
Contract Type Sequencing for Reallocative Negotiation

Martin Andersson and Tuomas Sandholm�

fmra, sandholmg@cs.wustl.edu
Department of Computer Science

Washington University

St. Louis, MO 63130-4899

Abstract

The capability to reallocate items|e.g. tasks, secu-

rities, bandwidth slices, Mega Watt hours of electric-

ity, and collectibles|is a key feature in automated

negotiation. Especially when agents have preferences

over combinations of items, this is highly nontrivial.

Marginal cost based reallocation leads to an anytime

algorithm where every agent's utility increases mono-

tonically over time. Di�erent contract types head to-

ward di�erent locally optimal task allocations, and con-

tracts from a recently introduced comprehensive con-

tract type, OCSM-contracts, head toward the global op-

timum. Reaching it can take impractically long, so it is

important to trade o� solution quality against negotia-

tion time. To construct negotiation protocols that lead

to the best achievable allocations in a bounded amount

of time, we compared sequences of four contract types:

original, cluster, swap, and multiagent contracts. The

experiments show that it is pro�table to use multiple

contract types in the sequence: signi�cantly better solu-

tions are reached, and faster, than if only one contract

type is used. However, the best sequences only include

original and cluster contracts. Swap and multiagent

contracts lead to bad local optima quickly. Interestingly,

the number of contracts using any given contract type

does not always decrease over time: contracts play the

role of enabling further contracts.

1 Introduction

The importance of automated negotiation systems is

increasing as a consequence of the development of tech-

nology as well as increased application pull, e.g., elec-

tronic commerce [5], electricity markets [17], and trans-

portation exchanges [9]. A central part of such systems

�This material is based upon work supported by the Na-
tional Science Foundation under CAREER Award IRI-9703122,
Grant IRI-9610122, and Grant IIS-9800994. An early version of
this paper appeared at the Agent-Mediated Electronic Trading
(AMET) Workshop, Minneapolis, MN, May, 1998.

is the ability to (re)allocate tasks (or analogously, other

types of items, e.g. securities, bandwidth slices, Mega

Watt hours of electricity, or collectibles) among the

agents. Generally, the tasks have a dependency upon

each other, as well as upon the agents. That is, some

of the tasks are synergistic and preferably handled by

the same agent, whereas others interact negatively and

are better handled by di�erent agents. The agents can

also have di�erent resources that lead to di�erent costs

for handling the various tasks.1 Furthermore, an agent

may not be capable of handling all combinations of the

tasks.

De�nition 1.1 Our task allocation problem [12] is

de�ned by a set of tasks T , a set of agents A, a

cost function ci : 2T ! < [f1g (which states the

cost that agent i incurs by handling a particular sub-

set of tasks), and the initial allocation of tasks among

agents hT init
1

; :::; T init
jAj i, where

S
i2A T init

i = T , and

T init
i \ T init

j = ; for all i 6= j.2

In our example problem the agents incur di�erent

costs for handling the tasks, however all the agents

have the capability to handle any task. The agents

in the example problem are self-interested and myopi-

cally individually rational. This means that an agent

agrees to a contract if and only if the contract increases

the agent's immediate payo� which consists of the side

payments received from other agents (for handling their

tasks) minus the cost ci of handling tasks. Recently,

new types of contracts were introduced [9, 11, 12] to

be used in contract nets [16]. In earlier research we

have applied each of these contracts to a task allocation

problem and found the local optima the di�erent pro-

tocols reach [1, 2]. In order to improve the achievable

social welfare, these contract types can be sequenced

1The dependencies between tasks in human negotiations are
discussed in [7]. The concepts of linkage and log-rolling are also
presented, which are similar to swapping tasks and clustering
tasks.

2This de�nition generalizes the "Task Oriented Domain" pre-
sented by [8] by allowing di�erent cost functions among agents,
and the possibility of some agent not being able to handle some
task sets (corresponds to in�nite costs).

