� ; pmin = pmin ��pmin

i�

NEG = NEG� fi�g
9. Return the vector "segment". First segment to be

placed is in segment[1].

Theorem 3.2 For the case of countable goods and
for the case of uncountable goods, SEQUENCE-
SEGMENTS �nds a safe ordering if one exists, and
returns "NO SOLUTION" otherwise. It always termi-
nates in O(n2) time.6

6SEQUENCE-SEGMENTS is an improvement over the
SEQ-CHUNKS algorithm (presented earlier [7, 8]). First, it
is quadratic in the number of line segments instead of in the

SEQUENCE-SEGMENTS determines an ordering
for the items. All units of one item are delivered before
delivering any units of the next (this does not compro-
mise safety or minimality of the exchange plan). After
SEQUENCE-SEGMENTS has determined an ordering,
we run DETERMINE-CHUNKING to determine the
chunking. It outputs the exchange plan.

3.4 Example: Purchasing stocks

In this example the agents exchange multiple inde-
pendent units of multiple independent items (stocks:
MSFT, HWP, DELL, EBAY, and PG). The stocks have
di�erent values for the supplier and the demander (e.g.,
because the supplier and the demander have di�erent
portfolios, and the value of a stock in a portfolio de-
pends on how correlated the stock is with the rest of
the portfolio statistically). Note that vs can be greater
than vd for some items|but not all of them|to allow
safe exchange. Say the agents have agreed to a con-
tract price $25864.60, and the defection disutilities are

cdefs = $1000 and c
def

d = $1500. The input to the algo-
rithm and the output are shown in Figure 1.

4 Independent item(s), dependent units

For exchanges of dependent units of a single item, the
user inputs the number of units to be exchanged, �1.
The user also inputs vs(x) and vd(x). In our implemen-
tation, the user draws piecewise linear, nondecreasing
functions vs(x) and vd(x). These de�ne piecewise lin-
ear, nondecreasing functions pmax(x) and pmin(x) ac-
cording to Equations (1) and (2). These pieces are then
fed to DETERMINE-CHUNKING which plans a mini-
mal safe exchange if one exists.
For exchanges of dependent units of multiple inde-

pendent items, the user inputs the number of units
to be exchanged for each item, �i; i 2 f1::ng. The
user also draws piecewise linear, nondecreasing func-
tions vs;i(xi) and vd;i(xi) for all i 2 f1::ng. For count-
able goods, these value function can be aggregated:
vs(x1; : : : ; xn) =

Pn

i=1 vs;i(xi) and vd(x1; : : : ; xn) =Pn

i=1 vd;i(xi). This information (which does not cap-
italize on the fact that the items are independent) is
then fed into the algorithm that plans a minimal safe
exchange with multiple dependent items and dependent
units (CHUNK&SEQUENCE, described in Section 5).7

number of units to be exchanged. This improves the speed
signi�cantly in settings where segments are multiple units
long. Second, in the case of uncountable goods, the number
of smallest possible deliverables is in�nite, so SEQ-CHUNKS
cannot handle that case, while SEQUENCE-SEGMENTS
works in that setting as well.

7For uncountable goods this aggregation would result in a
table with an uncountably in�nite number of rows. There-
fore, a di�erent method is required. In the safe exchange
planner implementation that we o�er on the web, we use a
fast dynamic programming algorithm for this case (it also
handles countable goods). It capitalizes on the indepen-
dence of the items. However, we omit the algorithm due to
space limitations, and due to the fact that we have not yet

item name number of units
�vs
�xi

�vd
�xi

to exchange

MSFT 60 $90.81 $98

HWP 30 $102.63 $109.9

DELL 10 $41.81 $42.5

EBAY 100 $120.25 $127.25

PG 40 $85.1 $88.44

Figure 1: Top: Input form for independent items,
independent units. Bottom: Output. This opti-
mal plan is 16 steps long. The items (DELL, PG,
EBAY, MSFT, HWP) were sequenced by SEQUENCE-
SEGMENTS and then the chunking was determined us-
ing DETERMINE-CHUNKING.

5 Many dependent items, dependent

units

Exchanges of several dependent items with dependent
units are the most complex class of exchanges. In this
section we describe a fully expressive input method, and
an algorithm that is guaranteed to �nd a safe optimal
exchange in this setting.

