
Agents in Electronic Commerce:

Component Technologies for Automated

Negotiation and Coalition Formation

Tuomas Sandholm�

sandholm@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, MO 63130-4899
Phone: +1(314)935-4749
Fax: +1(314)935-7302

March 31, 1999, revised August 12, 1999.

Abstract

Automated negotiation and coalition formation among self-interested

agents are playing an increasingly important role in electronic commerce.

Such agents cannot be coordinated by externally imposing their strategies.

Instead the interaction protocols have to be designed so that each agent

is motivated to follow the strategies that the protocol designer wants it

to follow. This paper reviews six component technologies that we have

developed for making such interactions less manipulable and more e�cient

in terms of the computational processes and the outcomes:

1. OCSM-contracts in marginal cost based contracting,

2. leveled commitment contracts,

3. anytime coalition structure generation with worst case guarantees,

4. trading o� computation cost against optimization quality within

each coalition,

5. distributing search among insincere agents, and

6. unenforced contract execution.

Each of these technologies represents a di�erent way of battling self-

interest and combinatorial complexity simultaneously. This is a key battle

when multiagent systems move into large-scale open settings.

�This material is based upon work supported by the National Science Foundation under
CAREER Award IRI-9703122, Grant IRI-9610122, and Grant IIS-9800994.
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1 Introduction

Automated negotiation systems with self-interested agents are becoming in-

creasingly important. One reason for this is the technology push of a grow-

ing standardized communication infrastructure|Internet, WWW, NII, EDI,

KQML, FIPA, Concordia, Voyager, Odyssey, Telescript, Java, etc|over which

separately designed agents belonging to di�erent organizations can interact in

an open environment in real-time and carry out transactions safely. The second

reason is strong application pull for computer support for negotiation at the

operative decision-making level [22, 10, 39]. For example, we are witnessing the

advent of small transaction electronic commerce on the Internet for purchasing

goods, information, and communication bandwidth. There is also an industrial

trend toward virtual enterprises: dynamic alliances of small, agile enterprises

that together can take advantage of economies of scale when available (e.g.,

respond to more diverse orders than individual agents can), but do not su�er

from diseconomies of scale.

Multiagent technology facilitates such negotiation at the operative decision-

making level. This automation can save labor time of human negotiators, but in

addition, other savings are possible because computational agents can be more

e�ective at �nding bene�cial short-term contracts than humans are in combi-

natorially and strategically complex settings. This is because computational

agents can �nd, enumerate, and evaluate potential deals faster than humans,

and because computational agents can be designed to act optimally on the users

behalf based on game theoretic prescriptions that are often not easily compre-

hended by humans.

This paper discusses multiagent negotiation in situations where agents may

have di�erent goals, and each agent is trying to maximize its own good without

concern for the global good. Such self-interest naturally prevails in negotiations

among independent businesses or individuals. In building computer support

for negotiation in such settings, the issue of self-interest has to be dealt with.

In cooperative distributed problem solving [7, 5], the system designer imposes

an interaction protocol 1 and a strategy (a mapping from history to action;

a way to use the protocol) for each agent. The main question is what social

outcomes follow given the protocol and assuming that the agents use the imposed

strategies. On the other hand, in multiagent systems [30, 23, 18, 13], the agents

are provided with an interaction protocol (aka. mechanism), but each agent will

choose its own strategy. A self-interested agent will choose the best strategy for

itself, which cannot be explicitly imposed from outside. Therefore, the protocols

need to be designed using a noncooperative, strategic perspective: the main

question is what social outcomes follow given a protocol that guarantees that

each agent's desired local strategy is best for that agent|and thus the agent

will use it. This approach is required in designing robust non-manipulable

1Here a protocol does not mean a low level communication protocol, but a negotiation
protocol that determines the possible (valid, legal) actions that agents can take at di�erent
points of the interaction. The sealed-bid �rst-price auction is an example protocol, where each
bidder is free to submit one bid for the item, which is awarded to the highest bidder at the
price of his bid.
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multiagent systems where the agents may be constructed by separate designers

and/or may represent di�erent real-world parties.

The rest of this paper overviews six component technologies that we have

developed for such negotiations:

1. OCSM-contracts in marginal cost based contracting,

2. leveled commitment contracts,

3. anytime coalition structure generation with worst case guarantees,

4. trading o� computation cost against optimization quality within each

coalition,

5. distributing search among insincere agents, and

6. unenforced contract execution.

Each of these technologies is discussed at a high level, and pointers to the

detailed technical papers on these topics are provided.

2 Technology 1: OCSM-contracts in marginal

cost based contracting

A central part of automated negotiation systems is the ability to reallocate items

(tasks, securities, bandwidth slices, megawatt hours of electricity, collectibles,

etc.) among the agents. In many domains, signi�cant savings can be achieved

by reallocation. However, reallocation can be di�cult if agents have preferences

over combinations of items. Some tasks are inherently synergic, and should

therefore be handled by the same agent. Some tasks have negative interactions,

so it is better to allocate them to di�erent agents. In other words, an agent's

cost (and even feasibility) of handling a given task depends on what other tasks

the agent will have. Furthermore, di�erent agents may have di�erent resources,

and this leads to di�erent capabilities and costs for handling tasks. This section

discusses task allocation among self-interested agents in the followingmodel that

captures the above considerations. While we use the term \task", the items

to be allocated can be anything else as well|�nancial securities, collectibles,

resources, etc.|as long as the following model captures the setting.2

De�nition 1 Our task allocation problem is de�ned by a set of tasks T , a set

of agents A, a cost function ci : 2
T ! <[f1g (which states the cost that agent i

incurs by handling a particular subset of tasks), and the initial allocation of tasks

2In settings such as securities reallocation where the items have positive value to each
agent|unlike in task reallocation|the cost functions take on negative values.
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The original contract net and many of its later variants lacked a formal

model for making bidding and awarding decisions. More recently, we introduced

such a formal model that gives rise to a negotiation protocol that provably

leads to desirable task allocations among agents [22, 24, 25]. In that model,

contracting decisions are based on marginal cost calculations, i.e., that model

invokes the concept of individual rationality on a per contract basis. A contract

is individually rational (IR) to an agent if that agent is better o� with the

contract than without it.5 This implies individual rationality of sequences of

contracts.