1

in a number of di�erent ways. In this paper the entire

negotiation is divided into �ve intervals, and in each

interval only one of the contract types is used. In this

manner performance pro�les for all possible sequences

of contract types are created.

The rest of the paper is organized as follows. The

example problem is de�ned in Section 2. A summary of

the contract types and how they are sequenced is pre-

sented in Section 3, followed by the experimental setup

in Section 4. Section 5 covers the results. Section 6

presents conclusions and potential future research di-

rections.

2 Example Problem: multiagent TSP

The multiagent TSP is de�ned as follows [1, 2]: Sev-

eral salesmen will visit several cities in a world that

consists of a unit square, Figure 1. Each city must

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

1

Figure 1.An example problem instance of a mul-

tiagent TSP consisting of �ve cities (*) and two

salesmen (X). If salesman A contracts out city 1

to salesman B, the social welfare will increase due

to less travel, i.e., lower costs.

be visited by exactly one salesman, and each salesman

must return to his starting location after visiting the

cities assigned to him. A salesman can visit the cities

assigned to him in any order.

Solution quality is measured in social welfare, i.e.,

the negative of the sum of the costs (distances trav-

eled) of the salesmen. Initially the location of the cities

and starting points of the salesmen are randomly cho-

sen as is each salesman's initial assignment of cities

to visit. After this initial assignment, the salesmen

can exchange cities with each other. The payo� of a

salesman consists of the side payments received from

other salesmen (as compensation for handling their

tasks) minus the side payments paid to other sales-

men (to compensate them for handling some of this

agent's tasks) minus the cost of travel. Each salesman

is individually rational and myopic, which means that

he agrees to a contract if and only if the contract in-

creases his immediate payo�. Therefore, contracts are

made only when they improve the utility of all con-

tract parties. It follows that social welfare increases

monotonically, i.e., total travel distance decreases.

3 Contract Types and Their Sequenc-

ing

The contract most commonly used in multiagent

contracting systems only allows for one task to move

from one agent to another at a time [4, 15, 16]. We

will refer to this type as an original (O) contract. For

more e�cient contracting, new types of contracts were

recently introduced [9, 11, 12]: cluster (C), swap (S),

and multiagent (M) contracts, as well as all the above,

including the original contracts, combined (OCSM-

contracts). These new contract types allow more than

one task to be transferred between the agents partici-

pating in the contract. C-contracts transfer at least two

tasks from one agent to another, while the S-contracts

let two agents swap tasks with each other (one task

is transferred from each agent to the other). In the

M-contracts exactly three tasks are being transferred

between exactly three agents. These limitations were

introduced so that the length of the intervals would be

of the same order.3 Each agent gives away only one

task, but can receive more than one task.

In this paper di�erent sequences of the elementary

contract types, i.e., original, cluster, swap, and mul-

tiagent contracts are studied. The total time of con-

tracting is divided into �ve intervals. In each inter-

val, one contract type is applied. All possible se-

quences of contract types were investigated, that is,

all 4� 4� 4� 4� 4 = 1024 sequences of contract types

were applied to each TSP instance.

In each interval, all contracts that are possible to

construct with the contract type in question were

tried.4 Because of this, the length of the intervals var-

ied for di�erent contract types and task allocations.

3If all possible M-contracts including more than three agents
and three tasks were to be checked in an interval, that interval
would be much longer than the intervals for the other contract
types [2]. A simpler version of multiagent contracts where bids

were grouped into cascades were studied by [14].
4The possible contracts depend on the current allocation of

This does not mean that a local optimum is necessarily

reached in each interval because one contract can en-

able another contract. If this other contract was tried

earlier in the interval, it will not be retried in the same

interval. A contract was only performed if it was indi-

vidually rational to all the agents participating in it.

