Available online at www.sciencedirect.com

SCIENCE DIRECT® GAMES and
@ Economic

Saslles Behavior
LSEVIER Games and Economic Behavior 55 (2006) 321-330 S —
www.elsevier.com/locate/geb
Note

Side constraints and non-price attributes in markets *

Tuomas Sandholm **, Subhash Suri®

& Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
b Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

Received 26 December 2001
Available online 19 July 2005

Abstract

In most real-world (electronic) marketplaces, there are additional considerations besides maximiz-
ing immediate economic value. We present a sound way of taking such considerations into account
via side constraints and non-price attributes, and show that side constraints (such as budget, limit
on the number of winners, and exclusive-or) have a significant impact on the complexity of market
clearing.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For a long time, auctions and exchanges have been proposed as mechanisms for allo-
cating items (resources, tasks, etc.) in multiagent systems, especially systems consisting
of self-interested agents. Some of the market mechanisms that lead to economically effi-
cient outcomes are computationally complex to clear. In particular, there has been a recent
surge of interest in algorithms for clearing auctions where bids can be submitted on pack-
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ages of items (e.g., Rothkopf et al., 1998; Sandholm, 2002a, 2002b; Fujishima et al., 1999;
Lehmann et al., 2002; Sandholm and Suri, 2003; Nisan, 2000; Tennenholtz, 2000). The
bulk of that literature has focused on clearing the auction so as to maximize unconstrained
economic value. In most real-world marketplaces, especially in business-to-business com-
merce, there are other considerations besides maximizing immediate economic value that
must be taken into account.

In this paper we introduce and analyze two methods for incorporating these additional
considerations. First, we study side constraints on the trading outcome. Second, we show
how non-price attributes can be soundly integrated into markets with package bidding and
side constraints. (Side constraints and attributes could be imposed by any participant in
the market: the buyer(s), the seller(s), the marketplace executor, the technology provider,
or a regulatory body such as the SEC, etc.) Our main focus is to explore what impact
these features have on the computational complexity of market clearing. (Throughout the
paper we use the term “market” to mean a centrally cleared auction, reverse auction, or
exchange.)

We first discuss side constraints in markets where bids are on individual items. Without
side constraints such markets are easy to clear, but we show that under several practical
side constraints, the market clearing becomes A/P-hard. We then move to markets where
bids can be submitted on packages of items, and show the complexity implications of
side constraints. Finally, we show how to integrate non-price attributes into markets with
package bids and side constraints.

2. Bids on individual items

We will show that certain practical side constraints can make even noncombinatorial
auctions hard to clear.

Definition 1 (WDP). The seller has m items (one unit each) to sell. Each bidder places a
set of bids on individual items. The winner determination problem (WDP) is to determine
a revenue-maximizing allocation of items to bidders.!

In the absence of side constraints, WDP can be solved in polytime by picking the highest
bid for each item independently. The rather natural budget constraint” below illustrates how
sharp the P vs. N'"P-complete cutoff is in the space of side constraints. This is especially
surprising since a similar constraint, where the number of items sold to each bidder is con-
strained, leads to a WDP that was recently shown to be polytime solvable using b-matching
(Tennenholtz, 2000).3

1 As usual, the clearing problem is defined with respect to the given bids, which may or may not be truthful.

2 Budget constraints occur naturally in markets, and they have been studied from the bidding perspective in the
literature before (Rothkopf, 1977).

3 Multi-item auctions (with bids on individual items only) with certain types of structural side constraints are
also solvable in polytime using b-matching (Penn and Tennenholtz, 2000).



T. Sandholm, S. Suri / Games and Economic Behavior 55 (2006) 321-330 323

Definition 2 (BUDGET). WDP where the amount sold to any bidder does not exceed her
budget.

Theorem 2.1. The (decision version of) BUDGET is N'P-complete, even with integer
P
prices.

Proof. We reduce PARTITION (Garey and Johnson, 1979) to BUDGET. In the PARTI-
TION problem, we have a set of integers S = {x1, x2, ..., x,}, and the goal is to partition
S into two subsets A and B (ie. ANB=¢and AUB = 5) s.t.

