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Abstract. Incomplete decision algorithms can often solve larger prob-
lem instances than complete ones. The drawback is that one does not
know whether the algorithm will finish soon, later, or never. This pa-
per presents a general decision-theoretic method for optimally terminat-
ing such algorithms. The stopping policy is computed based on a prior
probability of the answer, a payoff model describing the value that dif-
ferent probability estimates would provide at different times, and the
algorithm’s run-time distribution. We present a linear-time algorithm
for determining the optimal stopping policy given a finite cap on the
number of algorithm steps. To increase accuracy, the initial satisfiability
probability and the run-time distribution are conditioned on features of
the instance. The expectation of the result at each future time step is
computed using Bayesian updating. We then extend the framework to
settings where no exogenous cap is given on the number of algorithm
steps. The method also provides a normative basis for algorithm selec-
tion. Finally, our method can be used to terminate and/or select complete
algorithms optimally as well.}2

1 Introduction

Decision problems are problems where the answer is either yes (Y) or no (N).
Such problems are central to computer science and ubiquitous in the world. A
decision algorithm is an algorithm that determines the answer to such a prob-
lem. A complete decision algorithm is a decision algorithm that always gives the
answer in finite time. An incomplete decision algorithm never finishes if the an-
swer is N, and may or may not finish if the answer is Y. So, if such an algorithm
finishes, the answer is Y.

Incomplete algorithms are important because they can often solve signifi-
cantly larger problem instances than complete algorithms. Commonly the user
of an incomplete algorithm initiates its execution, and after a while gets tired of
waiting for a solution. She may be tempted to terminate the algorithm. At the
same time she knows that the algorithm might finish, and that this might occur
even in the very next step. Should she terminate the algorithm?

This paper presents a method for optimally determining when the algorithm
should be terminated if it has not found a solution. The key observation is that
incomplete algorithms are iterative refinement algorithms and approximation

! A short, very tentative version of this paper appeared in a workshop [3].
2 This material is based upon work supported by the NSF under CAREER Award
TRI-9703122, Grant 1IS-9800994, ITR I1S-0081246, and ITR I1S-0121678.



algorithms in that over time they implicitly refine a probability estimate that a
solution exists. Let us define the following symbols:

SOL; ="Solution found by time ¢” (so, if a solution is found at time ¢, then
SOLy =1 for all ¢/ > ¢), and

NOSOL; ="No solution found by time ¢”.
The iterative refinement algorithm emerges when we realize that the probability
of the answer being Y decreases with the number of steps that the algorithm has
executed (unless the algorithm halts which guarantees that the answer is Y). This
probability, p(Y|NOSOL,), can be computed using a statistical performance
profile, p(SOL|Y), of the algorithm, i.e., the probability of finding a solution by
time ¢ given that a solution exists. The performance profile can be constructed
from prior runs of the algorithm as we will describe.

2 Method for terminating decision algorithms

This section presents a method for optimally terminating an incomplete decision
algorithm. The incomplete algorithm is used to update the probability estimate
of the answer being Y. Based on a run-time distribution of the algorithm, an
agent can anticipate how this estimate will change as more time is allocated to
the algorithm. The agent can also anticipate its expected payoff in the real world
given that it will act based on the probability estimate available at the time of
action (the probability will be 1 if the algorithm happens to find a solution).
Using this information, the agent can calculate the optimal time to terminate
the algorithm.

Terminating optimally seems difficult because all of the following concerns
have to be taken into account:

— Further computation adds value because it can cause the algorithm to find a solution. This is
nontrivial to analyze because the probability of finding a solution at a given future time step
changes based on how many unsuccessful steps the algorithm has executed. For example, at
step 0, step 905 may look unprofitable while at step 708, step 905 may well look profitable.
Alternatively, at step 0, step 905 may look profitable while at step 708, step 905 may look
unprofitable.

— Further computation adds value because it refines the probability that a solution exists even
if the algorithm does not terminate. The probability that a solution exists decreases as the
algorithm takes unsuccessful steps.