Speci�cally, a contractee q accepts a contract if it gets paid more than its

marginal cost

MCadd(T contractjTq) = cq(T
contract [ Tq)� cq(Tq)

of handling the tasks T contract of the contract. The marginal cost is dynamic

in the sense that it depends on the other tasks Tq that the contractee has.
6

Similarly, a contractor r is willing to allocate the tasks T contract from its

current task set Tr to the contractee if it has to pay the contractee less than it

saves by not handling the tasks T contract itself:

MCremove(T contractjTr) = cr(Tr) � cr(Tr � T contract):

In the protocol, agents then suggest contracts to each other, and make their

accepting/rejecting decisions based on these marginal cost calculations. An

agent can take on both contractor and contractee roles. It can also recontract

out tasks that it received earlier via another contract. The scheme does not

assume that agents know the tasks or cost functions of others.

3This de�nition generalizes what are called \Task Oriented Domains" [18]. Speci�cally,

we allow asymmetric cost functions among agents (e.g., due to di�erent resources). We also
allow for the possibility that some agent may be unable to handle some set of tasks. This is

represented by a cost of in�nity.
4Although a static version of the problem is discussed, the contracting scheme works even

if tasks and resources (resources a�ect the cost functions) are added and removed dynamically.
5This di�ers from payo� maximizing agents of game theory [16]. Such an agent may

reject an IR contract, e.g., if it believes that it could be better o� by waiting for a more
bene�cial contract that cannot be accepted if the former contract is accepted (e.g., due to
limited resources). Similarly, such an agent may accept a non-IR contract in anticipation of

a synergic later contract that will make the combination bene�cial. Our approach is more
practical because each contract can be made by evaluating just a single contract (each contract
party evaluating one new task set) instead of doing exponential lookahead in the tree of
possible future contracts. Our deviation from game theory comes at the cost of not being able

to normatively guarantee that a self-interested agent is best o� by following the strategy (of
accepting any IR contracts) that we propose.

6Sometimes computing the value of the cost function for even a single task set is hard.
For example, if the tasks are cities for a traveling salesman to visit, the computation is NP-
complete. Therefore, the marginal costs cannot actually be computed by subtracting two cost
function values from each other in practice. Instead they have to be approximated [22, 24, 29].
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With this domain independent contracting scheme, the task allocation can

only improve at each step. This corresponds to hill-climbing in the space of task

allocations where the height-metric of the hill is social welfare (�
P

i2A ci(Ti)).

The fact that the contractor pays the contractee some amount between their

marginal costs (e.g., half-way between) causes the bene�t from the improved

task allocation to be divided so that no agent is worse o� with a contract than

without it.

The scheme is an anytime algorithm: contracting can be terminated at any

time, and the worth (payments received from others minus cost of handling

tasks) of each agent's solution increases monotonically. It follows that social

welfare increases monotonically.

Details on an asynchronous distributed implementation based on marginal

costs can be found in [22, 24, 29]. To our knowledge, this TRACONET

(TRAnsportation COoperation NETwork) system was the �rst implementation

of the contract net that used actual real-world marginal cost calculations as

the basis of automated contracting [22, 20, 21]. Its scaling up was veri�ed on

large-scale real-world data from �ve independent dispatch centers.

2.1 Convergence to the globally optimal task allocation

In most contract net implementations, each contract concerns only one task, i.e.

one task is moved from one agent to another against a payment [38, 34, 9]. Such

an original (O) contract can be understood as a particular search operator in

the global hill-climbing contracting algorithm that is used for task reallocation.

When the contracting protocol is equipped with O-contracts only, it may get

stuck in a local optimumwhere no contract is individually rational but the task

allocation is not globally optimal.

To solve this problem, we recently introduced several new contract types:

cluster (C) contracts [22, 20] where a set of tasks is atomically contracted from

one agent to another against a payment, swap (S) contracts where a pair of

agents swaps a pair of tasks (and potentially a sidepayment), and multiagent

(M) contracts where more than two agents are involved in an atomic exchange

of tasks (and potentially sidepayments) [25, 29, 24]. Each of the four contract

types avoids some of the local optima that the other three do not:

Proposition 1 For each of the four contract types (O, C, S, and M), there

exist task allocations where no IR contract with the other three contract types is

possible, but an IR contract with the fourth type is [25].

Unfortunately, even if the contracting protocol is equipped with all four of

the contract types, the globally optimal task allocation may not be reached via

IR contracts|even if there were an oracle for choosing the sequence of contracts:

Proposition 2 There are instances of the task allocation problem where no IR

sequence from the initial task allocation to the optimal one exists using O-, C-,

S- and M-contracts [25].
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Clearly, no subset of the contract types su�ces either. Another problem is that

without an oracle, contracting may get stuck in a local optimum even if some

IR sequence exists because the agents may choose some other IR sequence.

To address this shortcoming, we de�ned a new contract type, OCSM-contract,

which combines the characteristics of O-, C-, S-, and M-contracts into one con-

tract type|where the ideas of the four earlier contract types can be applied

simultaneously (atomically):

De�nition 2 ([25, 24]) An OCSM-contract is de�ned by a pair hT;�i of jAj�

jAj matrices. An element Ti;j is the set of tasks that agent i gives to agent j,

and an element �i;j is the amount that i pays to j.

So OCSM contracts allow moving from a task allocation to any other task al-

location with a single contract. It could be shown that an IR sequence always

exists from any task allocation to the optimal one, if the contracting protocol

incorporates OCSM-contracts. However, a stronger claim is now made. The

following proposition states that OCSM-contracts are su�cient for reaching the

globally optimal task allocation in a �nite number of contracts. The result holds

for any sequence of IR OCSM-contracts, i.e., for any hill-climbing algorithm that

uses OCSM-contracts: an oracle is not needed for choosing the sequence. This

means that from the perspectives of social-welfare maximization and of individ-

ual rationality, agents can accept IR contracts as they are o�ered. They need

not wait for more pro�table ones, and they need not worry that a current con-

tract may make a more pro�table future contract unpro�table. Neither do they

need to accept contracts that are not IR in anticipation of future contracts that

make the combination bene�cial. Furthermore, these hill-climbing algorithms

do not need to backtrack.

