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Abstract
Covariate shift correction allows one to perform
inference even when the distribution of the co-
variates on the training set does not match those
on the test set. This is achieved by re-weighting
observations. Such a strategy removes bias, po-
tentially at the expense of greatly increased vari-
ance. We propose a simple strategy for remov-
ing bias while retaining small variance. It uses a
biased, low variance estimate as a prior and cor-
rects the final estimate relative to the prior. We
prove that this yields an efficient estimator and
demonstrate good experimental performance.

1. Introduction
Covariate shift is a common problem when dealing with
real data. Quite often the experimental conditions under
which a training set is generated are subtly different from
the situation in which the system is deployed. For instance,
in cancer diagnosis the training set may have an overabun-
dance of diseased patients, often of a specific subtype en-
demic in the location where the data was gathered. Like-
wise, due to temporal changes in user interest the distribu-
tion of covariates in advertising systems is nonstationary.
This requires increasing the weight of data related to, e.g.,
‘Gangnam style’ when processing historic data logs.

A common approach to addressing covariate shift is to
reweight data such that the reweighted distribution matches
the target distribution. Suppose we observe X :=
{x1, . . . , xm} drawn iid from q(x), typically with associ-
ated labels Y := {y1, . . . , ym} drawn from p(y|x). This
constitutes the ‘training set’. However, we need to find a
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minimizer f∗p of risk — defined in Equation 1 — with re-
gard to p(y|x)p(x), for which we only have iid draws of
the covariates X ′ := {x′1, . . . x′m′}. If p and q are known,
importance sampling can be used for this problem:

Ex∼p(x)Ey|x(`(y, f(x))) =

∫
dp(x)

dq(x)
dq(x)Ey|x`(y, f(x))

= Ex∼q(x)Ey|x [β(x)`(y, f(x))] , (1)

where β(x) := dp(x)
dq(x) and ` is a loss function. Correspond-

ingly, empirical averages with respect to X and X ′ can
be reweighted. See e.g. (Quiñonero-Candela et al., 2008;
Cortes et al., 2008) and the references therein for further
details. While Equation (1) allows us to correct the bias
in the estimate, it also tends to increase the variance of
the empirical averages considerably by weighting all obser-
vations by the Radon-Nikodym derivative β. With slight
abuse of notation we denote by β(X) the vector of such
weights β(x1), . . . β(xm). As a general rule of thumb the
effective sample size of such a reweighted dataset is

meff := ‖β(X)‖21 / ‖β(X)‖22 . (2)

This quantity occurs, e.g., for a weighted average of Gaus-
sian random variables, by deriving Chernoff bounds using
the weights β(X) (Gretton et al., 2008), or in the particle
filtering context (Doucet et al., 2001).

This suggests that there may be situations where covariate
shift correction may do more harm than good when applied
directly: Whenever the effective sample size is tiny relative
to the original problem, we might obtain an unbiased es-
timate, yet with such high variance that it becomes nearly
useless. This situation is frequently observed in practice
insofar as we encounter cases where covariate shift correc-
tion not only fails to improve generalization performance
on the test set but, in fact, leads to estimates that perform
worse. The problem is exacerbated by the fact that in many
cases the solutions of the biased and the unbiased risk func-
tionals are closer than what the distributions p and q would
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Figure 1. Example demonstrating the problem with generic co-
variate shift correction approaches.

suggest. Figure 1 shows what may happen. Assume that
the dependence y|x is linear in x, as indicated by the green
line of Figure 1. In this case, inferring y|x using the blue
distribution q, as depicted by the blue crosses (with match-
ing density), would lead to a perfectly accurate estimate,
even if the test set is drawn according to the red distribu-
tion p. On the other hand, reweighting with dp(x)

dq(x) would
lead to a very small effective sample size since p and q are
very different. While this example is obviously somewhat
artificial, there exist many situations where the minimizer
of the biased risk is very good. The above problem is often
encountered in practice — covariate shift correction fails to
improve matters due to high variance. This raises the ques-
tion of how we could benefit from the low variance of the
biased estimate found in q while removing bias via weight-
ing with β.