5.1 Table for user to input vs and vd

If the number of items is greater than two, vs and
vd can no longer be represented graphically. How-
ever, the user can input them in table form as long
as the units are countable. In the rest of this sec-
tion we therefore restrict our discussion to countable
goods. In the input table, the user �lls in a value
for vs and for vd for each possible (x1; x2; : : : ; xn) 2
f0; 1; : : : ; �1g�f0; 1; : : :; �2g� : : :�f0; 1; : : : ; �ng. This
means �lling 2 �

Qn

i=1(�i + 1) cells in a table.
Example A. Consider a software system consisting of

two packages, a main package and a plug-in. The former
takes four
oppy disks (units) whereas the latter takes
only one. They depend on each other in the sense of

proven that the algorithm �nds a safe exchange every time
one exists.

the value functions vs and vd, as the user has expressed
this in the following input table:

plug-in package vs vd
0 0 0 0

0 1 5 3

0 2 9 6

0 3 13 10

0 4 17 14

1 0 10 6

1 1 13 10

1 2 16 15

1 3 18 20

1 4 19 26

Table 3: Single table input form (STIF) for example A.

If vs(x
0) = vs(x) for x; x0 2 S such that 8i 2

f1::ng; x0 � x, and x0 > x for some i 2 f1::ng, then
the user need not enter a value in the cell for vs(x

0)
(analogously for vd(�)). The following simple algorithm
�lls these missing values automatically:

vs(x1; x2; : : : ; xn) = max
i2[1;n]

vis

where vis = vs(x1; x2; : : : ; xi�1; xi � 1; xi+1; : : : ; xn).
Before we run the safe exchange planning algorithm,

we check that the input satis�es our assumption that
vs and vd are nondecreasing. For dependent items with
dependent units, we check this using a local notion of
nondecreasing function:

8i 2 f1; ng; vs(x1; x2; : : : ; xn) � vis

5.2 Algorithm for planning an optimal safe
exchange

As before, let S be the set of possible states of delivery:
S = f0; 1; : : : ; �1g� f0; 1; : : :; �2g � : : :�f0; 1; : : : ; �ng.
So, any vector x 2 S is a delivery state x =
(x1; x2; : : : ; xn). Let r(x) be true if x can be reached
safely, and false otherwise. Let �(x) be the number
of steps needed to reach x. Let c(x) = (y1; y2; : : :) be
the minimal ordered list of delivery states, yi 2 S, to
reach x such that the exchange can safely move from
one of these delivery states to the next in a single step,
i.e., for any yi; yi+1 2 c(x), pmax(yi) � pmin(yi+1). Let
d(x) = (p1; p2; : : :) be the ordered list of safe payment
states, pi 2 <+, corresponding to the delivery states in
c(x).
Let xi = (x1; x2; : : : ; xi�1; xi � 1; xi+1; : : : ; xn). Let

ri(x) be true if x can be reached safely via xi, and
false otherwise. Let �i(x) be the number of chunks
used to reach x via xi. Let ci(x) = (y1; y2; : : :) be the
minimal ordered list of delivery states to reach x via
xi such that the exchange can safely move from one of
these delivery states to the next in a single step. Let
di(x) = (p1; p2; : : :) be the ordered list of safe payment
states, pi 2 <+, corresponding to the delivery states in
ci(x).
Figure 2 visualizes the problem instance of example

A. There are four cases to consider when reaching one
vertex from another, e.g. (1; 1) from (0; 1):

� (1; 1) can be reached safely via (0; 1) in the same step
that reached (0; 1). So, (1; 1) replaces (0; 1) as the
last element of c(1; 1).

Figure 2: Graph representation of the delivery states,
x = (x1; x2), in example A. The states are grouped ac-
cording to size =

Pn

i=1 xi.

� (1; 1) can be reached safely in one step via (0; 1), but
not in the same step that reached (0; 1). So, (1; 1) is
appended to c(1; 1).

� (1; 1) can be reached safely via (0; 1) in two steps
(one is a payment and the other is a delivery), neither
of which is the same as the step that reached (0; 1).
So, (0; 1) is appended to c(1; 1), and then (1; 1) is
appended to c(1; 1).

� (1; 1) cannot be reached safely via (0; 1).

The dynamic programming algorithm below is based
on considering these cases. The functions last(�),
last�1(�), give the last and the second to last element
of a list respectively. The operators � and 	 add and
subtract an element at the end of an ordered list.