Proposition 3 Let jAj and jT j be �nite. If the contracting protocol allows

OCSM-contracts, any hill-climbing algorithm (i.e., any sequence of IR contracts)

�nds the globally optimal task allocation in a �nite number of steps (without

backtracking) [25, 24].7

Proof. With OCSM-contracts there are no local optima (that are not global

optima) since a global optimum can be reached from any task allocation in a

single contract. This last contract will be IR, because moving to the optimum

from some suboptimal allocation improves welfare, and this gain can be arbi-

trarily divided among the contract parties. Thus, the algorithm will not run

out of IR contracts before the optimum has been reached. With �nite jAj and

jT j, there are only a �nite number of task allocations. Since the algorithm hill-

climbs, no task allocation will be repeated. Therefore, the optimum is reached

in a �nite number of contracts. 2

Proposition 3 gives a powerful tool for problem instances where the num-

ber of possible task allocations is relatively small. On the other hand, for

large problem instances, the number of contracts made before the optimal

7If the cost functions, ci(�), have certain types of special structure, it can be guaranteed
that the global optimum is reached even with less powerful contract types [25].
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task allocation is reached may be impractically large|albeit �nite. For ex-

ample on a large-scale real-world distributed vehicle routing problem instance,

the TRACONET contracting system never reached even a local optimum even

with just O-contracts|with each of the �ve agents executing on its own Unix

machine [22]. Another problem is that although any OCSM-contract can be

represented in O(jAj2 + jT j) space, the identi�cation of welfare increasing con-

tracts may be complex|especially in a distributed setting|because there are
jAj2jTj�jAjjTj

2
possible OCSM-contracts, and the evaluation of just one contract

requires each contract party to compute the cost of handling its current tasks

and the tasks allocated to it via the contract. With such large problem in-

stances, one cannot expect to reach the global optimum in practice. Instead,

the contracting should occur as long as there is time, and then have a solu-

tion ready: the anytime character of this contracting scheme becomes more

important. See [3] for experimental results on the anytime characteristics of the

di�erent contract types.

3 Technology 2: Leveled commitment contracts

In traditional multiagent negotiation protocols among self-interested agents,

once a contract is made, it is binding, i.e., neither party can back out [18, 22,

25, 3, 8, 13, 33, 6, 41]. Once an agent agrees to a contract, it has to follow

through with it no matter how future events unravel. Although a contract may

be pro�table to an agent when viewed ex ante, it need not be pro�table when

viewed after some future events have occurred, i.e., ex post. For example, in

business-to-business electronic commerce when a company has contracted to

manufacture a component for another company, the former company may get

a more pro�table o�er from another party, and may want to undo the earlier

contract so as to be able to handle the latter. Similarly, a contract may have

too low of an expected payo� ex ante, but in some realizations of the future

events, the same contract may be desirable when viewed ex post. Normal full

commitment contracts are unable to e�ciently take advantage of the possibilities

that such|probabilistically known|future events provide.

On the other hand, manymultiagent systems consisting of cooperative agents

incorporate some form of decommitment possibility in order to allow the agents

to accommodate new events. For example, in the original contract net protocol,

the agent that had contracted out a task could send a termination message to

cancel the contract even when the contractee had already partially ful�lled the

contract [38]. This was possible because the agents were not self-interested:

the contractee did not mind losing part of its e�ort without a monetary com-

pensation. Similarly, the role of decommitment possibilities among cooperative

agents has been studied in meeting scheduling using a contracting approach [35].

Again, the agents did not require a monetary compensation for their e�orts: an

agent agreed to cancel a contract merely based on the fact that some other

agent wanted to decommit. In such multiagent systems consisting of coopera-

tive agents, each agent can be trusted to use such an externally imposed strategy
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even though using that strategy might not be in the agent's self-interest.

Some research in game theory has focused on utilizing the potential pro-

vided by probabilistically known future events by contingency contracts among

self-interested agents. The obligations of the contract are made contingent on

future events. There are games in which this method provides an expected pay-

o� increase to both parties of the contract compared to any full commitment

contract [17]. Also, some deals are enabled by contingency contracts in the sense

that there is no full commitment contract that both agents prefer over their fall-

back positions, but there is a contingency contract that each agent prefers over

its fallback.

There are at least three problems regarding the use of contingency contracts

in automated negotiation among self-interested agents. First, the agents might

not know the entire space of possible future events. Even if the real-world party

that the agent represents knows the possible events, programming that infor-

mation into the agent can be prohibitively complex and error-prone. Second,

contingency contracts get cumbersome as the number of relevant events to mon-

itor from the future increases. In the limit, all domain events (changes in the

domain problem, e.g., new tasks arriving or resources breaking down) and all

negotiation events|contracts from other negotiations|can a�ect the value of

the obligations of the original contract, and should therefore be conditioned

on. Furthermore, these future events might not a�ect the value of the original

contract independently: the value of the original contract may depend on com-

binations of future events [29, 22, 18]. Thus, there is a potential combinatorial

explosion of events to be conditioned on. Third, veri�cation of the unraveling

of the events may not be viable. Sometimes an event is only observable by some

of the agents. The observing agents might lie to the nonobserving agents about

the event in case the event is associated with a disadvantageous contingency to

the observing agents. Thus, to be viable, contingency contracts would require

an event veri�cation mechanism that is not manipulable and not prohibitively

complicated or costly.