3.1 Sequencing of Contracts within an Interval

When searching for a good task allocation, the con-

tract types used in the negotiation are applied repeat-

edly for all possible combinations of agents and tasks

that suit the contract type. Although the algorithm

heads toward a local optimum, it does not always reach

one after trying just �ve contract types sequentially

(and all possible contracts within each type). This

is because some contracts enable others that may not

have been pro�table initially. The algorithm knows

that a local optimum with respect to a particular con-

tract type has been reached when no contracts of the

given type have been made during one interval, that is,

all possible contracts of the type have been tried but

none have been performed.

The next subsections discuss the order of trying dif-

ferent contracts within each contract type, i.e., within

each interval. The agents are numbered from 1 to jAj,

and each agent's tasks from 1 to jTij.

3.1.1 Sequencing of Original Contracts

An O-contract allows one agent to move one task to

one other agent. The former agent pays the latter for

accepting the contract at least as much as it costs the

latter agent to handle the task, and at most as much

as it costs the former agent to handle it. In our exper-

iments, O-contracts were sequenced as follows. First,

agent 1's tasks are attempted to be moved, one at a

time, to agent 2. If any contract (move of a task)

is pro�table, it is performed and the next contract is

tried. After having tried to move all tasks one at a

time from agent 1 to 2, agent 1 tries to move its tasks

to agent 3. This continues until agent 1 has attempted

to move all its tasks to all the other agents. Then the

procedure continues with agent 2, which tries to move

its tasks to agent 1, followed by all the other agents

in increasing order. When agent jAj has attempted to

move all its tasks to all the other agents this interval

is �nished and the negotiation process continues with

the next contract type.

tasks among the agents.

3.1.2 Sequencing of Cluster Contracts

In a C-contract one agent moves at least two tasks to

one other agent, and a side payment is used as with O-

contracts. C-contracts were sequenced as follows. We

start by trying out all combinations of two tasks fol-

lowed by all combinations of three tasks, and so on.

The order in which the tasks are tried to be moved

is: (1,2), (1,3), . . . , (1, jT1j), (2,3), (2,4), . . . , (jT1j-1,

jT1j), (1,2,3), (1,2,4), . . . If any contract is pro�table,

it is performed and the next contract is tried. After

having tried to move all tasks (one at a time) from

agent 1 to 2, agent 1 tries to move its tasks to agent 3.

This continues until agent 1 has attempted to move all

its tasks to all the other agents. Then the procedure

continues with agent 2, which tries to move its tasks

to agent 1, followed by all the other agents in increas-

ing order. When agent jAj has attempted to move its

tasks to all other agents, this interval is �nished and

the negotiation process continues with the next con-

tract type.

3.1.3 Sequencing of Swap Contracts

In an S-contract, one agent transfers one task to an-

other agent and it also receives one task from that

agent. If the S-contract is acceptable, i.e., social wel-

fare improving, a side payment can be used so that

each one of the two agents is better o� than before the

contract. S-contracts were sequenced as follows. One

at a time, agent 1 tries to move its tasks to agent 2,

and in exchange agent 2 tries to move one task to agent

1. For every task agent 1 tries to move, agent 2 tries to

move all its tasks to agent 1 one at a time before agent

1 continues with its next task. If any contract is prof-

itable, it is performed and the next contract is tried.

When all contracts that include agent 1 and agent 2

have been attempted, all possible contracts including

agent 1 and agent 3 are tried according to the proce-

dure above. When agent 1 has attempted all contracts

with all the other agents, agent 2 tries all contracts, ac-

cording to the procedure above, with agent 1 followed

by the other agents in increasing order. When agent jAj

has attempted to exchange tasks with all other agents,

this interval is �nished and the negotiation process con-

tinues with the next contract type.