Algorithm 5.1 CHUNK&SEQUENCE(n, pcontr,
pmax(�), pmin(�), �1; �2; : : : ; �n)

1. if pmax(0; : : : ; 0) < 0 OR pmin(0; : : : ; 0) > 0 OR
pmax(�1; : : : ; �n) < pcontr OR pmin(�1; : : : ; �n) >
pcontr, return \NO SOLUTION"

2. r(0; 0; : : : ; 0) = true
�(0; 0; : : : ; 0) = 1
c(0; 0; : : : ; 0) = f(0; 0; : : : ; 0)g
d(0; 0; : : : ; 0) = f0g

3. for size = 1 to
Pn

i=1 �i do
a. THIS SIZE REACHABLE = false

b. for x 2 fy 2 S :
Pn

k=1 yk = sizeg do

1. for i 2 [1; n] do
i. if r(xi) = true then f//try the 3 possibilities
if jd(xi)j � 2 AND pmin(x) � last�1(d(x

i))
then // extend current chunk

ri(x) = true
�i(x) = �(xi)
ci(x) = c(xi) 	 last(c(xi)) � x
di(x) = d(xi)

elseif pmin(x) � last(d(xi)) then
// pay and deliver in a new chunk

ri(x) = true
�i(x) = �(xi) + 1
ci(x) = c(xi) � x
di(x) =
d(xi)�min(pmax(xi); pcontr)

elseif pmin(x) � min(pmax(xi); pcontr)
then // pay, then deliver (2 chunks)

ri(x) = true
�i(x) = �(xi) + 2

ci(x) = c(xi)� xi � x
di(x) = d(xi)

�min(pmax(xi); pcontr)
�min(pmax(xi); pcontr)

else ri(x) = false
g

ii. else ri(x) = false

2. if 9i 2 f1::ng such that ri(x) = true then
// �nd the minimal path

r(x) = true
THIS SIZE REACHABLE = true
�(x) = mini2f1::ng �

i(x)

c(x) = cargmini2f1::ng(�
i(x))(x)

d(x) = dargmini2f1::ng(�
i(x))(x)

3. else r(x) = false

c. if THIS SIZE REACHABLE = false,
return \NO SOLUTION"

4. if last(d(�1; �2; : : : ; �n)) < pcontr then
c(�1; �2; : : : ; �n) =

c(�1; �2; : : : ; �n) � (�1; �2; : : : ; �n)
d(�1; �2; : : : ; �n) = d(�1; �2; : : : ; �n) � pcontr

5. return c(�1; �2; : : : ; �n) and d(�1; �2; : : : ; �n).

Theorem 5.1 Assume that a safe sequence exists.
CHUNK&SEQUENCE �nds a safe sequence that min-
imizes the number of steps. By changing the initial-
ization to d(0; 0; : : : ; 0) = fpmin(0; 0; : : : ; 0) � �g, for
any � > 0, CHUNK&SEQUENCE �nds a safe se-
quence that minimizes the number of deliveries. By
setting pmax(0; 0; : : : ; 0) = 0 within the algorithm,
CHUNK&SEQUENCE �nds a safe sequence that min-
imizes the number of payments. To minimize the sum
of payments and deliveries, pick that solution given by
these two algorithm variants that minimizes the sum.
If a safe sequence does not exist, all of these vari-
ants report \NO SOLUTION". The algorithm runs in
O((
Pn

i=1 �i)jSjn) = O((
Pn

i=1 �i)(
Qn

i=1(�i+1))n) time
and O(S) = O(

Qn

i=1(�i + 1)) space.

The time and space are polynomial in the size of
the input (2 �

Qn

i=1(�i + 1)). If there is only one unit
of each item (�i = 1), CHUNK&SEQUENCE runs in
O(n22n) time and O(2n) space, so even in that sim-
ple setting, the algorithm is exponential in the num-
ber of items. In general, for a �xed number of items,
CHUNK&SEQUENCE is polynomial in the number of
units.
In Figure 2, the thick line represents the path that

CHUNK&SEQUENCE chooses. Given the input (Ta-
ble 3), CHUNK&SEQUENCE returns c(1; 4) = f(0; 0),
(0; 2), (0; 3), (0; 4), (0; 4), (1; 4)g, and d(1; 4) = f0, 5,
14, 18, 22, 22g. So, in the �rst step, the supplier deliv-
ers 2 units of item 2 and the demander pays $5. In the
second step, the supplier delivers 1 unit of item 2 and
the demander pays $9. In the third step, the supplier
delivers 1 unit of item 2 and the demander pays $4. In
the fourth step, the supplier does not deliver, but the
demander pays $4. In the �fth step, the supplier de-
livers 1 unit of item 1 and the demander does not pay

anything. So, the exchange is completed safely in �ve
steps, containing four deliveries and four payments.