We devised leveled commitment contracts as another instrument for tak-

ing advantage of the possibilities provided by probabilistically known future

events [30, 24]. Instead of conditioning the contract on future events, a mech-

anism is built into the contract that allows unilateral decommitting. This is

achieved by specifying in the contract decommitment penalties, one for each

agent. If an agent wants to decommit|i.e., to be freed from the obligations of

the contract|it can do so simply by paying the decommitment penalty to the

other party. Such contracts are called leveled commitment contracts, because

the decommitment penalties can be used to choose a level of commitment. The

method requires no explicit conditioning on future events: each agent can do

its own conditioning dynamically. Therefore, no event veri�cation mechanism

is required either.

While the leveled commitment contracting protocol has intuitive appeal and

several practical advantages [24], it is not obvious that it is bene�cial. First, the

breacher's gain may be smaller than the breach victim's loss. Second, agents

might decommit insincerely. A truthful agent will decommit whenever its best

8



outside o�er plus the decommitting penalty is better than the current contract.

However, a rational self-interested agent will be more reluctant in decommitting.

It will take into account the chance that the other party might decommit, in

which case the former agent gets freed from the contract obligations, does not

have to pay a decommitting penalty, and will collect a decommitting penalty

from the other party. Based on the same reasoning, the other contract party

will be reluctant to decommit as well. Due to such reluctant decommitting,

contracts may end up being kept even though breaking them would be best

from the social welfare perspective.

We analyzed this issue formally [30, 24]. A Nash equilibrium analysis was

carried out where both contract parties' decommitting strategies (characterized

by how good an agent's outside o�er has to be to induce the agent to decommit)

were best responses to each other. Both agents were decommitting insincerely,

but neither was motivated to change the extent of his lie given that the other

did not change. It was shown that even under such insincere decommitting, the

leveled commitment protocol outperforms the full commitment protocol. First,

it enables contracts by making them IR in settings where no full commitment

contract is IR (the reverse cannot happen because leveled commitment contracts

can emulate full commitment by setting the penalties high enough). Second,

leveled commitment contracts increase both contract parties' expected payo�s

over any full commitment contracts.

Recently we developed an algorithm for determining the optimal contracts [32].

The algorithm takes as input a piecewise linear probability distribution of the

contractor's best future outside o�er and a piecewise linear probability distri-

bution of the contractee's best future outside o�er. It outputs the range of

optimal individually rational contract prices and the optimal penalties as a

function of the contract price, i.e., the penalties that maximize the sum of the

agents' expected payo�s. The optimization takes into account that rational

agents decommit strategically in Nash equilibrium. The contract optimizer also

solves for the Nash equilibria for any given contract, i.e., it determines how

good each agent's outside o�er has to be to trigger that agent to decommit.

From this, the optimizer determines the decommitting probabilities. Using the

algorithms, we provide a free client-server based contract optimizing service on

the web (http://ecommerce.cs.wustl.edu/contracts.html) as part of eMe-

diator, our next generation electronic commerce server. We invite the reader to

try it.

Making multiple contracts sequentially introduces additional complications

because a decommitment may motivate the victims to decommit from some of

their other contracts. We have studied methods of increasing the decommit-

ment penalties over time so as to reduce such cascade e�ects to an e�cient

level [1]. One of the key results is that in�nite decommit-recommit loops can-

not be avoided via any schedule of increasing the penalties if the timing is done

locally from the time the contract was made. Instead, an element of global time

(e.g., from the beginning of the entire negotiation) has to be used to avoid such

loops. Finally, we have experimented with leveled commitment among agents

that do lookahead into the future contracts vs. myopic agents that do not [2].
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4 Technology 3: Anytime coalition structure gen-

eration with worst case guarantees

Coalition formation is another key issue in multiagent systems. By forming

coalitions, i.e., coordinating their activities within each coalition, the agents

can often reach considerable cost savings. In electronic commerce, coalition

formation occurs, for example, in buyers pooling together to coordinate larger

orders to obtain quantity discounts (such as at www.accompany.com), in sellers

potentially maintaining cartel pricing, and in producers forming dynamic supply

chains. As is often done [11, 43, 37, 12], this section discusses coalition formation

in characteristic function games. In such games, each coalition S is associated

with its value vS . Coalition formation includes three activities:

1. Coalition structure generation: formation of coalitions by the agents such

that agents within each coalition coordinate their activities, but agents do

not coordinate between coalitions. Precisely this means partitioning the

set of agents into exhaustive and disjoint coalitions. This partition is called

a coalition structure (CS). For example, in a game with three agents, there

are seven possible coalitions: f1g, f2g, f3g, f1,2g, f2,3g, f3,1g, f1,2,3g

and �ve possible coalition structures: ff1g, f2g, f3gg, ff1g, f2,3gg, ff2g,

f1,3gg, ff3g, f1,2gg, ff1,2,3gg.

2. Solving the optimization problem of each coalition. This means pooling the

tasks and resources of the agents in the coalition, and solving this joint

problem. The coalition's objective is to maximize monetary value: money

received from outside the system for accomplishing tasks minus the cost

of using resources. (In some problems, not all tasks have to be handled.

This can be incorporated by associating a cost with each omitted task.)

3. Dividing the value of the generated solution among agents. This value

may be negative because agents incur costs for using their resources.

These activities may be interleaved, and they are not independent. For example,

the coalition that an agent wants to join depends on the portion of the value

that the agent would be allocated in each potential coalition.

4.1 Coalition structure generation

Classically, coalition formation research has mostly focused on the payo� divi-

sion activity. Coalition structure generation and optimization within a coalition

have not previously received as much attention. Research has focused [11, 43]

on superadditive games, i.e., games where vS[T � vS + vT for all disjoint coali-

tions S; T � A. In such games, coalition structure generation is trivial because

the agents are best o� by forming the grand coalition where all agents operate

together.

Superadditivity means that any pair of coalitions is best o� by merging into

one. Classically it is argued that almost all games are superadditive because, at
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worst, the agents in a composite coalition can use solutions that they had when

they were in separate coalitions.

However, many games are not superadditive because there is some cost to

the coalition formation process itself. For example, there might be coordination

overhead like communication costs, or possible anti-trust penalties. Similarly,

solving the optimization problem of a composite coalition may be more complex

than solving the optimization problems of component coalitions. Therefore, un-

der costly computation, component coalitions may be better o� by not forming

the composite coalition [31]. Also, if time is limited, the agents may not have

time to carry out the communications and computations required to coordinate

e�ectively within a composite coalition, so component coalitions may be more

advantageous.

