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ABSTRACT

We introduce take-it-or-leave-it auctions (TLAs) as an allo-
cation mechanism that allows buyers to retain much of their
private valuation information, yet generates close-to-optimal
expected utility for the seller. We show that if each buyer
receives at most one offer, each buyer’s dominant strategy
is to act truthfully. In more general TLAs, the buyers’ opti-
mal strategies are more intricate, and we derive the perfect
Bayesian equilibrium for the game. We develop algorithms
for finding the equilibrium and also for optimizing the offers
so as to maximize the seller’s expected utility. In several
example settings we show that the seller’s expected utility
already is close to optimal for a small number of offers. As
the number of buyers increases, the seller’s expected utility
increases, and becomes increasingly (but not monotonically)
more competitive with Myerson’s expected utility maximiz-
ing auction.
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1. INTRODUCTION

Auctions have emerged as a key mechanism for task and
resource allocation in multiagent systems. We focus on the
problem of allocating an indivisible good to one of a group
of interested buyers, while maximizing the seller’s expected
utility.? In this setting, the Myerson auction yields the high-
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est expected utility to the seller, compared to any other
allocation mechanism [13]. Despite being the optimal allo-
cation mechanism, the Myerson auction has several unde-
sirable features. First, buyers must fully reveal their true
valuations for the good.? Buyers may be unwilling to reveal
private information because such information is proprietary
or its revelation would have a negative strategic long-term
impact. For example, after such an auction the buyers will
be at a disadvantage in future negotiations with the seller
(who may be able to extract more surplus in the future
using information about the buyers’ valuations). Similar
long-term adverse effects have been observed in other truth-
ful full-revelation auction mechanisms [17]. Second, buyers
may not understand the complex, unintuitive rules of the
Myerson auction, and therefore choose to not participate.
Third, for a layman, it is unintuitive to submit true valu-
ations because bid shading is rational in many commonly
used auction mechanisms. Buyers are thus likely to shade
bids even in Myerson auctions, with unpredictable and sub-
optimal results. For these reasons and potentially others, to
our knowledge, the theoretically elegant Myerson auction is
not being used anywhere.

In the most commonly used auction mechanisms—the En-
glish auction (a.k.a. ascending open-cry auction) and the
Dutch auction (a.k.a. descending auction)—bidders do not
reveal their valuations completely [9]. Unfortunately, in
these auctions, the seller’s expected utility is not optimal
and in fact can be arbitrarily far from optimal. The Vickrey
auction [20] (a.k.a. second-price sealed-bid auction) suffers
from both full valuation revelation and seller’s expected util-
ity being arbitrarily far from optimal.

In this paper we present a mechanism that achieves close-
to-optimal expected utility for the seller while allowing each
buyer to retain much of her private valuation information.
Our take-it-or-leave-it auction (TLA) mechanism consists of
a sequence of take-it-or-leave-it offers made by the seller to
the buyers, each buyer in turn. Before the auction is held,
the seller announces the order in which the buyers receive
offers and the amount of each offer. During a fixed time after
receiving an offer, the buyer has to accept (“take”) the offer,
at which point the auction ends, or reject (“leave”) the offer,
in which case the seller may proceed to make other offers.
After rejecting an offer, the buyer never has the option of

2Recently, cryptographic techniques have also been pro-
posed to address this drawback [14].



accepting that offer.> We show how rational buyers should
act in such an auction and how the seller can optimize the
sequence of offers given her knowledge about the buyers. In
this sense, our approach is automated mechanism design [7].

Sequences of take-it-or-leave-it offers have been studied
in the context of optimal auctions previously [3]. However,
in that paper there is an assumption that the seller can
decide the accuracy to which the buyers learn their own
valuations. One way they can achieve this is by withholding
information. In our model, the seller has no control of the
buyers’ information.

In many applications the seller may be aware of some
statistical information about the buyers. By taking this in-
formation into account, the seller can design mechanisms so
as to maximize her expected utility. In our setting, this is
done by making the assumption that every buyer’s valuation
is drawn from some known probability distribution. This
assumption violates the Wilson doctrine which states that
mechanisms should be designed without the use of any pri-
ors. Some examples of auctions that follow the Wilson doc-
trine include Vickrey, English, Dutch, and first-price sealed
bid auctions. These types of auctions are not optimal, and
in fact can be arbitrarily far from optimal. Further, it is gen-
erally not possible to design utility maximizing auctions (or
even approximately optimal auctions) without using priors.
The Myerson auction, on the other hand, does not adhere to
the Wilson doctrine, and as a result is able to extract more
surplus from the buyers. Just as is done in the Myerson
auction, we use priors in our mechanism.

2. THE SETTING AND BACKGROUND

We study the usual auction setting in which a seller has an
indivisible good that she can allocate to any one (or none)
of a set of buyers B = {1,...,n}. Each buyer i has a val-
uation v; for the good that is drawn from a distribution
fi with cumulative density F;. The buyers’ valuations are
drawn independently.® The distributions f; are common
knowledge, but the valuation v; is only known by the buyer
i herself. The setting is symmetric if each buyer draws her
valuation from the same distribution. Otherwise the set-
ting is asymmetric. Finally, we make the standard auction
theory assumption that there is no aftermarket.