— As this probability estimate gets refined, it can be used to make future termination/continuation
decisions. Therefore, these decisions can be made with better information than what is available
at the outset. The fact that such new information is valuable due to this reason is yet another
motivation to execute the algorithm further.

— The payoff from a given probability estimate that a solution exists (this probability is 1 if a
solution has been found) decreases with time because the agent misses the opportunities of
using the answer earlier in the agent’s choice of what to do in the world.

— Further computation adds to the computational cost.

— If the deliberation controller has let the algorithm execute past the optimal termination time,
it can be optimal to let it execute even further since the losses incurred so far have become
sunk cost.

— In some cases, the agent’s expected payoff is maximized by never terminating the algorithm
(unless the algorithm finishes, i.e., determines that the answer is Y).

It turns out that all of these factors can be soundly taken into account.
The method that we present does this in a Bayesian framework and leads to
an optimal termination decision. Specifically, the problem is that of finding an
optimal policy for the deliberation controller, i.e., deciding what the agent should
do in each of the max nodes in Figure 1.
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Fig. 1. Deliberation controller’s decision tree. The bold lines show an example policy
where the deliberation controller will terminate the algorithm at time t =t = 1 if the
algorithm has not found a solution.

2.1 Conditional performance profiles: Probability updates using a
run-time distribution

To determine when to terminate, the deliberation controller needs to know how
the probability of finding a solution by any given time changes based on how
many steps the algorithm has executed so far without finding a solution. Let 7
and 7o be arbitrary times such that 71 < 7. We are interested in determining
the quantity p(SOL,,|[NOSOL;,). Trivially,

p(SOL,INOSOL,,) =1 —p(NOSOL,,|NOSOL,,) (1)
The right hand side can be solved using the definition of conditional probability:

NOSOL,, A NOSOL
p(NOSOL,,|INOSOL,,) = X T2 ) (2)

p(NOSOL,,)
Because p(NOSOL,, NNOSOL;,) =p(NOSOL,,), this can be simplified to
NOSOL,,|NOSOL,,) = PNOSOLm) 3
p( 72‘ Tl)_p(NOSOLTl) (3)

which can be solved using

p(NOSOL,) = p(Y)p(NOSOL,|Y) + p(N)p(NOSOL,|N) (4)
Using the fact that p(N) = 1 — p(Y) and the fact that the algorithm never
finishes if no solution exists, i.e., p(NOSOL¢|N) = 1, the above equation can be

rewritten:
p(NOSOL;) = p(Y)p(NOSOL:|Y) +1 — p(Y) (5)

The termination algorithm also needs to know the chance that the answer is
Y given that no solution has been found by step ¢. This can be determined using

Bayes rule:
p(Y)p(NOSOL:|Y)

p(Y)p(NOSOL|Y) + p(N)p(NOSOL¢|N)
_ p(Y)p(NOSOL,|Y)

~ p(Y)p(NOSOL:|Y) + p(N)
p(Y)p(NOSOL,|Y)

= P)P(NOSOLY) + 1 —p(¥) ©

where p(NOSOL;|Y) =1 — p(SOL:|Y) (7)

So, the agent can compute both p(SOL.,|INOSOL,,) and p(Y|NOSOL;)
in constant time if it knows p(Y) and p(SOL:|Y’). The quantity p(Y) is sim-
ply the agent’s prior probability that the answer is Y, i.e., the agent’s belief
before it has executed any steps of the algorithm. In the extended version at

p(Y|NOSOL,) =




www.cs.cmu.edu/"sandholm/util_term.extended.pdf we present an example
that demonstrates how p(Y') can be obtained using features of the problem in-
stance that are quick to measure. The quantity p(SOL;|Y) can be determined
empirically off-line by running the algorithm on instances (similar to the in-
stance that needs to be solved in the on-line situation) whose answer is Y, and
seeing on what fraction of them the algorithm has found a solution by time ¢.
Alternatively, p(SOL;|Y") could be determined from an analytical model of the
run-time distribution.