In games that are not superadditive, some coalitions are best o� merging

while others are not. In such settings, the social welfare maximizing coalition

structure varies, and coalition structure generation becomes highly nontrivial.

The goal is to maximize the social welfare of the agents A by �nding a coalition

structure

CS� = arg max
CS2 partitions of A

V (CS);

where

V (CS) =
X

S2CS

vS

The problem is that the number of coalition structures is large (!(jAjjAj=2),

see [27]), so not all coalition structures can be enumerated unless the number

of agents is extremely small|in practice about 15 or fewer. Instead, one would

like to search through a subset (N � partitions of A) of coalition structures,

and pick the best coalition structure seen so far:

CS�N = arg max
CS2N

V (CS)

Taking an outsider's view, the coalition structure generation process|e.g., a

negotiation|can be viewed as search in a coalition structure graph, Figure 1.

Now, how should such a graph be searched if there are too many nodes to search

it completely?

One desideratum is to be able to guarantee that this coalition structure is

within a worst case bound from optimal, i.e., that

k = minf�g where � �
V (CS�)

V (CS�N )

is �nite, and as small as possible. Let us de�ne nmin to be the smallest size of

N that allows us to establish such a bound k.

We assume that each coalition's value is nonnegative (vS � 0). However,

if some coalitions' values are negative, but each coalition's value is bounded

from below (i.e., not in�nitely negative), one can normalize the coalition values

by subtracting at least minS�A vS from all coalition values vS . This rescales

the coalition values so that vS � 0 for all coalitions S. This rescaled game is

strategically equivalent to the original game [11].
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Figure 1: Coalition structure graph for a 4-agent game. The nodes represent

coalition structures. The arcs represent mergers of two coalition when followed

downward, and splits of a coalition into two coalitions when followed upward.

4.2 Minimal search to establish a bound

The following proposition establishes the minimal amount of search that is re-

quired to guarantee a solution that is within a bound from optimum:

Proposition 4 To bound k, it su�ces to search the lowest two levels of the

coalition structure graph (Figure 1). With this search, the bound k = jAj, this

bound is tight, and the number of nodes searched is n = 2jAj�1. No other search

algorithm (than the one that searches the bottom two levels) can establish a

bound k while searching only n = 2jAj�1 nodes or fewer [27].

Interpreted positively, this means that|somewhat unintuitively|a worst

case bound from optimum can be guaranteed without seeing all CSs. Moreover,

as the number of agents grows, the fraction of coalition structures needed to

be searched approaches zero, i.e., nmin

jpartitions of Aj
! 0 as jAj ! 1. This is

because the algorithm needs to see only 2jAj�1 coalition structures while the

total number of coalition structures is !(jAjjAj=2).

Interpreted negatively, the proposition shows that exponentially many coali-

tion structures (in the number of agents)8 have to be searched before a bound

can be established. This may be prohibitively complex if the number of agents

is large|albeit signi�cantly better than attempting to enumerate all coalition

structures. Viewed as a general impossibility result, the proposition states that

no algorithm for coalition structure generation can establish a bound in general

characteristic function games without trying at least 2jAj�1 coalition structures.9

8However, this search is linear in the number of possible coalitions.
9In restricted domains where the vS values have special structure, it may be possible to

establish a bound k with less search. Shehory and Kraus have analyzed coalition structure
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This sheds light on earlier algorithms. Speci�cally, all prior coalition structure

generation algorithms for general characteristic function games [37, 12]|which

we know of|fail to establish such a bound. In other words, the coalition struc-

ture that they �nd may be arbitrarily far from optimal.

4.3 Lowering the bound via further search

The following algorithmwill establish a bound in the minimal amount of search,

and then rapidly reduce the bound further if there is time for more search. If the

domain happens to be superadditive, the algorithm �nds the optimal coalition

structure immediately.

Algorithm. COALITION-STRUCTURE-SEARCH-1 [27]

1. Search the bottom two levels of the coalition structure graph.

2. Continue with a breadth-�rst search from the top of the graph as long as

there is time left, or until the entire graph has been searched.

3. Return the coalition structure that has the highest welfare among those

seen so far.

As was discussed earlier, before 2jAj�1 nodes have been searched, no bound

can be established, and at n = 2jAj�1 the bound k = jAj. By seeing just one

additional node, i.e., the top node, the bound drops in half (k =
jAj
2
). Then, to

drop k to about
jAj
3
, two more levels need to be searched. Roughly speaking, the

divisor in the bound increases by one every time two more levels are searched

(the exact drop of the bound is presented in [27]). So, the anytime phase (step

2) of COALITION-STRUCTURE-SEARCH-1 has the desirable feature that

the bound drops rapidly early on, and there are overall diminishing returns to

further search, Figure 2.

4.4 Comparison to other algorithms

All previous coalition structure generation algorithms for general characteris-

tic function games [37, 12]|that we know of|fail to establish any worst case

bound because they search fewer than 2a�1 coalition structures. Therefore, we

compared COALITION-STRUCTURE-SEARCH-1 to two other obvious candi-

dates:

� Merging algorithm, i.e., breadth �rst search from the top of the coali-

tion structure graph. This algorithm cannot establish any bound before

it has searched the entire graph [27].

generation in one such setting [36]. However, the bound that they compute is not a bound
from optimum, but from a benchmark (best that is achievable given a preset limit on the size
of coalitions), which itself may be arbitrarily far from optimum.
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Figure 2: Ratio bound k as a function of search size in a 10-agent game.

� Splitting algorithm, i.e., breadth �rst search from the bottom of the

graph. This is identical to COALITION-STRUCTURE-SEARCH-1 up to

the point where 2a�1 nodes have been searched, and a bound k = a has

been established. After that, the splitting algorithm reduces the worst case

bound much slower than COALITION-STRUCTURE-SEARCH-1 [27].