By designing the rules of the auction, the seller tries to
maximize her expected utility. The seller has a valuation vg
(potentially zero) for the good. By the standard quasilin-
earity assumption about the seller, the seller’s utility is vg if
she keeps the item, and if she allocates the item to a buyer,
her utility is the revenue that she receives from the buyers.

To motivate the buyers to participate in the auction, the
rules of the auction have to guarantee that each buyer re-
ceives no less utility by participating than by not partici-
pating. Such ez post participation constraints imply that 1)
a buyer who does not get the good cannot be charged, and
2) the buyer who receives the good cannot be charged more
than her valuation.

3 At first glance, it appears that the Dutch auction and TLAs
are equivalent. This is not true. The Dutch auction is more
powerful in the sense that the seller can make an infinite
number of offers, and less powerful in the sense that the
seller has to make the offers symmetrically to the buyers.
41f the valuations can have arbitrary correlations, then even
designing an approximately optimal auction is hard compu-
tationally [16].

The optimal mechanism for our setting is the Myerson
auction [13]. It is the benchmark against which we will
compare our TLA mechanism.®

DEFINITION 1. (Myerson auction [13])

o Fvery buyer i reveals a valuation v;.

e For each buyer i, compute that buyer’s virtual valua-
tion: ¢; = v; — 1R

N v £i(¥5)

e Select the buyer i* with the highest virtual valuation
Py

o If ;= > vo, buyer i* receives the item and pays the
smallest valuation, ¥,, that would still have made her
win.

o If = < wo, the seller keeps the good and no payments
are made.

In the symmetric setting, the Myerson auction is a second-
price auction with an appropriately tailored reserve price.
However, this is not the case in the asymmetric setting.

3. TAKE-IT-OR-LEAVE-IT AUCTION

In this section we define our idea of using a sequence of
take-it-or-leave-it offers as an auction mechanism.

DEFINITION 2. (Take-it-or-leave-it auction (TLA)) Let A =
(b1,a1), (b2,a2),..., (bk,ar) be a sequence of k offers. Let
an offer A; be a tuple (b;,a;), where a; is the amount of
the offer and b; € B is the buyer to whom the offer is made.
The entire sequence of offers A is revealed by the seller to the
buyers before the auction. The auction proceeds as follows:

e Forj from 1tok
— Let (b,a) = A;. The seller offers the good to

buyer b for amount a.
— If buyer b accepts, she gets the good and pays a to

the seller. The auction ends.
— If buyer b rejects offer a, the auction continues.
e [f the auction has reached this point, the seller keeps
the good and collects no payments.

It is worth mentioning that every instance of a TLA is ex
ante individually rational (the strongest such form) since a
buyer can always reject any offer. The notion of incentive
compatibility (i.e. truthtelling) does not apply here since
it’s not a direct revelation mechanism.

The following auction mechanism turns out to be an in-
teresting special case:

DEFINITION 3. (Single-offer TLA) A TLA is a single-offer
TLA if each buyer gets at most one offer, i.e., by # by, for
all g,r € {1,2,...,k}, g #r.

When we need to differentiate between a single-offer TLA
and a TLA in which a buyer may receive multiple offers, we
will refer to the latter as a multiple-offer TLA.

Note that in a TLA it is entirely possible for the seller to
allocate the good to a buyer who does not have the high-
est valuation, thus making the mechanism inefficient. This
is also the case in the Myerson auction. It is well-known
that in the asymmetric setting there is no mechanism that
maximizes both seller’s expected utility and efficiency.

5The proof of optimality of the Myerson auction assumes
that the setting is regular, i.e., the hazard rate f;/(1 — F;)
is increasing for each buyer 4 [13]. This assumption is sat-
isfied in all cases where we benchmark against the Myerson
auction (in Section 7), so we are benchmarking against the
real optimum.



3.1 Strategies and utility

A formal notation for strategies in a TLA is useful. Strate-
gies for TLAs are slightly different than for other auctions
since a single buyer may need to make many decisions during
the course of an auction.

DEFINITION 4. (Strategy for a TLA) A buyer’s strategy
for a TLA is a function from the buyer’s valuation and the
number of the offer (made to that buyer), to one of two
possible actions: accept or reject:

si:Rx{j|bj=1,5€{1,2,...,k}} — {accept, reject}.

A strategy profile is s = (s1,...,5n). A strategy profile ex-
cluding s; is s—; = {s1, ..., 8i—1,Si41,-..,Sn}, and a strat-
egy profile s with s; replaced with s} is (s_;, s5).

We make the standard assumption of quasilinearity, that is,
a buyer’s utility u; is zero if she does not get the good (and
does not pay anything), and v; — a if she gets the good and
pays amount a. Given a strategy profile s and the valuation
v;, the expected utility w;(vi, s) of buyer 7 in a TLA A is

u;i (vi, 8) = Z (HR;) ug(vi,si)

{ilbj=i} \i=1

vi —aj if si(vi,j) = accept
0 if si(vi,J) = reject.
Here, R; is the probability that offer [ is rejected by buyer
by if that offer is made. These probabilities depend on the
buyers’ strategy profile s, as discussed next.°

where ug (vi, 85) =

4. EQUILIBRIUM ANALYSIS

We use definitions from game theory to help us under-
stand how rational buyers will behave in a TLA. We use
two of the most prevalent solution concepts for sequential
games: dominant strategies and perfect Bayesian equilib-
rium.