7= in = Z xi,
icA ieB
where z = (1/2) )", .¢x. We create an instance of BUDGET as follows. Corresponding
to each x;, we create an item i. There are two bidders, say, Andy and Bob; each places
the bid of same price, x;, for item i. The budget for Andy and Bob each is z (half of the
total). This instance of BUDGET has a solution with revenue 2z if and only if the original
partition problem has a valid partition. O

Another practical side constraint is the number of winners.
Definition 3 (MAX-WINNERS). WDP where at most k bidders receive items.

Theorem 2.2. The (decision version of ) MAX-WINNERS is N'P-complete, even with inte-
ger prices.

Proof. We reduce SET-COVER (Garey and Johnson, 1979) to MAX-WINNERS. Given
an instance of set cover, namely, a ground set X = {1,2,...,m}, and a set of subsets
F ={S1,8,,...,8,}, where S; C X, we formulate an instance of MAX-WINNERS as
follows. We create an item i for each element i in the ground set X. Corresponding to each
set S;, we create a bidder B;, who places a $1 bid on each item in the set S;. We claim that
there is a set cover of size k (or less) if and only if the auction has a solution with revenue
m and max number of winners k.

We first argue that the sets corresponding to the k winning bidders form a set cover.
(That is, if bidder i receives at least one item, then we put the set S; in the cover.) Since the
revenue is m, each item must be awarded to some bidder, and hence it must be covered by
the set cover. Conversely, consider a solution to the set cover. For each set S; in the cover,
we make bidder i a winner. Since each item is covered in the set cover, each item is bid
upon by at least one bidder in the just constructed winning set, but the item may be claimed
by more than one winning bidders. However, since each bid is for the same price, we can
arbitrarily award the item to any of the winning bidders claiming this item. This gives a
solution to the auction problem with revenue m and number of winning bidders k. O

4 Recently, the NP-completeness of winner determination in auctions with budget constraints has been inde-
pendently proven by Lehmann et al. (Lehmann et al., in press). (They use a different reduction.)
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In some settings, a bidder may want to submit bids on multiple items, but may want to
mutually exclude some of the items. For example, a buyer may want to buy a VCR and a
TV, and either of two TVs (but not both) would be acceptable. She could express this by
placing bids on each of the three items, and inserting an XOR-constraint between the bids
on the TVs.

Definition 4 (XORS). WDP with XOR-constraints. Whenever two bids are combined with
XOR, at most one of them can win.

Theorem 2.3. The (decision version of ) XORS is N'P-complete, even with integer prices.

Proof. We reduce INDEPENDENT-SET (Garey and Johnson, 1979) to XORS. Corres-
ponding to each vertex, generate an item and a $1 bid for that item. Corresponding to each
edge, insert an XOR-constraint between the bids. Now, XORS has a solution of $k iff there
is an independent set of size k. O

Remark 1. In each of the three side constraint classes above, the clearing problem remains
N'P-complete even if there is free disposal, that is, even if the seller is not required to sell
everything.

Remark 2. In MAX-WINNERS and XORS, the problem remains N P-complete even if
bids can be accepted partially. (This is because a fractional solution can be converted into
a solution where bids are accepted all-or-nothing without affecting the number of sets
in the set cover in MAX-WINNERS and the number of vertices in the independent set
in XORS. Therefore, a polynomial-time algorithm for the fractional case would yield a
polynomial algorithm for the all-or-nothing case, contradicting the hardness of the all-or-
nothing case.) In BUDGET, on the other hand, allowing partial bids makes the problem
solvable in polynomial time—using linear programming.

Remark 3. In XORS, if each bidder places an XOR-constraint between every pair of his
bids (so that at most one of his bids can be accepted), then the problem becomes the as-
signment problem, which can be solved in polynomial time (Kuhn, 1955).

3. Bids on packages of items

In this section we discuss how the complexity of clearing a market with package bids
changes as different types of side constraints are imposed on the outcome. In a combinato-
rial auction (CA), bidders may submit bids on packages of items. This allows the bidders
to express the fact that the value of a packages of items may differ from the sum of the
values of the individual items that constitute the package.