This is precisely what doubly-robust estimators address —
see, e.g., (Kang & Schafer, 2007) for an overview. They
provide us with two opportunities to obtain a good esti-
mate. In our case, these are steps 1 and 3 in the algorithm
below. Whenever the unweighted estimate solves the prob-
lem, the estimate will be very good and minimizing the un-
biased risk estimate will not change the final outcome by
much. Conversely, whenever the unweighted estimate is
useless, we still have the opportunity to amend things in
the context of estimating f∗p , due to reweighting of dataset.
Briefly, our algorithm outline is the following.

Step 1: Unweighted estimate Solve the unweighted in-
ference problem. This will give us the estimate f̂q . The
intuition is that while f̂q will not minimize the expected
risk, it is often a very good proxy. Given that no reweight-
ing was carried out, the variance for f̂q is comparatively
low. That is, we are using the large unweighted sample
size to obtain a good starting point with high confidence.
Step 2: Covariate shift correction weights Using X and
X ′ estimate the covariate shift correction weights. This can
be done by any off-the-shelf procedure and is what is typ-
ically required to obtain an unbiased risk functional (Gret-
ton et al., 2008; Agarwal et al., 2011).

Step 3: Doubly-robust estimate: If meff is not much
smaller than m, ignore step 1 and perform covariate shift
corrected risk minimization using the weights from step 2.
For small effective sample size use f̂q as prior when per-
forming risk minimization with respect to the unbiased risk
functional. A rather strong smoother is needed since the
effective sample size is much smaller and we already used
the data once previously. For instance, for regression esti-
mation this amounts to fitting the residuals of step 1. For
classification this is fitting a logistic model to the tilted ex-
ponential family binomial model obtained previously.

In summary, the paper makes the following contributions.
(1) We develop a simple, yet powerful, framework for dou-
bly robust estimation in the context of covariate shift cor-
rection, which to the best of author’s knowledge has not
been previously explored. (2) We demonstrate the general-
ity of the framework by providing several concrete exam-
ples. (3) We present a general theory for the framework
and provide a detailed analysis in the case of kernel meth-
ods. (4) Finally, we show good experimental performance
on several UCI datasets. All proofs are relegated to the ap-
pendix due to space constraints.

Related Work

There has been extensive research in covariate shift correc-
tion problem. Most of the work is directed towards estimat-
ing the weights β. Several methods have been proposed to
estimate these weights by optimization and statistical tech-
niques (Gretton et al., 2008; Agarwal et al., 2011; Tsuboi
et al., 2008; Sugiyama et al., 2008). Likewise, there has
been considerable work in developing doubly robust esti-
mators for many statistical and machine learning problems,
particularly in the problems involving missing data and re-
inforcement learning (Kang & Schafer, 2007; Dudı́k et al.,
2011; Bang & Robins, 2005). But none of these works ad-
dress the problem of our concern, namely doubly robust
estimation for covariate shift correction. While few works,
e.g., (Shimodaira, 2000), attempt to reduce the variance
by adjusting the weights and thereby, balancing the bias-
variance tradeoff, they do not tackle the problem from dou-
bly robust estimation point of view. In fact, these methods
can be used in conjunction with our approach.

2. Doubly Robust Covariate Shift Correction
2.1. Problem Formulation

We now define the problem more formally. For simplicity,
we assumem = m′ in this paper. Our language will be that
of risk minimization. For this purpose denote by X , with
xi ∈ X , the space of covariates, and by Y , with yi ∈ Y , the
space of associated labels. For any function f : X → R,
we use fi to denote the function evaluated at point xi. The
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distributions p(x) and q(x) are defined on X . Moreover,
y ∼ p(y|x). As stated in the introduction, we assume that
xi ∼ q(x) and x′i ∼ p(x) and yi ∼ p(y|xi). Finally, we
denote by ` : Y2 → R+

0 a loss function. We assume that
the loss function L−Lipschitz and bounded above by L.1

Our goal is to minimize the expected risk with regard to
p. Since we will only be able to measure (weighted) risks
with regard to q we need to contend with the following
two risk functionals: Rp[f ] := E(x,y)∼p[`(y, f(x))] and
Rq[f ] := E(x,y)∼q[`(y, f(x))] Quite often we will deal
with empirical averages, often weighted. We define