4.1 Single-offer TLAs

A strategy s; for a buyer with valuation v; is called a
dominant strategy if for all other strategies s; and all strate-
gies s_;, we have u;(v;, (85, 5-:)) > u;(vs, (s5,5-:)). As the
following proposition illustrates, the strategies employed by
rational buyers in a single-offer TLA are straightforward and
truthful. They are dominant strategies, so a buyer is best
off playing that way regardless of what the other buyers’
preferences are and even if others play irrationally. Also, a
buyer does not have to know much about her own valuation
(the determination of which can be a complex optimization
problem itself, see e.g. [18, 19, 15, 10]), merely whether it
is greater or less than the offer, making a single-offer TLA
easy to play.

PROPOSITION 1. In a single-offer TLA, a buyer’s domi-
nant strateqy is

e _ [ accept if vi>ay
S; ('Ulv]) - { r@ject Zf (% S ag.

The strategy profile s* = (s7,53,. ..
strategy equilibrium.

,Sn) s thus a dominant

SWhen buyer i computes the utility, R; € {0,1} when b, = 4,
because the buyer knows her own strategy.

4.2 Multiple-offer TLAS

If the sequence of take-it-or-leave-it offers includes po-
tentially multiple offers per buyer, the buyers’ equilibrium
strategies become significantly more intricate. The reason
is that a rational buyer will be reluctant to accept an offer
at—or somewhat below—her valuation, because there is a
chance that the auction will make her a significantly lower
offer later on. The analysis is further complicated by the
fact that a buyer’s passing on an offer gives a signal to the
other buyers and the seller about the buyer’s valuation.

In the equilibrium analysis that follows, we study thresh-
old strategies. In any finite-action game where types are
drawn from independent atomless distributions and each
player’s utility function does not directly depend on other’s
types, a pure strategy equilibrium always exists [12]. (This
existence result can be extended to the setting with inter-
dependent valuations in several auction-like settings [2].)
Clearly, a TLA is such a game. Furthermore, since each
buyer receives strictly decreasing offers in an optimal TLA
(see Proposition 4), we can restrict our attention to a strat-
egy in which a player can simply decide at the beginning
of the game the first offer she will accept. This reasoning
partitions the type space into regions, one for each offer. We
say these regions are separated by thresholds. If the player’s
type falls within a region, then the first offer the player will
accept is the offer corresponding to the region. Thus, with-
out loss of generality we can focus on threshold-based pure
strategies in our analysis of an equilibrium of a multiple-offer
TLA.

Perfect Bayesian equilibrium (PBE) [8] is the most com-
mon solution concept for sequential games with observed ac-
tions and private valuations (types). In such a game, with
independently drawn valuations, each buyer ¢ has a strategy
s; and beliefs (for each step j of the game, the buyer has, for
each other buyer k, a cumulative probability density func-
tion F} about the type of k). A strategy profile s* is a PBE
if the following conditions hold: 1) Each buyer updates her
beliefs using Bayes rule whenever possible; 2) Whenever it
is buyer i’s turn to move, s; prescribes an action that max-
imizes i’s expected utility from then on, given ’s beliefs;
and the three technical conditions: 3a) At every step of the
game, buyer i’s beliefs about other buyers are independent
of buyer i’s valuation, 3b) the beliefs about buyer ¢ can only
be changed when i acts, and 3c) at every step of the game,
for every triple of buyers ¢, k, and I (i # 1, k # 1), i and k
have the same beliefs about .

We illustrate the PBE analysis through a 5-offer 2-buyer
auction and present the general method after that. For read-
ability, we refer to buyer 1 in the feminine and buyer 2 in the
masculine. Suppose that the seller’s chosen TLA prescribes
that the first offer goes to buyer 1 and the remaining four
offers alternate between the buyers.

Buyer 1, when facing the first offer, must decide whether
or not she should accept it. If her valuation, v1, is less than
the first offer, a1, then clearly she must reject. However,
the converse is not as simple. Fven though she might stand
to gain positive utility by accepting the first offer, she might
expect to gain even more utility by rejecting the first offer
and accepting a later offer. For each offer made to a buyer,
we would like to compute a threshold value above which the
buyer will accept and below which she will reject. (If the
buyer’s valuation is equal to the threshold, she is indifferent
between rejecting and accepting.) We will refer to buyer i’s



threshold at offer j as ¢7.

At the last offer made to each buyer, both buyers have
dominant strategies. They simply accept if the offer is below
their valuation and reject otherwise. This is analogous to the
strategies employed by buyers in a single-offer TLA.