Definition 5 (CAWDP). The auctioneer has a set of items, M = {1, 2, ..., m}, to sell, and
the buyers submit a set of bids, B = {By, Bz,..., B,}. A bid is a tuple B; = (S}, p;),
where §; € M is a set of items and p;, p; > 0 is a price. The combinatorial auction
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winner determination problem (CAWDP) is to label the bids as winning or losing so as to
maximize the auctioneer’s revenue under the constraint that each item can be allocated to
at most one bidder:

n

maxz pjxj s.t Z x;<1, i=1,2,...,m.
j=l jlies;

If there is no free disposal (auctioneer is not willing to keep any of the items, and bidders

are not willing to take extra items), an equality is used in place of the inequality.

In the binary version (BCAWDP), each bid must be accepted fully or not at all. The
continuous version (CCAWDP) permits bids to be accepted partially. The binary version is
NP-complete (Rothkopf et al., 1998) (and inapproximable (Sandholm, 2002a)) while the
continuous version can be solved in polynomial time using linear programming.

A combinatorial reverse auction (Sandholm et al., 2002) models situations with one
buyer and multiple sellers, where each seller can place bids on self-selected packages of
items. Similar to the forward auction, we have the binary and continuous version of the
winner determination problem for reverse auction as well.

Finally, in a multi-unit combinatorial exchange, both buyers and sellers can submit
package bids, and in one bid, a bidder might be selling units of some items and buying
units of other items (Sandholm, 2002b; Sandholm and Suri, 2003). Thus, we have the
multi-unit combinatorial exchange winner determination problem (MUCEWDP), with its
binary and continuous versions.

While most research on combinatorial auctions has focused on the binary version,
there exist numerous important continuous combinatorial markets as well. For example,
CombineNet, Inc. and Manhattan Associates, Inc. run combinatorial reverse auctions for
long-term trucking lanes (the volume of each lane is numerous truck-loads), where the
carriers’ bids can be accepted fractionally. As another example, BondConnect was a
combinatorial bond exchange, and there it was possible to accept bids fractionally. In prac-
tice, whether the market should be binary or continuous depends on the items being traded.
By using the continuous version, better (at least no worse) objective values in the optimiza-
tion are achieved. If the items are arbitrarily divisible, the continuous version is applicable.
If the items are not divisible, only the binary market is applicable.

It turns out that different side constraints introduce sharp cutoffs in the complexity of
clearing a market with package bids. Seemingly similar side constraints lead to problems
that lie on different sides of the P vs. N'P-complete cutoff. In the first subsection we
present side constraints under which the continuous case remains easy and the binary case
remains hard. In the next subsection we present side constraints that make both cases hard.
In the last subsection we present a side constraint that make both cases easy.

3.1. Side constraints under which the continuous case remains easy, and the binary case
remains hard

The following classes of domain-independent side constraints, which we view as prac-
tically important and quite general, turn out to be easy for the continuous winner deter-
mination problem, and remain hard for the binary case. All of these constraints impose a
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lower or upper bound on the bids from a certain subset with respect to the bids from an-
other subset. There is a long list of such constraints. Due to lack of space, we just mention
two such classes. An interested reader can see the full paper for a more comprehensive
catalog (Sandholm and Suri, 2001).

1. Maximum or minimum trade constraint. Specifying an upper or lower bound on the
total acceptance for a certain set of bids B’ C BB. The acceptance can be measured in
any reasonable way, such as revenue (net or gross), absolute amount or percentage of
total, number of item units or volume in currency. The bound can be also be imposed
relative to another set of bids B” C B.

2. Item trades. Specifying a lower bound on the amount of trade (absolute or percentage)
for a subset of items M’ C M.

Theorem 3.1. The binary versions of the combinatorial auction (BCAWDP), combinato-
rial reverse auction (BCRAWDP), and combinatorial exchange (BMUCEWDP) are N'P-
complete for any constraint from the classes presented in this section, even with integer
prices.

Remark. The continuous versions of these problems can be solved in polynomial time
using linear programming.