3.1.4 Sequencing of Multiagent Contracts

In an M-contract three tasks are moved between three

agents, and each agent can only move one task to one

other agent. If the M-contract is acceptable, i.e., social

welfare increasing, side payments can be used so that

each contract party is better o� than before the con-

tract. M-contracts were sequenced as follows. First,

all combinations which include agent 1 are tried in the

following order: (1,2,3), (1,2,4), : : :, (1,2,jAj), (1,3,2),

(1,3,4), : : :, (1,jAj � 1,jAj). Then, all combinations of

agents including agent 2 are tried: (2,1,3), (2,1,4), : : :,

(2,1,jAj), (2,3,1), (2,3,4), : : :, (2,jAj � 1,jAj), etc., un-

til all combinations have been tried successively for all

agents. At that time the interval ends.

For each combination of agents, di�erent task trans-

fers are tried. The order in which the tasks are tried

are (from the �rst agent to agent no., from the second

agent to agent no., from the third agent to agent no.):

(2,1,1), (2,1,2), (2,3,1), (2,3,2), (3,1,1), (3,1,2), (3,3,1),

(3,3,2). If one of the agents does not have the task

needed, that combination is skipped.

4 Experimental Setup

In principle our contracting system implementation

can be used to solve task reallocation problems with

any number of agents and tasks. The simulations of

this paper focus on the multiagent TSP domain with

8 agents and 8 tasks per problem instance. 1000 in-

stances were generated. The initial locations of the

cities and the start locations of the salesmen in each in-

stance were randomly chosen in the unit square. Each

instance was solved with each of the protocols, i.e., se-

quences of contract types. In addition, an exhaustive

enumeration of task allocations was conducted in order

to �nd the globally optimal allocation.

In the experiments, each problem instance was tack-

led in two phases: �rst all possible TSPs (i.e., TSPs

with any of the salesmen getting any combination of

cities to visit5) were solved to determine the cost func-

tions, ci, and then simulations using di�erent contract-

ing protocols were conducted to solve the task alloca-

tion problem. The IDA* search algorithm [6] was used

to solve the TSPs. To ensure that the optimal solution

was reached, an admissible ĥ-function was used. It

was constructed by under-estimating the cost function

of the remaining nodes by the minimum spanning tree

of those nodes, i.e., nodes not yet on that path of the

search tree, the last city of that path of the search tree,

and the �nish (=start) location of the salesman [3].

4.1 Evaluation Criteria

To compare the solution quality obtained by di�er-

ent protocols, the ratio bound was used. Let xlj denote

5Salesman 1 visits city 1, salesman 1 visits city 2,. . . , sales-
man 1 visits cities 1 and 2,. . . , salesman 2 visits city 1,. . . , sales-
man 8 visits all eight cities.

the social welfare of the task allocation achieved by pro-

tocol l on problem instance j, j 2 f1; : : : ; 1000g. Let

xGj denote the social welfare of the global optimum (or

equivalently OCSM-contracts). The ratio bound, rlj, is

the optimal welfare divided by the welfare obtained by

a given protocol: rlj =
xGj

xl
j

. The average ratio bound

is rl = 1

1000

P
1000

j=1 rlj. CPU-time usage, the number of

contracts tried, and the number of contracts performed

were also calculated as an average over the 1000 prob-

lem instances.

5 Results

To study which sequences of contract types per-

formed best, all 1024 sequences were ordered according

to ascending average ratio bounds. The 15 best pro-

tocols are shown in Table 1. Di�erent protocols led to

very di�erent solution qualities. For example, the best

protocol found task allocations that were 3.1% from

optimum on average while the worst protocol led to

solutions 89.3% o� optimum.

Rank Sequence Average ratio bound

1 OCOCO 1.03113

2 OOCCO 1.03268
3 OCCOC 1.03276

4 OOCOC 1.03279

5 OCOOC 1.03413
6 SOCOC 1.03488

7 SOCCO 1.03536

8 COCOC 1.03755
9 OCOCC 1.03857

10 MCOCO 1.03945

11 OCCCO 1.03954
12 MOCCO 1.03988

13 MOCOC 1.04001

14 MCCOC 1.04304
15 COCCO 1.04407

Table 1. The 15 best sequences of contract types.