2.2 The payoff model
To determine when to terminate, the deliberation controller also needs to know
how the agent would use the information that the algorithm provides in the real
world. This depends on the application. However, for the purposes of the ter-
mination decision, this information can be represented in a domain independent
way using a payoff function. Let us denote by myora(, py,t) the agents real-
world payof! if the actual outcome is x, z € {Y, N}, the agent’s estimate—after
running the algorithm for ¢ steps—of the answer being Y is py, and the agent
acts according to this estimate at time ¢ (or later if the agent finds that more
beneficial). The agent’s choice of a real-world action depends on py and t, but
the real-world payoff, 7,04, of that action depends on the true posteriori z and
when the action is taken, t. In the extended version of this paper we present an
example application and illustrate how the 7,14 function can be constructed.
The agent’s payoff, 7(x, py,t), takes into account both the real-world payoff,
Tworld(Z, Py, t), and the computation cost. If they are independent, we can write

W(x,py, t) = 71-world(xapYa t) - h(t) (8)

where h(t) is the computation cost. If there is a fixed unit cost of computation,
Ceomp, then h(t) = ceomp -t. Our termination method applies to general 7: it does
not assume that the computation cost is independent of the real-world payoff.

2.3 Algorithm for computing an optimal termination policy

Put together, the inputs to the algorithm that computes the optimal termination
policy are 1) the prior probability that a solution exists, p(Y'), 2) the run-time
distribution in the form of p(SOL|Y’), and 3) the payoff model, w(z, py, ).

Conceptually, the stop/continue decisions are solved starting from the end
of the decision tree (Fig. 1), and moving toward the root. For now, say that the
tree ends at step T (we relax this assumption of an exogenous upper bound on
the optimal termination time in the extended version of this paper). This does
not mean that the algorithm is terminated at step 7. This section describes how
the termination time, £, is computed (£ < T).

For every decision node of the tree, the expected payoff from stopping is
computed, and so is the expected payoff from continuing. The expected payoff
from continuing at node ¢ depends on the solution that was acquired for node
t+1. At a node, the deliberation controller should terminate the algorithm if and
only if the expected payoff from stopping is higher than that of continuing. The
pseudocode below computes this optimal termination policy. The function v(t)



solves the expected value of the subtree rooted at the deliberation controller’s
decision node t. The policy can be solved by making the call v(0). The optimal
decision for each decision node, ¢, is stored in decision|t], and the time when the
deliberation controller should first terminate the algorithm is stored in £.3
Algorithm 1 (Compute an optimal termination policy)
Sfunction v(t)
ift=0
psor =0 /* Chance that a solution was found in this step */
msor =0 /* Payoff of that solution */
else
psor = p(SOL{NOSOLy_1)
msor = w(1,1,t)
py = p(Y|NOSOL,)
E[r|STOP] = psor - wsor + (1 — psor)(py - (L, py,t) + (L — py) - 7(0, py, 1))
ift =T /* End of the tree */
decision[t] = STOP; t = t; return E[r|STOP] /* recursion bottoms here */
else
E[r|CONTINUE] = psor - 7sor + (1 —psor) -v(t +1) /* recursion */
if E[x|STOP] > E[x|CONTINUE]
decision[t] = STOP; t = t; return E[r|STOP)]
else
decision[t] = CONTINUE; return E[r|CONTINUE)]

Algorithm 1 runs in O(T) time and space. The values p(SOL;| NOSOL;_1)
and p(Y|NOSOL;) are computed in constant time from the inputs p(Y) and
p(SOL|Y) using the formulas derived in Section 2.1.

3 Other results

An extended version of this paper is available at www.cs.cmu.edu/ sandholm/

util term.extended.pdf. It presents an example application of how the method

can be used (in the context of a manufacturing planning problem converted to

3SAT), how the payoff model 7w (x,py,t) can be derived, how the prior p(Y)

can be constructed (using statistical information and features of the problem

instance), and how the run-time distribution p(SOL.|Y) can be constructed

from runs of the algorithm. It also discusses ways how the method can be used

when an exogenous upper bound 7' on the optimal run-time is not given, and

presents example settings where it is best to never terminate the algorithm.

Finally, it discusses related research (e.g., [2,1]), and presents more elaborate

conclusions and directions for future research.
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