Now, consider the third offer (the second offer made to
buyer 1). Buyer 1 knows what her utility is if she accepts
this offer. She wishes to determine what her expected utility
is if she rejects the third offer (in a gamble to face the fifth
offer). To compute this she needs to compute the proba-
bility that buyer 2 rejects the fourth offer. At this point
in the game, buyer 1 knows that buyer 2 has rejected the
second offer. Assuming buyer 2 is playing in equilibrium,
his valuation must be less than ¢2, his threshold when fac-
ing the second offer. Buyer 1 must take this into account
when computing the probability that buyer 2 will reject the
fourth offer. That is, buyer 1 updates her belief about the
distribution from which buyer 2’s valuation is drawn. Buyer
1 is able to perform these computations using her knowledge
about buyer 2’s prior distribution, which is common knowl-
edge. After buyer 2 has rejected the second offer, by Bayes
rule, the right tail of his valuation distribution (probability
density function) above t2 can be cut, and the remaining dis-
tribution needs to be rescaled to make its integral one. Thus
the new cumulative distribution is Fy (z) = Fa(z)/F (13).
(In general, we will write F/ to denote the world’s belief
about buyer i’s distribution when facing offer j. If a buyer
i is facing her first offer j, then F} = F;.) With this new
notation, we can write equations describing the thresholds
for buyers 2 and 1 when facing offers 2 and 3, respectively:

th—ax = FP () (83— aa
t‘;’—ag = Fﬁl(a4) t:{’—a5 .

We evaluate F} at t3 since we know that buyer 1 will only
reject if her valuation is below 3.

Determining the strategy that buyer 1 should use at the
first offer is slightly more complicated since buyer 1 could
reject the first offer in a hope to accept the third offer or
the fifth offer. The following equation describes buyer 1’s
threshold at the first offer:

t—ay = F2 (t%) - max {t} — as, Fy (aq) (t% - a5)} .

4.2.1 A simplifying observation

At this point we have completely characterized the strate-
gies that the buyers will use, but we have said nothing about
how to compute these strategies. Computing the strategies
is complicated by the max operation in the above equation.
The determination of the strategies could be split into cases,
with each case corresponding to a particular term within the
max operation being greatest. However, as we move beyond
5 offers, this becomes complex. As the number of offers in-
creases by one, the number of max operations in the system
increases by one, thus doubling the number of cases to an-
alyze. Therefore, the number of cases is exponential in the
number of offers.”

This computation would be easier if we could assume that
the thresholds only depend on the next offer. In the above

"Actually, the number of cases is further increased by the
fact that as an offer is added, the number of terms in the
existing max operations of that buyer’s threshold equations
increases by one (a max operations with 2 terms is added in
the equation where there was no max operation before).

equation, this would mean that ti — a3 > Fy (a4) (t% - as).
We observe that if this inequality does not hold, the third
offer would in effect be wasted because it certainly would be
rejected. Since this paper is concerned with optimal TLAs,
we can assume that such offers will never be made.®

4.2.2 Equilibrium for multiple buyers and offers

Algorithm 1 below is a general procedure for generating
the system of equations that determines buyers’ thresholds.
Before describing the algorithm we need to introduce some
additional notations. First, we need an expression for eval-
uating updated distributions:

‘ F; (z)
F! (z) = Fi(x)
F(e])

where ;' is the most recent offer made to buyer i. Second,

we need an expression for the probability that a buyer will
reject a given offer j:

o B b g by, b
TTUE(8,) i b e b i)

The above value R; depends on whether or not the buyer
faces another offer or not. If the buyer does face another
offer, then the expression involves a threshold value. Other-
wise, the expression only involves the offer. The algorithm
below makes a pass through the offers. If an offer is not
the last one offered to a buyer, then an equation is output
containing an expression for the threshold.

it i¢{1,....b;_1}
it ie{l,....b; 1}

ALGORITHM 1.
// Output system of threshold equations
e For j from 1 to k, If buyer b; faces another offer j'
after offer j

— Then output the equation
ty, —a; = Rjt1Rjpo- - Ryy (ti_,» - a]")

The product of R;’s that is output for each equation is the
expression describing the probability that the auction will
go from offer j + 1 to offer j' without a buyer accepting an
offer.

With the above discussion in mind, we can now present
our main equilibrium result.

THEOREM 2. Suppose we have a multiple-offer TLA A =
(b1,a1), (ba,a2), ..., (bk,ar) that is optimal in the sense of
mazimizing the seller’s utility, subject to the constraint that
only k offers are made. Consider the following strategy for
buyer i with valuation v; facing offer a;:

accept if wv; > aj,i ¢ {bjt1,...,bx}
reject if wv; <aj,i¢ {bjt1,...,bx}
accept if v >t),i € {bjy1,...,bx}
reject if w; <t),i € {bji1,..., bk}

s; (viya;) =

where the tg values solve the system of equations generated
by Algorithm 1. The strategy profile s* = (s1,85,...,8n) is
a perfect Bayesian equilibrium.

8This assumes that the order in which buyers receive offers
is not fixed. If this order is fixed (for example, due to ex-
ternal constraints), then making a surely rejected offer can
be beneficial in order to in effect change the order without
actually changing it.