R̂[f |X,Y, α] :=
1

m

∑
i

αi`(yi, f(xi))

The risks for X ′ are defined analogously. The unweighted
empirical risk is R̂[f |X,Y ] = R̂[f |X,Y, 1m] where 1m
is ones vector of size m. Given a class F of functions
X → Y we aim to find some f∗p that minimizes Rp[f ].
Unfortunately, Rp[f ] is not directly accessible, hence we
can only approximate it via the empirical risk R̂[f |X,Y ],
or its reweighted variant R̂[f |X,Y, β].

Furthermore, we use a regularizer Ω to ensure that we do
not overfit to the data. This regularizer plays a rather criti-
cal role in our doubly-robust approach. It quantifies the no-
tion of ‘simple’ function. More specifically, we use Ω[f, f ′]
to measure complexity of f relative to f ′. By default we set
f ′ = 0 with the corresponding shorthand Ω[f ] := Ω[f, 0].
This views the constant null function as the simplest in
the entire set. For instance, in kernel methods we have
Ω[f, f ′] := 1

2 ‖f − f
′‖2, where the norm is evaluated in

a Reproducing Kernel Hilbert Space.

Finally, we introduce minimizers of expected and empirical
risk, as is common in statistical learning theory (Vapnik,
1998). We use f∗p and f∗q to denote the minimizers of risks
Rp and Rq respectively. Throughout this paper, we use the
following equivalent formulations interchangeably:

f̂q,λ := argmin
f∈F

R̂[f |X,Y ] + λΩ[f ]

f̂q,ν := argmin
f∈F

R̂[f |X,Y ] s.t. Ω[f ] ≤ ν

The corresponding pair (λ, ν) and associated problem will
be clear from the context. The equivalence follows from
the fact that for any λ, there exists a ν such that the solu-
tion of the two problems is same. This is done merely for
reasons of simplifying the theoretical analysis. This yields
the following risk functionals with associated minimizers.

f̂q,λq := argmin
f∈F

R̂[f |X,Y ] s.t. Ω[f ] ≤ νq (3)

1We use the same constant L, without loss of generality.

Here the risk functional, as defined in Equation (3) cor-
responds to the empirical risk minimizer when solving
the inference problem with respect to the distribution
q(x)p(y|x). Let β̂ be the estimated covariate shift weights.
The next empirical risk functional is X,Y reweighted by β̂
such that we obtain an unbiased estimate from p.

f̂p,λp := argmin
f∈F

R̂[f |X,Y, β̂] s.t. Ω[f ] ≤ νp (4)

Finally, the following denotes doubly robust estimator
which is risk minimizer, albeit with a prior around f̂q,λ
rather than 0.

f̂DR := argmin
f∈F

R̂[f |X,Y, β̂] s.t. Ω[f, f̂q,λ] ≤ ν′ (5)

Lastly, we define f∗q,λq and f∗p,λp to be the constrained min-
imizers of the expected risk i.e.

f∗q,λq := argmin
f∈F

Rq[f ] + λqΩ[f ] (6)

f∗p,λp := argmin
f∈F

Rp[f ] + λpΩ[f ] (7)

These quantities are needed since f∗p and f∗q might not nec-
essarily have bounded norm in function classes that we
study. For instance, in the context of kernel methods, they
might be approximated in the limit by a series of kernel
functions but might not be elements of the RKHS them-
selves.

2.2. Assumptions

It is worth mentioning the assumptions required for the ap-
plication of doubly robust estimation, since they motivate
our design choices.

Assumption 1 The conditional training and test distribu-
tions are identical i.e p(y|x) = q(y|x).

This is implicit in the definition of covariate shift — if
p(y|x) 6= q(y|x) it would be trivial to construct coun-
terexamples for any algorithm attempting to solve covari-
ate shift. For instance, setting p(y|x) = q(−y|x) for binary
classification would lead to a maximally bad solution.

Assumption 2 The Radon-Nikodym derivative β(x) is
well defined and bounded by some constant η. This en-
sures that there cannot exist sets of nonzero measures with
respect to Q that have zero measure with respect to P .