3.2. Side constraints under which the continuous and binary case are hard

The most interesting results of this paper show that some classes of side constraints that
are among the most important ones from a practical perspective, make even the continuous
case N'P-complete to clear.

Theorem 3.2. If no more than k winners are allowed, then combinatorial auctions, reverse
auctions, and exchanges are all N'P-complete, both in their binary and continuous ver-
sions. These problems remain N'P-complete with or without free disposal and even if the
prices are integer.

This theorem follows from the fact that MAX-WINNERS is A/P-complete even if bids
can be submitted on individual items only (Theorem 2.2).

In a combinatorial auction where the bids are combined with OR, a bidder can only ex-
press complementarity, not substitutability. For example, say a bidder has submitted three
bids: ({1}, $4), ({2}, $5), and ({1, 2}, $7). Now the auctioneer can allocate items 1 and
2 to the bidder for $9. To allow bidders to express any valuation v : 2 — {9, U0}, it
was proposed that bidders can submit XOR-constraints between bids (Sandholm, 2002a).
If two bids are combined with an XOR-constraint, only one of them can win. It turns out
that in the continuous case, there is an inherent tradeoff between the full expressiveness
of XOR-constraints and computational complexity (recall that in the binary case, winner
determination is A"P-complete even without XOR-constraints):
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Theorem 3.3. With XOR-constraints between bids, combinatorial auctions, reverse auc-
tions, and exchanges are all N'P-complete, both in their binary and continuous versions.
These problems remain N'P-complete with or without free disposal, and even if prices are
integer.

This is immediate from the fact that XORS is NP-complete even if bids can be submit-
ted on individual items only (Theorem 2.3). (However, while the XORS problem becomes
polynomial-time solvable when for every bidder XOR-constraints are placed between all
of the bidder’s bids, in the case of package bids this remains N P-complete. In fact, the
problem remains A/P-complete even if every bidder bids on only one package—this fol-
lows trivially from the AP-completeness of the combinatorial auction (or combinatorial
reverse auction or combinatorial exchange) winner determination problem because those
formulations do not even have a notion of a bidder.)

It follows that winner determination under the other fully expressive bidding languages
that have been proposed for combinatorial auctions (which are generalizations of the
XORS language)—OR-0of-XORs (Sandholm, 2002b) and XOR-of-ORs (Nisan, 2000)—
is N'P-complete even in the continuous case. (The widely advocated idea of expressing
mutual exclusion among bids via dummy items that the bids share (Fujishima et al., 1999;
Nisan, 2000), does not lead to a fully expressive bidding language in the continuous case
because the dummy items may be partially allocated to different bids.)

The heart of the difficulty with the side constraints of this section is that they would
require a bid to be “counted” even if it is accepted only partially. As the theorems of
this section entail, such a counting device cannot be encoded into a linear program (of
polynomial size) unless P = NP.

3.3. Side constraint under which the continuous and binary case are easy

Some side constraints restrict the space of feasible allocations so dramatically that the
winner determination problem becomes easy even for the binary case. Currently we are
not aware of any constraint in this class that would be of great practical interest, but the
following artificial constraint serves as an existence proof.

Definition 6 (EXTREME-EQUALITY). Each bid and ask has to be accepted to the same
extent: Vj, x; = x.

Theorem 3.4. Both the binary and continuous versions of the multi-unit combinatorial
exchange (and thus also the combinatorial auctions and reverse auctions) are solvable in
polynomial time under EXTREME-EQUALITY (with and without free disposal).

Proof. The continuous case is directly solvable by linear programming. In the binary case,
simply try accepting all offers (x = 1) and rejecting them (x = 0).