PrOOF. It is easy to see that the technical Conditions
3a-3c of PBE are satisfied. As described above, the buyers
update their beliefs using Bayes rule whenever possible, so
Condition 1 is satisfied. What remains to be shown is that
Condition 2 is satisfied, i.e., that it is never profitable to
deviate from the above strategy (in any of the four scenar-
ios). For the first two scenarios, the proof is analogous to
the proof of Proposition 1. For the other two scenarios, in
which the buyers face another offer later in the auction, we
need to make use of the thresholds. Consider buyer ¢ with
valuation v;, facing offer a;. Let a;; be the next offer that
buyer ¢ faces. Suppose v; > tg, but buyer ¢ rejects. The
highest expected utility she can expect to get later in the
auction is Rjy1---Rjr_1 (vi —a;). But, by the construc-
tion of the thresholds (and the fact that the thresholds only
depend on the next offer), this is less than v; —a;. So buyer
i is better off accepting the offer. The scenario where v; < ¢
is proven similarly. []

5. OPTIMIZING THE OFFERS

So far we have described how we would expect buyers to
behave in a TLA. Now we turn to the problem faced by the
seller: how to maximize expected utility? The seller can
choose the order in which the offers are made as well as the
offer values. Before describing the optimization problem, we
formalize the seller’s objective.

DEFINITION 5. (Seller’s expected utility) Given an in-
stance A of a TLA, the seller’s expected utility from step
j onward is defined recursively as

o — (l—Rj)aj—i—ijo ifj=k
7= (1 — Rj)aj +Rjﬂ'j+1 lf] < k‘

The seller’s expected utility is given by w1, and we denote
it by w(A).

We can now formally define the design problem faced by the
seller.

DEFINITION 6. (TLA design problem) Given a limit kmax
on the number of offers made, the seller’s TLA design prob-
lem is to compute A* = argmaxg 4 | | |<kmaet ™ (A)-

Note that in Definition 6 the k;,q, parameter is exogenous.
It is a constraint imposed on the optimization problem that
comes from some external source, for example a limit on the
amount of time or resources the seller is able to commit to
the auction.

We now discuss some characteristic properties of optimal
TLAs.

PROPOSITION 3. For any given TLA design problem, an
optimal TLA exists in which no buyer receives consecutive

offers.

PrROOF. If a buyer receives consecutive offers, she will
never accept any of them except possibly the lowest. Thus,
the other ones of those offers can be removed from A. []

Offers might not decrease over time in optimal TLAs:

ExXAMPLE 1. Consider the 2-buyer, 3-offer setting where
buyer 1’s valuation is uniformly distributed on the interval
[0,1] and buyer 2’s valuation is uniformly distributed on the
interval [1,4]. The only optimal sequence of offers is A =
(2,2.125), (1,0.5275), (2, 2.0).

However, decreasing offers can be made to each buyer:

PROPOSITION 4. For any given TLA design problem, an
optimal TLA exists in which each buyer individually receives
strictly decreasing offers.

Proor. If, in equilibrium, all the rejection probabilities
R; of the other buyers that get offers in between two offers of
buyer i are zero, that is equivalent to buyer i receiving con-
secutive offers, which is unnecessary by Proposition 3. We
can therefore restrict attention, without loss in the seller’s
expected utility, to TLAs where this never occurs.

We now show that a buyer will never accept an offer that
is equal to or higher than her previous offer. The main idea
is that since the buyer knows the sequence of offers at the
start of the auction, she knows she can get more utility by
accepting an earlier, lower offer, rather than accepting the
later, higher offer. Suppose that in an optimal TLA, buyer ¢
is offered a; at some point in the auction, and the next offer
to buyer 4 is a;s, where a; < a;. Without loss of generality,
say buyer i’s valuation v; is at least a;s. (If it is less than,
then buyer ¢ will clearly never accept the offer.) Then the
expected utility from accepting offer a; is v; — a;, while the
expected utility from rejecting offer a; and later accepting
offer a; is strictly less than v; —a; since the utility must be
multiplied by the probability that the auction will continue
to offer a;; without another buyer accepting an offer and
thus ending the auction. Let r denote the probability that
no other buyer accepts in between. Since a; < a; and
r < 1 (by the argument in the paragraph above), we have
vi —aj > r(vi —ajs), so buyer ¢ will never accept offer a;.
Thus, the wasted offer a;v can be removed from the auction
and the auction remains optimal. []

6. COMPUTATIONAL RESULTS

In this section we develop the computational methodology
for solving for an optimal TLA (which involves as a sub-
problem solving for how the buyers will behave). Designing
a TLA involves finding an order (the b; values) in which the
buyers receive the offers, and determining the value of each
offer (the a; values).

6.1 Multiple-offer TLAs

In computing the optimal multiple-offer TLA, we assume
that the order of the offers is fixed (e.g., one can include an
outer loop to try all orders) and then optimize the TLA for
that order as follows.

We run Algorithm 1 to generate the equations for the
thresholds ¢]. Because the shorthand values R; are ex-
panded in each of those equations, each equation has on
the right hand side the offer levels a1, aq,...,ax, the spe-
cific functional forms of the prior distributions on the types
F1,Fs, ..., F,, and the thresholds ¢!. To compute the opti-
mal offers, we run a non-linear optimizer with these equa-
tions as constraints and the expanded recursion for 7(.A)
from Definition 6 as the objective, which is now just a func-
tion of the offer levels a1, a2, ..., ar. The output of the opti-
mizer is the values of the optimal offer levels af, a3, ..., af.