Again, in the absence of this assumption we could design
pessimal algorithms. For instance, assume that some set
S with p(S) > 0 has vanishing q-measure, i.e. q(S) =
0. In this case we could, e.g., set y|x = 0 for all x /∈ S
and y|x = C for x ∈ S. This would immediately imply
substantial misprediction regardless of the sample size.
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Assumption 3 The risk minimizer f∗p,λp is much closer to
the unweighted risk minimizer f∗q,λq rather than the origin,
i.e., νDR = Ω[f∗p,λp , f

∗
q,λq

]� Ω[f∗p,λp ] = νp.

This is likely the most contentious assumption — it im-
plies that solving the unweighted problem will be signifi-
cantly beneficial for the weighted solution. An easily con-
structed counterexample is the mapping y = |x| where p
and q largely emphasize positive and negative x. How-
ever, we have never encountered such a situation in prac-
tice. It would imply that using the uncorrected estimates
in the new context would be worse than random. It is the
above assumption that makes our algorithm work.

2.3. Estimating Covariate Shift Weights

Before delving into a specific algorithm we need to discuss
means of obtaining estimates of β(X). A number of ap-
proaches have been proposed to obtain these estimates. We
only give a brief outline of a few approaches here and refer
interested readers to the appropriate references for a more
thorough analysis.

Penalized Risk Minimization (PRM) The basic idea in
this approach is to estimate covariate shift weights β by
solving a particular regularized convex minimization prob-
lem over a function class (Nguyen et al., 2008). The ra-
tionale for the approach stems from the fact that the op-
tima to the variational representation of KL-divergence is
attained at the point β(x) = p(x)

q(x) ∀x ∈ X . More specif-
ically, consider the following variational representation of
KL-divergence:

D(p, q) = sup
g>0

∫
log g(x)p(x)dx−

∫
g(x)q(x)dx+ 1.

This is obtained by a simple application of Legendre-
Frenchel convex duality (see (Nguyen et al., 2008) for more
details). More importantly for us, the supremum is attained
at g(x) = β(x) = p(x)/q(x). Let us assume that the func-
tion β belongs to RKHS G. Since the access to distributions
p and q is through their corresponding samples, we solve
the following regularized empirical version of the problem:

β̂ = argmin
g∈G

1

m

m∑
i=1

g(xi)−
1

m

m∑
i=1

log g(x′i) +
γm
2
I2(g)

where I(g) is a non-negative measure of complexity for g
such that I(β) < ∞. It is shown that the above estimator
enjoys good statistical properties. A more detailed theoret-
ical exposition of the estimator will follow in later sections.
Kernel Mean Matching (KMM) Another popular ap-
proach to obtain the covariate shift weights is by matching
the mean embeddings in the feature space induced by a
universal RKHS K on the domain X (Gretton et al., 2008).

More specifically, we solve the following optimization
problem

min
β̂
L̂(β̂) :=

∥∥∥∥∥ 1

m

m∑
i=1

β̂iΦ(xi)−
1

m

m∑
i=1

Φ(x′i)

∥∥∥∥∥
s.t. 0 ≤ β̂i ≤ η and

1

m

m∑
i=1

β̂ = 1,

where Φ : X → K. Intuitively, the above procedure tries to
match the mean embeddings of weighted training and test
distributions. Since the RKHS is universal, matching the
embeddings provides estimates for covariate shift weights
β. As above, we delay the theoretical details.

It is interesting to note that while the first estimation pro-
cedure gives the function β, the KMM approach computes
the function evaluated only at the training points. See e.g.
(Agarwal et al., 2011) for a more detailed discussion and
comparison to other approaches.

2.4. Examples

To gain a better understanding of our approach, we now
present our estimators in various algorithmic settings. Let
us assume, we have estimated covariate shift weights β̂ via
PRM, KMM or in general, any other method.