While that comparison was based on worst case performance, a recent paper

compares the average case performance of these three algorithms experimentally

using four di�erent ways of choosing the coalition structure values [15]. All of the

algorithms performed orders of magnitude better than their worst case. While

each of the algorithms dominated the others in di�erent settings, COALITION-

STRUCTURE-SEARCH-1 performed the most consistently across settings, and

its performance was close to that of the best out of the three algorithms in each

of the four settings.

4.5 Variants of the coalition structure generation problem

One would like to construct an anytime algorithm that establishes a lower k for

any amount of search n, compared to any other anytime algorithm. However,

such an algorithm might not exist. It is conceivable that the search which

establishes the minimal k while searching n0 nodes (n0 > n) does not include

all nodes of the search that establishes the minimal k while searching n nodes.

This hypothesis is supported by the fact that the curves in Figure 2 cross in

the end. However, this is not conclusive because COALITION-STRUCTURE-

SEARCH-1 might not be the optimal anytime algorithm, and because the bad

cases for the splitting algorithm might not be the worst cases.

If it turns out that no anytime algorithm is best for all n, one could use

information (e.g., exact, probabilistic, or bounds) about the termination time
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to construct a design-to-time algorithm that establishes the lowest possible k

for the speci�ed amount of search.

So far we have discussed algorithms that have an o�-line search control pol-

icy, i.e., the nodes to be searched have to be selected without using information

accrued from the search so far. With on-line search control, one could per-

haps establish a lower k with less search, because the search can be redirected

based on the values observed in the nodes so far. With on-line search control,

it makes a di�erence whether the search observes only values of coalition struc-

tures, V (CS), or values of individual coalitions, vS , in those structures. The

latter gives more information, and in such settings, algorithms that capitalize

on that information can be used [27, 26]. For example, if a value, vS , is known

for every coalition S � A, then the optimal coalition structure can be computed

in O(3jAj) time using dynamic programming [27].

None of these variants (anytime vs. design-to-time, and o�-line vs. on-line

search control) would a�ect the result that searching the bottom two levels of

the coalition structure graph is the unique minimalway to establish a worst case

bound, and that the bound is tight. However, the results on searching further

might vary in these di�erent settings.

5 Technology 4: Trading o� computation cost

against optimization quality within each coali-

tion

Under unlimited and costless computation, each coalition would solve its opti-

mization problem exactly, which would de�ne the value, vS , of that coalition.

However, in many practical domains it is too complex from a combinatorial

viewpoint to solve the problem exactly. Instead, only an approximate solution

can be found. In such settings, self-interested agents would want to strike the

optimal tradeo� between solution quality and the cost of the associated compu-

tation.

We address this issue [31] by adopting a speci�c model of bounded rational-

ity where each agent has to pay for the computational resources that it uses for

deliberation. A �xed computation cost ccomp � 0 per computation time unit is

assumed. The domain cost associated with coalition S is denoted by cS(rS) � 0,

i.e., it depends on (decreases with) the allocated computation resources rS , Fig-

ure 3 left. For example, in a vehicle routing problem, the domain cost is the

sum of the lengths of the routes of the coalition's vehicles.10 The functions

cS(rS) can be viewed as performance pro�les [4, 42] of the problem solving algo-

rithm. They are used to decide how much time to allocate to each computation.

With this model of bounded rationality, the value of a coalition with bounded-

rational agents can be de�ned. Each coalition minimizes the sum of solution

10In games where the agents receive revenue from outside|e.g., for handling tasks|this
revenue can be incorporated into cS(rS) by subtracting the coalition members' revenues from
the coalition's domain cost.
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cost (i.e., domain cost, which decreases as more computation is allocated) and

computation cost (which increases as more computation is allocated):

vS(ccomp) = �min
rS

[cS(rS) + ccomp � rS ]: (1)

This coalition value decreases as the computation time unit cost ccomp increases,

Figure 3 right. Intuitively, as the unit cost of computation increases, agents

S = { 1, 2, 3 }

S = { 2, 3 }

S = { 1, 2 }

S = { 2 }

S = { 1, 3 }

S = { 1 }

S = { 3 }

rs

cs(rs)

0
0 0

+

+

vs(ccomp)
ccomp

S = { 1, 2, 3 }

S = { 2, 3 }
S = { 1, 2 }

S = { 2 }

S = { 1, 3 }

S = { 1 }

S = { 3 }

Figure 3: Example experiment from a vehicle routing domain with agents 1, 2,

and 3. Left: performance pro�les, i.e., solution cost as a function of allocated

computation resources. The curves become 
at when the algorithm has reached

a local optimum. Right: bounded-rational coalition value as a function of com-

putation unit cost. The value of each coalition is negative because the cost is

positive. The curves become 
at at a computation unit cost ccomp that is so

high that it is not worthwhile to take any iterative re�nement steps: the initial

solutions are used (their computation requirements are assumed negligible).

need to pay more for the computation or they have to use less computation

and acquire worse solutions accordingly. Our model also incorporates a second

form of bounded rationality: the base algorithm may be incomplete, i.e., it

might never �nd the optimal solution. If the base algorithm is complete, the

bounded-rational value of a coalition when ccomp = 0 equals the rational value

(vS(0) = vRS ). In all, the bounded-rational value of a coalition is determined by

three factors:

� The domain problem: tasks and resources of the agents (e.g., trucks and

delivery orders in a vehicle routing problem). Among rational agents this

is the only determining factor.

� The execution architecture on which the problem solving algorithm is run.

Speci�cally, the architecture determines the unit cost of computation,

ccomp.

� The problem solving algorithm. Once the coalition formation game begins,

the algorithm's performance pro�les are considered �xed. This model in-
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corporates the possibility that agents design di�erent algorithms for dif-

ferent possible allocations of computation resources. We make no assump-

tions as to how e�ectively the algorithm uses the execution architecture.

This is realistic because in practice it is often hard to construct algo-

rithms that use the architecture optimally. For example, Russell and Sub-

ramanian have devised algorithms that are optimal for the architecture

in simple settings, but in more complex settings they had to resort to an

asymptotic criterion of optimality [19].