The computational complexity of the above procedure is
difficult to analyze. Indeed, non-linear optimization prob-
lems as a class have resisted rigorous analysis. However,
algorithms for finding local optima behave well in practice.



6.1.1 Atractablecase

Although the question of complexity remains open for the
general case, we have developed a linear-time algorithm for
the special case of two buyers with uniform distributions on
the interval [0,1]. This algorithm relies heavily on results
obtained recently [5, 6]. The authors examine auctions in
which the amount of information a buyer can transmit to
the seller is severely limited. One of the main results is that
when a buyer is limited to choosing from among k possible
messages, the buyer’s valuation range is partitioned into k
continuous intervals (the intervals are, in general, asymmet-
ric among the bidders). The buyer signals which interval her
valuation happens to fall in. It turns out that the thresholds
that separate the intervals are the same as the equilibrium
thresholds in an optimal TLA. (Note that these are the equi-
librium thresholds, not the offer levels.) This is easily seen
by considering a TLA where each buyer receives k offers, and
thus has k threshold values. The TLA could be converted
to a direct mechanism where the buyer simply states the
first offer that she is willing to accept. Then the problem
of computing the thresholds in a TLA becomes the same
as computing the thresholds in a communication-bounded
auction. The following theorem from [5] (stated using our
threshold notation) motivates Algorithm 2.

THEOREM 5. ([5]) When there are two buyers with valu-
ations drawn uniformly from the interval [0, 1] the thresholds
in an optimal 2k-offer TLA, k > 2, are:

tj_{ t B DO G e (1,2, 2k — 1}
v 1 if

! j =2k
where t = 72;“(";77 V};)r?’a and o = m The first offer in

the TLA goes to buyer 1, and the offers alternate after that.

Algorithm 2 computes the offer levels for a multiple-offer
TLA with two buyers having uniform distributions on the
interval [0, 1].

ALGORITHM 2.
// Let kmaz > 4 be an even number denoting the total num-
ber of offers made.

1. (Initialize.) k «— ®maz 41 o

t— —2a++/143a

1
(2k—3)2" 2(1—a)

témaz — 1

2
2. (Compute thresholds.) For j from 1 to kmaes — 1
(a) If j is odd, then i — 1, else i «— 2
j k”YL(ZfL‘7 71 17
(b) 1] — t+ Umes g D00

3. (Compute last offers.) ag,,,, « tam= Ry . «

Ykmax Ckmag—1
tgm,am—Q ’ t’]“m,am—:‘}

4. (Compute offers.) For j from kmae — 2 down to 1
(a) If j is odd, then i — 1, else i «— 2
(b) aj —t] — Rjs1 (t] — aj+2)
j .
(c) If j > 2, then R; — —5, else R; — t]

7=
%

maz—1

k
O A tl ’ kaax_l -

THEOREM 6. Algorithm 2 computes an optimal TLA for
the setting with two buyers having uniform distributions on
the interval [0, 1].

PROOF. Immediate from Theorems 2 and 5. [

’

6.2 Single-offer TLAs

Now we are considering single-offer TLAs, so we have
kmaz < m by definition. Since making at least some offer
to every buyer cannot hurt the seller’s expected utility, we
always have an optimal single-offer TLA with k = kaz. So,
we set k = knmaz-

For convenience, we will think of the optimization problem
as two separate problems. The first problem is to determine
the order in which the buyers receive the offers. The second
problem is to compute the actual offer values.

First, consider symmetric settings, i.e., F; = F}; for all
buyers %, j. In this case the order does not matter, so we set
them arbitrarily. The offer values can be determined by first
making an offer to the last bidder equal to the inverse virtual
valuation of the reserve price and computing the expected
profit from this offer as the new reserve price. Formally:

ALGORITHM 3.
// Compute offers for single-offer TLA
1. (Initialize.) ™ «— vo
2. (Compute offers.) For i from kmaz down to 1
(a) a; < argmaz, (1 — Fi(a)8 a+ Fi(a)m
(b) @ — (1= Fi(ai))a; + Fi(a:)w
PROPOSITION 7. Algorithm 8 computes an optimal single-
offer TLA in the symmetric settings.

ProOOF. Consider the last offer made in a TLA. The result
of the last offer does not affect the result of any of the other
offers. Thus, the seller should make an optimal offer, which
is computed in step 2(a) during the first iteration. Now
consider the next to last offer. Again, the result of this
offer does not affect any of the previous offers. Also, the
expected utility the seller earns if this offer is rejected has
already been computed and is stored in 7. Thus, the offer
computed in step 2(a) is the optimal offer. Continuing with
this backward induction, it is easy to see that Algorithm 3
correctly computes the optimal offer levels. [

If we assume that F; can be evaluated in constant time
and that the “argmax” computation can also be done in
constant time, then Algorithm 3 runs in time linear in the
number of offers kpq.. For a wide range of common dis-
tributions, including uniform and exponential distributions,
these assumptions hold.