Regression The simplest setting is linear regression, pos-
sibly in a Reproducing Kernel Hilbert Space. Here the loss
`, the function f , and Ω are given by f(x) = 〈w, φ(x)〉,
`(y, f(x)) = 1

2 (y − f(x))2 and Ω[f, f ′] = 1
2 ‖w − w

′‖2,
where φ(x) is a feature map. The three steps of doubly
robust covariate shift correction are:

1. Solve the quadratic optimization problem below.

ŵq,λq = arg min
w

1

2

m∑
i=1

(yi−〈φ(xi), w〉)2 +
λq
2
‖w‖2

2. Estimate the covariate shift correction weights β̂.
3. Solve the centered weighted regression problem to ob-

tain the doubly robust estimator ŵDR.

minimize
w

1

2

m∑
i=1

β̂i(yi−〈φ(xi), w〉)2+
λ′

2

∥∥w − ŵq,λq∥∥2

The approach works whenever
∥∥w∗p − w∗q∥∥ � ∥∥w∗p∥∥, i.e.

whenever the unbiased and the biased solutions are close
compared to the overall complexity of the solutions.
SVM Classification The approach is quite analogous to
the above approach, the main difference being a different
loss function. This yields f(x) = 〈w, φ(x)〉, `(y, f(x)) =

max(0, 1 − yf(x)), and Ω[f, f ′] = 1
2 ‖w − w

′‖2. The as-
sociated algorithm is as follows:
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Figure 2. Pictorial representation of Doubly Robust estimation
procedure. Assumption 3 implies that f∗q is close to f∗p than origin
(as shown in the figure). While the generic covariate shift finds the
weighted empirical risk minimizer over the large function classF ,
doubly robust procedure optimizes over a much smaller function
class FDR. This leads to small variance in doubly robust proce-
dure as as compared to generic covariate shift procedure when the
effective sample size meff is small.

1. Solve a standard SVM classification problem using
X,Y to obtain ŵq,λq .

min
w

m∑
i=1

max(0, 1− yif(xi)) +
λq
2
‖w‖2

2. Estimate the covariate shift correction weights β̂.
3. Solve the centered weighted SVM classification prob-

lem to obtain the doubly robust estimator ŵDR.

min
w

m∑
i=1

β̂i max(0, 1− yif(xi)) +
λ′

2

∥∥w − ŵq,λq∥∥2

Regression Tree The nontrivial challenge here is to define
what it means to use an existing tree as a prior. We obtain
the following algorithm:

1. Compute a Regression Tree f̂q,λq using X,Y with
suitable pruning strategy λq .

2. Estimate the covariate shift correction weights β̂.
3. Compute the prediction errors εi := yi − f̂q,λq (xi).

Train a second regression tree δf using (xi, εi, β̂i) as
covariates, labels, and sample weights. Output the
corrected tree f̂DR := f̂q,λq + δf .

Analogous modifications are possible for Gaussian Process
estimates where we use stage 1 estimates as prior, or for
neural networks. Given the generality, our analysis pro-
ceeds in two steps — we first derive a general metatheorem,
followed by an application to kernel methods.

3. Theoretical Analysis
3.1. A Metatheorem

The analysis mirrors the algorithmic approach — it con-
sists of three key components. Firstly, we need to show
that f̂q,λq is close to the expected risk minimizer f∗q,λq . For
this we can take advantage of the large sample size inher-
ent in X,Y , thus providing us with a biased, low variance
guess of a solution not too far away from f∗p,λp . Secondly,
we need to bound the uniform convergence behavior of the
covariate shift corrected risk functional relative to the ex-
pected risk. Finally, we need a uniform convergence bound
for a weighted risk minimization problem, such as those in
(Gretton et al., 2008).

Theorem 1 Assume that the following two conditions hold
with probability at least 1− δ when m > m0:

1. [Bound A] Suppose there exists a functionA(λ,m, δ)
such that for all functions f ∈ F

Ω[f, f̂q,λq ] ≤ Ω[f, f∗q,λq ] +A(λq,m, δ). (8)

That is, the solution of the unweighted empirical risk
minimization problem is close to f∗q,λq .

2. Let T̂ [f ] be an estimate of the risk Rp[f ], and f̂

and f̂T,λ be minimizers of R̂[f |X,Y, β̂] and T̂ [f ]
respectively subject to the constraint Ω[f, f0] ≤ ν.