6 Many dependent items, independent

units

The previous section discussed exchanges of several de-
pendent items whose units are dependent. Exchanges
of several dependent items whose units are independent
could be handled with the same input form, same algo-
rithm (CHUNK&SEQUENCE) and same output form.
We follow this approach except that we capitalize on
the independence of the units in the input form. The
user inputs how much each additional unit of a given
item increases vs and vd, given how many units of each
other item has been delivered so far.
Example B. Consider a company purchasing a soft-

ware system consisting of two items: package 1 and
package 2. The employees mainly use package 2 and
rarely package 1, so the company purchases four licenses
(units) of package 2 and one license of package 1. Both
packages can work alone but are dependent in the sense
of the value functions as shown in Table 4.
To use CHUNK&SEQUENCE to plan an optimal safe

exchange, the MTIF needs to be converted into STIF
form. The value functions vs and vd of the STIF are
calculated from the MTIF as follows:

vs(x1; x2; : : : ; xn) =

nX
i=1

�vs
�xi

(x1; : : : ; xi; 0; : : : ; 0)xi

and analogously for vd.
For the MTIF to be consistent, every sequence

(itemi1 ; itemi2 ; : : : ; itemin) must give the same value
for vs(x1; x2; : : : ; xn) and for vd(x1; x2; : : : ; xn). This
gives additional constraints on the values in the MTIF.
For example, in our software license scenario, the fol-
lowing constraints pertain to vs(1; 3), corresponding to
di�erent orders of delivering the items (how many units
of package 2 are delivered before the one unit of package
1):

case 1 vs(1;3) =
�vs(0;0)

�x1
+ 3

�vs(1;0)

�x2

case 2 vs(1;3) = 3
�vs(0;0)

�x2
+

�vs(0;3)

�x1

case 3 vs(1;3) =
�vs(0;0)

�x2
+

�vs(0;1)

�x1
+ 2

�vs(1;0)

�x2

case 4 vs(1;3) = 2
�vs(0;0)

�x2
+

�vs(0;2)

�x1
+

�vs(1;0)

�x2

So, in the MTIF, the user has too many degrees of
freedom (cells to �ll in the table). One way to tackle
this would be to have the user �ll the entire table, and
check for consistency afterwards. Instead, we have the
user only �ll in the minimal number of cells. This pre-
cludes the user from submitting inconsistent preferences
while maintaining full expressive power within the space
of consistent preferences (we do not impose any partic-
ular functional form). The following algorithm collects
this minimal information from the user. We present the
algorithm for collecting the information for vs. The col-
lection for vd is analogous. To simplify the notation we

package 1 package 2

units of package 2 supplier's cost demander's value units of package 1 supplier's cost demander's value

delivered so far per unit per unit delivered so far per unit per unit

0
�vs(0;0)

�x1

�vd(0;0)

�x1
0

�vs(0;0)
�x2

�vd(0;0)

�x2

1
�vs(0;1)

�x1

�vd(0;1)

�x1
1

�vs(1;0)
�x2

�vd(1;0)

�x2

2
�vs(0;2)

�x1

�vd(0;2)

�x1

3
�vs(0;3)

�x1

�vd(0;3)

�x1

4
�vs(0;4)

�x1

�vd(0;4)

�x1

Table 4: (Unminimized) multiple tables input form (MTIF) for example B.

package 1 package 2

units of package 2 supplier's cost demander's value units of package 1 supplier's cost demander's value

delivered so far per unit per unit delivered so far per unit per unit

0
�vs(0;0)

�x1

�vd(0;0)

�x1
0

�vs(0;0)
�x2

�vd(0;0)

�x2

1
�vs(1;0)

�x2

�vd(1;0)

�x2

Table 5: Minimized MTIF for our software license purchasing scenario (example B).

de�ne �i;jvs = �vs
�xi

(0; : : : ; 0; 1; 0; : : : ; 0) with 1 in the

jth position, and �i;0vs =
�vs
�xi

(0; : : : ; 0).