The best sequences are close to each other (Table 1

and Figure 2): the best protocol is 3.1% from optimum,

and the 12 best protocols are all between 3% and 4%

from optimum. The best 24 protocols are within 5%

from optimum, and the best 181 are within 10% from

optimum.

If the same contract type is applied in all �ve in-

tervals, the solutions are signi�cantly worse on aver-

age than if di�erent contract types are used, Table 2.

The two worst sequences both consisted of only one

contract type: S-, and M-contracts, respectively. The

sequence with only O-contracts performed better, but

Rank Sequence Average ratio bound

1 OCOCO 1.03113
2 OOCCO 1.03268

3 OCCOC 1.03276

4 OOCOC 1.03279
375 C-local 1.13557

565 O-local 1.2025

579 OOOOO 1.21298
696 CCCCC 1.23515

1021 CSSSS 1.61181

1022 CMMMM 1.65965
1023 MMMMM 1.76634

1024 SSSSS 1.89321

Table 2. The four best and the four worst se-

quences, the cases where only one contract type

was used in all intervals, and the results when O-

and C-contracts are allowed to reach a local opti-

mum. The local optimum for S- and M-contracts

was reached in the bottom two cases.

is still in the bottom half. The same is true for C-

contracts (which are still, after the �ve intervals, doing

worse than O-contracts). O- and C-contracts did not

reach their respective local optima in the �ve intervals,

so this result says that it is better to switch to another

contract type even before reaching the local optimum

using one contract type.

When O- and C-contracts were allowed to continue

their computation until a local optimum was reached,

C-contracts were better than O-contracts|with aver-

age ratio bounds 1.14 and 1.20, respectively. This can

also be seen if the curves for the two protocols are ex-

trapolated in Figure 3. Even if the local optimum is

computed for C-contracts, a sequence of mixed con-

tract types achieves better allocations, and in a shorter

amount of time. Figure 3 shows that M-contracts get

stuck in a local optimum in the �rst interval, and S-

contracts in the second.

Figure 4 shows the number of contracts tried and

performed. For C-contracts, more contracts are tried

and performed in the second interval than in the �rst,

i.e., the curve is convex. This is because after the

�rst interval of C-contracts the resulting task allo-

cation makes more C-contracts possible to perform,

because C-contracts concentrate the tasks among a

smaller number of agents. In the subsequent inter-

vals the number of individually rational C-contracts

decreases, resulting in fewer contracts performed, i.e.,

the curve is concave.

Figure 5 shows how social welfare increases as more

contracts are tried. As is desirable in an anytime algo-

rithm, most of the savings are achieved quickly, and di-

minishing returns to computation follow. The length of

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

R
at

io
 B

ou
nd

s
of

 S
oc

ia
l W

el
fa

re

Contract Types

OCOCO
OOCCO
OCCOC
OOCOC
OCOOC
COCOC
SOCCO
OCOCC

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1 2 3 4 5

R
at

io
 B

ou
nd

s
of

 S
oc

ia
l W

el
fa

re

Contract Types

OCOCO
OOCCO
OCCOC
OOCOC
OCOOC
COCOC
SOCCO
OCOCC

Figure 2. Performance pro�les: Decrease of the

average ratio bound. The bottom graph is a zoom

of the top graph.

the intervals di�er both within and between the curves

in Figure 5 since the number of contracts tried within

each interval might di�er. This is because of the vary-

ing task allocations among the agents and the di�erent

number of contracts possible to form with the di�erent

contract types.

If two contract types are mixed in a sequence, the

social welfare is greater than with either contract type

alone in the sequence. Also, more mixing|i.e., not

having the same contract type applied several times

in a row|led to higher social welfare. In those cases

where the social welfare of a mixed sequence was worse

than that of one of its contract types applied alone,

the mixed sequence consisted mostly of one contract

type. In no case were a mixed sequence between two

contract types worse than both the sequences where

the two contract types were applied alone.