From our model of bounded rationality, the social welfare maximizing coali-

tion structure can be determined. Similarly, the stability of the coalition struc-

ture can be determined: can the payo� be divided so that no group of agents

gets higher payo� by moving out of the coalition structure by forming their won

coalition? To avoid studying coalition games on a case by case basis, we have

theoretically shown classes of performance pro�les for which the welfare maxi-

mizing coalition structure and its stability can be determined directly without

using Equation 1 and enumerating all possible coalition structures [31].

We have also experimented with our model of bounded rationality in a real-

world vehicle routing problem. The main �ndings were the following. First,

computational cost often does away with superadditivity, so it is no longer the

case that every pair of coalitions is best o� merging|which would imply op-

timality of the grand coalition. This is because the optimization problem of

the composite coalition is signi�cantly harder than the optimization problems

of the component coalitions. Second, stability of the coalition structure is very

sensitive to the problem instance, and varies in practice. Third, the coalition

structure that our normative theory of bounded rational agents prescribes is

closer to what human agents would choose based on domain speci�c consid-

erations (such as adjacency of the dispatch centers and combinability of their

loads) than is the classical normative prescription for agents whose rationality

is unlimited [31].

This work on coalition formation under costly optimizationwithin each coali-

tion can be tied together with the nonexhaustive search for a welfare maximiz-

ing coalition structure (Section 4). The coalition structure generation algorithm

can be used to search for a coalition structure, and only afterwards would the

coalitions in the chosen coalition structure actually attack their optimization

problems. If the performance pro�les include uncertainty, this separation of

coalition structure generation and optimization does not work e.g., because an

agent may want to redecide its membership if its original coalition receives

a worse optimization solution than expected. Recently, we have also studied

coalition formation in conjunction with belief revision among bounded rational

agents [40].
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6 Technology 5: Distributing search among in-

sincere agents

This section discusses a method of distributing any given search algorithm

among self-interested agents. Distribution of search may be desirable because

the search can be done more e�ciently in parallel, and the agents will share the

burden of computation. The method assumes that each agent has the informa-

tion required to search the part of the space allocated to it.

As an example, this method can be used to distribute the algorithm COALI-

TION-STRUCTURE-SEARCH-1. Self-interested agents prefer greater personal

payo�s, so they will search for coalition structures that maximize personal pay-

o�s, ignoring the ratio bound, k. The following algorithm can be used to mo-

tivate self-interested agents to exactly follow the socially desirable search. The

randomizations in that algorithm can be done without a trusted third party

by using a distributed nonmanipulable protocol for randomly permuting the

agents [43].

Algorithm. DISTRIBUTED SEARCH FOR SELF-INTERESTED

AGENTS

1. Deciding what part of the coalition structure graph to search.

This can be decided in advance, or be dictated by a central authority or

a randomly chosen agent, or be decided using some form of negotiation.

2. Partitioning the search space among agents. Each agent is assigned

some part of the coalition structure graph to search. The enforcement

mechanism in step 4 will motivate the agents to search exactly what they

are assigned, no matter how unfairly the assignment is done. One way

of achieving ex ante fairness is to randomly allocate the set search space

portions to the agents. In this way, each agent searches equally on an

expected value basis, although ex post, some may search more than others.

Another option is to distribute the space equally among agents, or have

some agents pay others to compensate for unequal amounts of search.

3. Actual search. Each agent searches its part of the search space, and

tells the others which CS maximized V (CS) in its search space.

4. Enforcement. Two agents, i and j, will be selected at random. Agent

i will re-search the search space of j to verify that j has performed its

search. Agent j gets caught of mis-searching (or misrepresenting) if i

�nds a better CS in j's space than j reported (or i sees that the CS that

j reported does not belong to j's space at all). If j gets caught, it has

to pay a penalty P . To motivate i to conduct this additional search, we

make i the claimant of P . There is no pure strategy Nash equilibrium

in this protocol. (If i searches and the penalty is high enough, then j

is motivated to search sincerely. But then i is not motivated to search
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since it cannot receive P .) Instead, there may be a mixed strategy Bayes-

Nash equilibrium where i and j search truthfully with some probabilities.

By increasing P , the probability that j searches can be made close to

one. The probability that i searches goes close to zero, which minimizes

enforcement overhead.

5. Additional search. The previous steps can be repeated if more time

to search remains. For example, the agents could �rst do step 1 of

COALITION-STRUCTURE-SEARCH-1. Then, they could repeatedly

search more and more as time allows.

6. Payo� division. Many alternative methods for payo� division among

agents could be used here. The only concern is that the division of V (CS)

may a�ect what CS an agent wants to report as a result of its search,

since di�erent CSs may give the agent di�erent payo�s|depending on

the payo� division scheme. However, by making P high enough compared

to the V (CS) values, this consideration can be made negligible compared

to the risk of getting caught.

The method above is applicable in settings without a trusted third party.

If a trusted third party exists, that party can be the one that conducts the

re-search. This has the advantage that the re-searching party is not attempting

to avoid search, but will conduct the re-search sincerely independent of the

others' strategies. In such a mechanism, every agent's best response is to search

sincerely if P is high enough.

7 Technology 6: Unenforced contract execution

After negotiation, the deals need to be executed. In conventional commerce,

deals are usually enforced by law. For example, if a car dealership does not

deliver the automobile after the customer has paid for it, the customer can

resort to litigation. However, such enforced protocols are problematic in elec-

tronic commerce, e.g., over the Internet. First, adequate laws for electronic

commerce may be lacking, or the transacting agents (human or computational)

may be governed by di�erent laws, e.g., they may be sited in di�erent coun-

tries. Also, the laws might not be strictly enforced, or enforcing them|e.g., by

litigation|might be impractically expensive. We would like the agents' elec-

tronic commerce transactions to work properly independent of such 
uctuations

in enforcement. Secondly, an electronic commerce party may vanish at any point

in time, e.g., by logging out. Thus, the laws cannot be enforced unless the van-

ished agent represented some real-world party and the connection between the

agent and the accountable real-world party can be traced.