Now, consider asymmetric settings. Clearly the order of
offers now can make a difference to the seller’s expected util-
ity. For general asymmetric preferences, we do not know of
an efficient algorithm for ordering the offers. (For example,
always greedily making an offer to the remaining buyer from
whom the seller can myopically expect the greatest utility is
not generally optimal.) One could try all possible orderings,
running Algorithm 3 to evaluate each ordering. However,
for a large number of buyers this would be infeasible since
the number of orderings is kmqz!. Fortunately, we have been
able to show that in some commonly used special cases one
can order the buyers in polynomial time. Theorem 8 il-
lustrates just one of many results. We denote a uniform
distribution over the interval [a,b] as Ula, b].

THEOREM 8. With v; ~ U[0,w;], an optimal single-offer
TLA can be determined in O(n log n) time by sorting the
buyers in decreasing order of w; and passing the sequence to
Algorithm 3.

PROOF. Omitted due to space. []
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Figure 1: Seller’s expected utility as the number of of-
fers increases. The two buyers’ valuations have uniform
distributions on the interval [0, 1].

7. ECONOMIC PERFORMANCE OF TLAS

In this section we present experiments and theoretical
results to give an indication of how one can expect our
TLAs, optimized as explained above, to perform in practice.
(Throughout these experiments, we set the seller’s valuation
vo 0 zero.)

First we studied the performance of our optimal single-
offer TLA as the number of buyers increases. Naturally,
as the number of buyers increases, the expected utility of
the single-offer TLA increases. Table 1 shows how well an
optimal single-offer TLA fares relative to Myerson’s utility-
maximizing auction as the number of buyers increases (and
each buyer is made exactly one offer).® The single-offer
TLA is close to optimal. Interestingly, the relative perfor-
mance does not improve monotonically, but does improve
when the number of buyers is large.!® The advantage of
our single-offer TLA over the English auction is greatest
when the number of buyers is not very large. Also, it tends
to be greatest in the asymmetric settings. (Naturally, our
multiple-offer TLAs would yield even greater expected util-
ity for the seller.) In the case of 1 buyer, a TLA performs
exactly as the Myerson auction, and the English auction
does not generate any expected utility for the seller.

Figure 1 shows how the seller’s expected utility in an op-
timal multiple-offer TLA increases as the number of offers
increases. As can be seen, the TLA performs extremely well
after a small number of offers. We also studied how well the
seller’s expected utility in an optimal multiple-offer TLA in-
creases as the number of offers increases. The following re-
sult, which follows immediately from a result in [5] and the
correspondence between communication-bounded auctions
and TLAs, shows that we can expect a TLA to perform well
for a wide variety of distributions.

THEOREM 9. ([6]) The revenue loss in an optimal k-offer
TLA with symmetric buyers having reqular distributions'® is

O (2)-

For some distributions, including the uniform distribution,

“We denote the exponential distribution having mean 1/u
as Exp[y] (its cumulative density is F(z) =1 — e™#%).

10T the third row, the optimal single-offer TLA determinis-
tically allocates the good to the highest buyer, thus making
the allocation efficient in this case, where the Myerson auc-
tion is inefficient.

"Recall that a distribution F; is said to be regular if f;/(1 —
F}) is increasing.

the above bound is tight. This result is asymptotic, but in
practice TLAs yield close to optimal expected utility for the
seller, as exemplified in Table 2 where we considered sev-
eral 2-buyer settings, showing how close a TLA gets to the
expected utility generated by Myerson’s utility-maximizing
auction as the number of offers increases. Even with a small
number of offers, the expected utility of a TLA is close to
optimal, and increases monotonically with the number of
offers.

I Total number of offers: ” 1 [ 2 I 3 “ English |
v1 ~ UJ0,1], va ~ UJ[0, 1] .600 | .938 | .979 .800
v1 ~ UJ[0.5, 2], va ~ U[0, 1] .857 | .977 | .992 .625
vy ~ U[L, 4], vz ~ U[0, 1] 032 | .994 | .997 350
v ~ Exp[2], va ~ Expl[2] 551 | .932 | .977 749
vy ~ Exp[2], vo ~ Expl4] 726 | .968 | .986 .658

Table 2: Seller’s expected utility of an optimal 2-buyer
TLA and English auction divided by the expected utility
of the Myerson auction. The number of offers for the
TLA is varied from 1 to 3. In each case, it is optimal to
give the first offer to buyer 1

In principle, it is possible to achieve optimal expected
revenue using an ascending auction, albeit one with asym-
metric prices. We call such an auction an asymmetric as-
cending auction. (An asymmetric descending auction can
be constructed similarly.) In an ascending auction, there
is a single price, visible by all bidders, that rises. Bidders
drop out when they no longer would like to buy the item
at the current price. As discussed previously, this auction
does not generate optimal expected revenue for the seller
and in fact can be arbitrarily far from optimal. Alterna-
tively, in an asymmetric ascending auction, there is a single
price (the wirtual price) that rises. But instead of the auc-
tioneer communicating this price to the bidders, she insteads
communicates asymmetric prices to each bidder, using the
inverse of the virtual valuation function evaluated at the
current virtual price to compute prices for each bidder. It is
straightforward to demonstrate that this method generates
optimal expected revenue for the seller.!?