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

R
at

io
 B

ou
nd

s
of

 S
oc

ia
l W

el
fa

re

Contract Types

OCOCO
OOCCO
OCCOC
OOCOC
OOOOO
CCCCC
SSSSS

MMMMM

Figure 3. Performance pro�les for the four best

sequences and ones in which only one contract

type is used.

6 Conclusions

The capability of reallocating tasks is a key feature

in automated negotiation systems. The use of marginal

cost based task reallocation leads to an anytime algo-

rithm where every agent's utility increases monotoni-

cally over time. Di�erent contract types head toward

di�erent locally optimal task allocations, and OCSM-

contracts head toward the global optimum. Reach-

ing the global optimum can take an impractically long

time, so in real world applications it is important to be

able to trade o� solution quality against negotiation

time.

In order to construct negotiation protocols that lead

to the best achievable task allocations in a bounded

amount of time, we compared sequences of four con-

tract types: original, cluster, swap, and multiagent

contracts. The results regarding solution quality

achieved by the di�erent sequences provide guidelines

for system builders regarding what contract types to

use and how to sequence them when negotiation time

is limited.

It is clearly pro�table to mix di�erent contract

types in the sequence: signi�cantly better solutions

are reached, and in a shorter amount of time than if

only one contract type is used. Interleaving contract

types more often was better than clustering the same

contract types together in the sequence. The best se-

quences alternated between intervals of original and

cluster contracts. Swap and multiagent contracts led

to bad local optima quickly.

Interestingly, the number of contracts performed us-

ing a given contract type does not always decrease over

time. When a contract type is applied, the number

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

C
on

tr
ac

ts
 T

rie
d

Contract Types

OCOCO
OOCCO
OCCOC
OOCOC
OOOOO
CCCCC
SSSSS

MMMMM

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

C
on

tr
ac

ts
 P

er
fo

rm
ed

Contract Types

OCOCO
OOCCO
OCCOC
OOCOC
OOOOO
CCCCC
SSSSS

MMMMM

Figure 4.Contracts tried (top) and contracts per-

formed (bottom) for the four best sequences and

ones in which only one contract type was used.

of contracts performed (and tried) can increase after a

while because the task allocation arising from contracts

of that type can make more contracts of the same type

possible.

The results apply directly to the allocation of other

items besides tasks once one interprets the cost func-

tions ci as value functions that the agents want to max-

imize instead of minimize. Such applications include

most many-to-many (after)markets where agents have

preferences over bundles instead of simply over individ-

ual items (in the latter case original contracts can be

trivially used to reach the optimal allocation). Many

signi�cant markets are of this type, e.g. markets for

securities, bandwidth, Mega Watt hours of electricity,

and collectibles.

Future research includes formally comparing the re-

sults of sequences that mix contract types to sequences

that do not. We would also like to study changing the

contract type for each contract as opposed to keeping

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

R
at

io
 B

ou
nd

s
of

 S
oc

ia
l W

el
fa

re

Contracts Tried

OCOCO
OOCCO
OCCOC
OOCOC
OOOOO
CCCCC
SSSSS

MMMMM

Figure 5. Solution quality as a function of con-

tracts tried.

the type �xed within each interval. Additionally, we

would like to apply di�erent numbers of contracts of

one contract type before changing the type, or sequenc-

ing the contract types in a way where a local optimum

is found with one type before switching to another.

Yet another interesting area for future work is com-

bining the di�erent contract types, thus forming atomic

contracts having characteristics of more than one of

the O-, C-, S-, and M-contracts, but not all of them

(unlike OCSM-contracts). These composite contract

types would not guarantee that individually rational

agents will reach the globally optimal task allocation,

but they would lead to a local optimum faster then

OCSM-contracts, and most likely to higher average so-

cial welfare than O-, C-, S-, or M-contracts.