Before the algorithm is executed, the items can be
resorted and then renumbered from 1 to n. The value
of a unit of an item is conditioned on the number of units
of each earlier item in this list. In our implementation,
by default, the new order is chosen so that �1 < �2 <
: : : < �n, but the user can choose the order because it
may be more natural for her to express the contingencies
in some order than in others.

Algorithm 6.1 MINIMIZE-MTIF((�1 ; �2; : : : ; �n), n)

1. user enters �1;0vs
2. 8k 2 f2; ng do

� user enters �k;0vs, �k;1vs, ..., �k;k�1vs

� 8(x1; x2; : : : ; xk�1) 2 f0; �1g � : : :� f0; �k�1g;
�vs
�xk

(x1; x2; : : : ; xk�1; 0; : : : ; 0) =Pk�1
h=1 xh�k;hvs �

�Pk�1
h=1 xh � 1

�
�k;0vs

3. 8(x1; x2; : : : ; xn) 2 f0; �1g � f0; �2g � : : :� f0; �ng;
vs(x1; x2; : : : ; xn) =Pn

h=1
�vs
�xh

(x1; x2; : : : ; xh; 0; : : : ; 0)xh

The number of cells that the user ends up �lling in

this minimal MTIF (see Table 5) is 2 � n(n+1)

2
= n2+ n.

This is signi�cantly less than the number of cells to �ll
in the corresponding STIF (2 �

Qn

i=1(�i+1) � 2n+1) be-
cause we capitalize on the independence of items. Once
the cells have been �lled, CHUNK&SEQUENCE plans
a safe minimal exchange.

7 Conclusions

Nondelivery is a major problem in exchanges, especially
in electronic commerce. By splitting the exchange into
chunks, and by appropriately sequencing the chunks,
exchanges can sometimes be structured to be self-
enforcing. We presented the design of a safe exchange
planning and executing agent. We presented algorithms
that provably �nd a safe exchange plan (chunking and
chunk sequence) if one exists, and require the mini-
mal amount of input from the user. The algorithms

and the input interface depend on the setting: whether
there is one or multiple items to exchange, whether
the items are dependent or independent, whether the
units are dependent or independent, and whether the
goods are countable or uncountable. All of the algo-
rithms and input interfaces of the paper have been im-
plemented, and a safe exchange planning service, eEx-
changeHouse, is o�ered on the web as part of eMedi-
ator, our next generation electronic commerce server
(http://ecommerce.cs.wustl.edu/emediator/).

References

[1] Sviatoslav Brainov. Deviation-proof plans in open mul-
tiagent environments. ECAI, p. 274{278, 1994.

[2] James Friedman and Peter Hammerstein. To trade, or
not to trade; that is the question. In Reinhard Selten,
ed., Game equilibrium models I: Evolution and Game
Dynamics, p. 257{275. Springer, 1991.

[3] National Consumers League. New NCL survey shows
consumers are both excited and confused about shop-
ping online, 1999. www. natlconsumersleague. org/
BeEWisepr.html, Oct. 20. By Opinion Research Corp.

[4] Ori Regev and Noam Nisan. The POPCORN market
- an online market for computational resources. Intl.
Conf. on Information and Computation Economies, p.
148{157, Charleston, SC, 1998.

[5] Je�rey S Rosenschein and Gilad Zlotkin. Rules of En-
counter. MIT Press, 1994.

[6] Tuomas Sandholm. An implementation of the con-
tract net protocol based on marginal cost calculations.
AAAI, p. 256{262, Washington, D.C., 1993.

[7] Tuomas Sandholm. Negotiation among Self-Interested
Computationally Limited Agents. PhD thesis, Univ.
of Massachusetts, Amherst, 1996. www.cs.wustl.edu/
~sandholm/ dissertation.ps.

[8] Tuomas Sandholm and Victor Lesser. Equilibrium anal-
ysis of the possibilities of unenforced exchange in mul-
tiagent systems. IJCAI, p. 694{701, 1995.

[9] R Selten. Spieltheoretische behandlung eines oli-
gopolmodells mit nachfragetr�agheit. Zeitschrift f�ur die
gesamte Staatswissenschaft, 12:301{324, 1965.

[10] L G Telser. A theory of self-enforcing agreements. Jour-
nal of Business, 53(1):27{44, 1980.