One advantange of TLAs over asymmetric ascending auc-
tions is that much less communication is required. This is es-
pecially important in auctions in which there is some cost to
communication, for example when the bidders and the auc-
tioneer communicate via a network. (In general, there is no
upper bound on the amount of communication required for
an ascending auction.) In fact, a TLA is, in some sense, an
approximation of an asymmetric descending auction when
there is some limit on the communication resources available
to the bidders.

Finally, we mention that a single-offer TLA implements
the Myerson auction in the case of a single buyer.

8. MECHANISMS SIMILAR TO TLAS

We are aware of one fielded mechanism that is similar to a
TLA. Amazon.com has recently introduced the “Gold Box”
on their web site [1]. Each day, registered users are given up
to ten take-it-or-leave-it offers for ten different goods. The
offers expire after one hour, and after an offer is rejected, it
is no longer available to the user. The offer levels appear to

12 As in the proof of the optimality of the Myerson auction,
the bidders’ distributions must be regular for the result to
hold.



[ Num buyers: [ 1 2 [ 4 6 [ 8 [ 10 20 [ 100 |
o; ~ U0, 1] T/0] 938/ .800 | 081/ .978 | .894 / .997 | .000 / 1 907 / 1 937 / 1 992 / 1
v; ~ UJ0, 4] 1/0 .980 / .646 .959 / .844 | .953 / .898 | .952 / .922 .952 / .936 .958 / .963 .979 / .987
v; ~ Ui, i+ 1] 1/0 .979 / .735 .990 / .866 | .993 / .910 | .995 / .933 | .996 / .946 998 / .973 1 /.995
0, ~ Exp[2] T/0 | .032/ .74 | .004 / .961 | .847 / .991 | .837 / .997 | .833 / .099 | .836 / 1 82/ 1
v; ~ Expli] T/0 | .500 /.657 | .017 / .813 | .000 / .824 | .018 / .822 | .027 / .810 | .042 / .813 | .048 / .810

Table 1: The left (right) number in each cell is the ratio of the expected utility of an optimal single-offer TLA (English

auction) to the expected utility of the Myerson auction.

be below the normal retail price, but we do not know what
pricing strategy is in use. The techniques developed in this
paper could be used to compute optimal values for these
prices so as to maximize Amazon’s expected utility (under
certain reasonable assumptions).

A piece of closely related research concerns online auc-
tions [11] and online exchanges [4]. In those papers the au-
thors examine how bids should be treated in an online set-
ting where the auctioneer (or exchange administrator) has
to make accept/reject decisions about expiring bids before
all potential future bids are received. The authors have de-
veloped online algorithms and analyzed how well their algo-
rithms do compared to an omniscient algorithm that knows
all future bids in advance. Many of those algorithms end
up choosing bid acceptance thresholds, so in that sense they
use (implicit) take-it-or-leave-it offers.

This setting differs from ours in that there is not only
uncertainty about future decisions that will be made, but
there is uncertainty about the types of decisions that will
be faced. In our setting, the sequence of offers is known
in advance by all parties. In addition, in the online model
there are multiple units of the item available for exchange,
while we have focused only on the single unit case.

Finally, most retail is of the form of making take-it-or-
leave-it offers. In the typical retail setting the seller posts
price for each item she wishes to sell. The seller generally
does not have specific information about a given buyer, and
so all buyers face the same prices (i.e. the prices are non-
discriminatory). This distinguishes the typical retail setting
from single-offer TLAs where the prices are discriminatory.

9. CONCLUSIONS AND FUTURE WORK

We introduced TLAs as a selling (or buying) mechanism
that has low valuation revelation as do the most commonly
used auction mechanisms (English and Dutch auctions), yet,
unlike them, generates close-to-optimal expected utility for
the seller. We showed that in single-offer TLAs, each buyer’s
dominant strategy is to act truthfully. In multiple-offer
TLAs, the buyers’ optimal strategies are more intricate, and
we derived the perfect Bayesian equilibrium for the game.
We developed algorithms for finding the equilibrium and for
optimizing the offers in single-offer and multiple-offer TLAs
S0 as to maximize the seller’s expected utility (subject to an
exogenous constraint on the number of offers), and proved
that optimal TLAs have many desirable features. We ap-
plied a result due to Blumrosen and Nisan to TLAs to show
that the seller’s expected utility is close to optimal already
for a small number of offers. We also showed in several ex-
amples that as the number of buyers increases, the seller’s
expected utility increases and becomes increasingly (but not
monotonically) more competitive with Myerson’s expected
utility maximizing auction. Myerson’s uses full valuation
revelation and is arguably impractical because the rules are
unintuitive, unlike ours in which the mechanism is simply

a sequence of take-it-or-leave-it offers. Even our single-offer
TLA tends to yield significantly greater utility to the seller
than the English auction when the setting is asymmetric or
the number of buyers is not very large.

Future research includes developing fast offer-ordering al-
gorithms for asymmetric single-offer TLAs for arbitrary val-
uation distributions, as well as fast special-purpose algo-
rithms for PBE finding, offer ordering, and offer value opti-
mization in multiple-offer TLAs. We also plan to extend this
work to auctions of multiple identical units and to auctions
of multiple distinguishable items.
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