In either case, if there is any XOR-constraint, or any two bids share items (actual or
dummy), then there is no feasible solution.
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4. Incorporating non-price attributes

There are at least two reasons for introducing multi-attribute techniques into markets.
First, in a basic auction (or reverse auction or exchange), each item has to be completely
specified. In many settings, this is overly restrictive. It would be more desirable to leave
some of the parameters of the items unspecified, so that each player could propose in her
bids the most suitable parameter combinations for her, such as delivery date, quality (Che,
1993), insurance, etc. (each player could also specify different parameter combinations in
different bids). This would avoid the problem of having to enumerate alternative parameter
combinations as separate items up front. (Different parameter settings would, in general,
not be equally desirable to the recipient of the bids.) Second, a bid from one bidder can
be more desirable than the same bid from another bidder (e.g., due to historical data on
timeliness and quality of different bidders).

Consider a (combinatorial) auction or reverse auction such as the ones discussed in
this paper so far. Let d; be a vector of the additional (non-price) attributes. These may
be attributes of the items being traded, attributes that characterize the bidders themselves,
or both. Some of the attributes can be specific to one bid (say j) while others might not
(such as quality of a certain line of products). The vector can include attributes revealed
by the bidder as well as attributes whose values the recipient gets from other sources such
as historical performance databases. As a preprocessor to winner determination, we re-
weight the bid prices based on the additional attributes. The new price of any bid j is
p} = f(pj.a;). The re-weighting function f could be specified by any party, but in most
markets it would be set by the bid-taker (seller in an auction, buyer in a reverse auction)
to characterize his preferences. Usually this function would be set before the bid-taker
receives the bids (or in some cases even after, but this would, in general, affect the bidders’
incentives). We then run the winner determination in the (combinatorial) market using
prices p’. The following result is thus immediate:

Theorem 4.1. Consider an auction or a reverse auction. Whether or not p’ is used (for
some of the bids) in the objective, and whether or not p’ is used (for some of the bids) in
the side constraints, all of the easiness (polynomial-time) results of this paper still hold
(under the assumption that f can be evaluated in polynomial time), and the N"P-hardness
results still hold (at least if f is not restricted).

Unlike in auctions and reverse auctions where multiple attributes can be handled as
a preprocessor to winner determination like this, in exchanges multiple attributes cannot
be handled as a preprocessor! The reason is that in an exchange there are multiple bid
takers (each buyer and each seller is a bid taker in this sense), and they may have different
preference functions f; over attribute vectors. The heart of the difficulty then is that which
fi should be used in the preprocessor depends on the outcome of the clearing, which is not
known at preprocessing time.

Multiple attributes can still be handled, but their handling has to be incorporated into the
optimization problem (winner determination problem) itself. This can be accomplished as
follows. We treat items that have different values of the item attributes as different items.
We use a separate decision variable not just for each such item, but for each (item, buyer,
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seller) tuple. This way each buyer (seller) can condition his bid price on the item attributes
and on whom he is buying from (selling to). (Conditioning on whom he is buying from
(selling to) is pertinent when bidder attributes have to be taken into account.)

5. Related research on bidding languages

There has been considerable recent work on bidding languages for auctions. Many of
them take package bids as the atomic constructs which are then combined with logical
operators such as OR and XOR (Fujishima et al., 1999; Nisan, 2000; Sandholm, 2002a,
2002b). Some of the newer languages also allow recursive logical formulae (Hoos and
Boutilier, 2001).

Side constraints, such as those in this paper, can be viewed as a compact combinatorial
bidding language (although they can also be used by the bid taker(s) for other purposes
such as what-if analysis).

Recently, certain side constraints in markets have been independently suggested (Dav-
enport and Kalagnanam, 2001; Bichler et al., 2003). They present integer programming
formulations of certain winner determination problems with side constraints. Their winner
determination problems are AP-complete even without the side constraints, so in their
settings, side constraints do not fundamentally change the complexity. This is unlike many
of our settings where the side constraints cause the winner determination problem to move
to the other side of the P versus N'P-complete cutoff.

6. Conclusions and future research

In most real-world (electronic) marketplaces, there are other considerations besides
maximizing immediate economic value. We presented a sound way of taking such con-
siderations into account via side constraints and non-price attributes, and showed that
side constraints have a significant impact on the complexity of clearing the market. Fu-
ture research includes analyzing the complexity entailed by other side constraints. We are
also developing search algorithms that perform well on average on A/P-complete clearing
problems that include side constraints.
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