Current electronic commerce technology is based on such enforced transac-

tions. The problems of traceability and trust are being tackled, for example,

by establishing trusted third parties like banks, credit card companies, and es-

crow intermediaries for electronic commerce, as well as by attempting to build
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cybercommunities of trust. The developing infrastructure for electronic com-

merce among computational agents is also following the approach of enforced

traceable transactions. For example, Telescript technology strives to strictly

and accountably tie each computational agent to the real-world party that it

represents.

Instead, we present a method that allows transactions to be carried out with-

out enforcement. This enables transactions in settings where the parties cannot

identify each other, or where litigation is not viable. From the perspective of

computational agents, it allows the agents to be more autonomous because they

do not have to be strictly tied to the real-world parties that they represent. In

cases where this type of unenforced exchange is possible, it is preferable to the

strictly enforced mode of exchange due to savings in enforcement costs (e.g.,

litigation costs, or operation costs of trusted third party intermediaries) and

insensitivity to enforcement uncertainty.

The ful�llment of a mutual contract can be viewed as one agent deliver-

ing and the other agent paying, in money or some commodity. We propose a

method for carrying out such an exchange without enforcement. The exchange

is managed so that for both agents|supplier and demander|at any point in

the exchange, the future gains from carrying out the rest of the exchange are

larger than the gains from terminating the exchange prematurely by vanishing.

For example, vanishing may be bene�cial to a demander agent if the supplier

agent has delivered much more than what the demander has yet paid for.

By intelligently splitting the exchange into smaller chunks, the agents can

avoid situations where at least one of them is motivated to vanish. In other

words, each agent only delivers a portion of its deliverables at a time. At the

next step, the agents deliver some more, etc. The method is most suitable for

settings where dividing the goods into chunks is relatively inexpensive, such

as is often the case for example with information goods and computational

services. We will call a sequence of deliveries and payments safe if neither agent

is motivated to vanish at any point in the exchange. Speci�cally, the exchange

is safe if it can be carried to completion according to a game theoretic solution

concept called subgame perfect Nash equilibrium.

Some chunkings allow safe exchange while others do not. We devised algo-

rithms that �nd a safe chunking if one exists for any given exchange [24, 28]. The

sequence of delivering the chunks matters as well: some sequences are safe while

others are not. The obvious candidate algorithms for sequencing fail to guaran-

tee safety of the sequence. We devised a nontrivial sequencing algorithm that

provably �nds a safe sequence if one exists, and always terminates in quadratic

time in the number of chunks. The algorithm works for settings where agents

value each chunk independently. If the chunks are interdependent in value, the

sequencing cannot be done in polynomial time in general, but dynamic pro-

gramming can be used to carry out the sequencing signi�cantly faster than by

trying all sequences.
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8 Conclusions

Multiagent systems consisting of self-interested agents are becoming ubiquitous;

automated negotiation and coalition formation are playing an increasingly im-

portant role in electronic commerce. Such agents cannot be coordinated by

externally imposing the agent's strategies. Instead the interaction protocols

have to be designed so that each agent is motivated to follow the strategies that

the protocol designer wants it to follow.

This paper reviewed six component technologies that we have developed for

making such interactions less manipulable and more e�cient in terms of the

computational processes and the outcomes:

1. Marginal cost based contracting and OCSM-contracts. Marginal cost

based contracting is an anytime reallocation scheme where every agent's

utility improves monotonically over time, and agents and goods/tasks can

arrive dynamically. The combinatorial contract types avoid local optima

in the search for desirable allocations.

2. Leveled commitment contracts. Backtracking is a well-known method

for avoiding local optima and accommodating new events in single agent

settings. In multiagent systems consisting of self-interested agents, back-

tracking is di�cult to implement. Leveled commitment contracts are a

backtracking scheme for such negotiation settings, with provably desir-

able properties despite strategic breaching.

3. Anytime coalition structure generation with worst case guarantees. The

scheme �nds coalition structures that are provably within a bound from

optimum in the minimal search time, and then improves the bound fur-

ther via additional search. The intuitive approach of starting coalition

negotiations from all agents operating individually, and then negotiating

mergers, is highly ine�cient from a worst case perspective. Instead, the

negotiation should start from all agents in a grand coalition, and then

trying all splits of the grand coalition into exactly two coalitions. After

that, it is desirable to move to the stage where agents operate separately,

and begin to negotiate mergers.

4. Trading o� computation cost against optimization quality within each

coalition. This technique uses a quantitative model of bounded rationality

to normatively prescribe which coalitions should form, and how the value

should be divided among the agents. In general, as computerized agents

become more common in electronic commerce, theories of how to optimally

use each agent's limited computational resources will become crucial.

5. Distributing search among insincere agents. This is a general method for

implementing parallelization among self-interested parties that otherwise

might avoid some of the search e�ort that they are assigned. This tech-

nique could be used for solving key combinatorial problems in electronic

commerce, such as coalition structure generation, and winner determina-

tion in combinatorial auctions [26].
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6. Unenforced contract execution. By splitting an exchange into chunks and

by appropriately sequencing the chunks, divisible goods can be exchanged

safely without enforcement under certain conditions. This disintermedi-

ates electronic commerce because the exchange will not rely on a third

party escrow company.

In microeconomics and game theory, substantial knowledge exists of im-

possibility results and of constructive possibility demonstrations of interaction

protocols and strategies for self-interested agents [16, 14]. However, the compu-

tational limitations of the agents deserve more attention. It is clear that such

limitations have fundamental impact on what strategies agents want to use, and

therefore also on what protocols are desirable, and what is (im)possible. This

is one area where microeconomics and computer science fruitfully blend.

In the future, systems will increasingly be designed, built, and operated in

a distributed manner. A larger number of systems will be used by multiple

real-world parties. The problem of coordinating these parties and avoiding

manipulation cannot be tackled by technological or economic methods alone.

Instead, the successful solutions are likely to emerge from a deep understanding

and careful hybridization of both.
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