Also, we would like to study agents that may lie

about their marginal costs of handling the task sets

under negotiation [8, 10]. Finally, we plan to study the

use of backtracking in contracting, which is nontrivial

to implement among self-interested agents [13].

References

[1] M. R. Andersson and T. W. Sandholm. Leveled com-

mitment contracting among myopic individually ratio-

nal agents. In Proceedings of the Third International

Conference on Multi-Agent Systems (ICMAS), pages

26{33, Paris, France, July 1998.
[2] M. R. Andersson and T. W. Sandholm. Time-quality

tradeo�s in reallocative negotiation with combinato-
rial contract types. In Proceedings of the National

Conference on Arti�cial Intelligence (AAAI), pages 3{

10, Orlando, FL, 1999.
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-

troduction to Algorithms. MIT Press, 1990.
[4] C. Gu and T. Ishida. Analyzing the social behav-

ior of contract net protocol. In W. V. de Velde and

J. W. Perram, editors, Agents Breaking Away; MAA-
MAW'96, Lecture Notes in Arti�cial Intelligence 1038,

Springer-Verlag, pages 116{127, 1996.
[5] R. Kalakota and A. B. Whinston. Frontiers of Elec-

tronic Commerce. Addison-Wesley Publishing Com-

pany, Inc, 1996.
[6] R. E. Korf. Depth-�rst iterative-deepening: An op-

timal admissible tree search. Arti�cial Intelligence,
27(1):97{109, 1985.

[7] H. Rai�a. The Art and Science of Negotiation. Har-
vard Univ. Press, Cambridge, Mass., 1982.

[8] J. S. Rosenschein and G. Zlotkin. Rules of En-
counter: Designing Conventions for Automated Ne-

gotiation among Computers. MIT Press, 1994.
[9] T. W. Sandholm. An implementation of the con-

tract net protocol based on marginal cost calculations.

In Proceedings of the National Conference on Arti�-
cial Intelligence (AAAI), pages 256{262, Washington,

D.C., July 1993.
[10] T. W. Sandholm. Limitations of the Vickrey auction in

computational multiagent systems. In Proceedings of

the Second International Conference on Multi-Agent
Systems (ICMAS), pages 299{306, Keihanna Plaza,

Kyoto, Japan, Dec. 1996.
[11] T. W. Sandholm. Negotiation among Self-Interested

Computationally Limited Agents. PhD thesis, Uni-

versity of Massachusetts, Amherst, 1996. Available

at http:// www.cs.wustl.edu/ ~sandholm/ disserta-
tion.ps.

[12] T. W. Sandholm. Contract types for satis�cing task
allocation: I theoretical results. In AAAI Spring Sym-

posium Series: Satis�cing Models, pages 68{75, Stan-

ford University, CA, Mar. 1998.
[13] T. W. Sandholm and V. R. Lesser. Advantages of

a leveled commitment contracting protocol. In Pro-
ceedings of the National Conference on Arti�cial In-

telligence (AAAI), pages 126{133, Portland, OR, Aug.

1996.
[14] A. Sathi and M. Fox. Constraint-directed negotia-

tion of resource reallocations. In M. N. Huhns and

L. Gasser, editors, Distributed Arti�cial Intelligence,

volume 2 of Research Notes in Arti�cial Intelligence,

chapter 8, pages 163{193. Pitman, 1989.
[15] S. Sen. Tradeo�s in Contract-Based Distributed

Scheduling. PhD thesis, Univ. of Michigan, 1993.
[16] R. G. Smith. The contract net protocol: High-level

communication and control in a distributed prob-
lem solver. IEEE Transactions on Computers, C-

29(12):1104{1113, Dec. 1980.
[17] F. Ygge and J. M. Akkermans. Power load manage-

ment as a computational market. In Proceedings of

the Second International Conference on Multi-Agent
Systems (ICMAS), pages 393{400, Keihanna Plaza,

Kyoto, Japan, Dec. 1996.