[Bound B] Suppose we have the following rela-
tionship between these minimizers.

Rp[f̂ ] ≤ Rp[f̂T,λ] +B(f0, f̂q,λ, f̂T,λ, λ, δ) (9)

That is, the minimizer of T̂ [f ] is close to the empirical
risk minimizer.
[Bound C] Additionally, suppose we also have

sup
f s.t.

Ω[f,f0]≤ν

∣∣∣T̂ [f ]−Rp[f ]
∣∣∣ ≤ C(f0, λ,m, β, δ). (10)

Note that the key emphasis here is on the algorithm
that was used to obtain β̂ and complexity of the func-
tion class, e.g., via a Rademacher average.

Let ν′ = νDR +A(λq,m, δ/3). The following bound holds
with probability at least 1− δ:

Rp[f̂DR] ≤ Rp[f∗p,λp ] +B(f̂q,λq , f̂DR, f̂T,λ′ ,m, δ/3)

+ 2C(f̂q,λq , ν
′, β, δ/3). (11)

We can similarly prove that the bound for standard co-
variate shift procedure is B(0, f̂p,λp , f̂T,λp ,m, δ/2) +
2C(0, νp, β, δ/2). The doubly robust estimator bound
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(Equation 11) is better than a generic covariate shift cor-
rection bound whenever ν′ is much smaller than νp, which
is roughly Assumption 3. We will instantiate these bounds
in the next section.

3.2. Theoretical Analysis for Kernel Methods

In this section, we present theoretical analysis for kernel
methods. The underlying property of these algorithms,
which simplifies our analysis is that of proportional quan-
tification of the risk with change in the distribution of the
training data. As mentioned earlier, the function Ω[f, f ′]
is ‖f − f ′‖2/2 in this case. While we only focus on ker-
nel methods, the theoretical analysis can be generalized to
a broader class along similar lines. Let K denote the kernel
matrix corresponding to the training points X . We rely on
Rademacher averages for our uniform convergence bounds
(Bartlett & Mendelson, 2002). As a first step, we analyze
the theoretical guarantees for the unweighted minimizer.

Unweighted Estimator

We analyze the estimated unweighted risk minimizer in this
section. In particular, we derive the relationship between
the risks of the true and estimated unweighted risk mini-
mizers (see appendix for proof).

Theorem 2 Let f̂q,λp and f∗q,λq be as defined in Equa-
tions (3) and (6) respectively, and ‖p− q‖1 ≤ ε. Then

Rp[f̂q,λq ] ≤ Rp[f∗q,λq ]+
4Lνq
m

√
tr(K)+6L

√
log(2/δ)

2m
+2Lε

The above result gives a generalization bound for the esti-
mated unweighted risk minimizer f̂q,λq . Our bounds sup-
port the fact that the estimator is asymptotically biased, an
undesirable property for an estimator.

Bound A: This is achieved in two steps — firstly we need
to invoke uniform convergence of the regularized risk func-
tional on the domain of interest and secondly, we appeal to
strong convexity of risk. While this assumption is used here
for simplicity, we can obtain theoretical guarantees without
this assumption along the lines of (Kifer et al., 2012).

Lemma 1 Suppose f̂q,λq and f∗q,λq are as defined in Equa-
tions (3) and (6) respectively. Then the following holds with
probability at least 1− δ:

∥∥∥f̂q,λq − f∗q,λq∥∥∥ ≤
√√√√4L

λq

(
2νq
m

√
tr(K) + 3

√
log(2/δ)

2m

)

We next present generalization bounds for standard co-
variate shift and doubly robust estimators using two ap-
proaches: (a) Penalized Risk Minimization (PRM) (b) Ker-
nel Mean Matching (KMM) (given in the appendix).

Generalization bounds for PRM

Our main goal is to obtain a relation between the risks of
f̂p,λp (or f̂DR) and f∗p,λp . This is accomplished by first
invoking uniform convergence on the true weighted risk
minimizer and then showing the risk minimizer based on
estimated weights is not far away from it, using distribu-
tion stability analysis. We define the following empirical
risk minimization problems:

f̂β̂,λ := argmin
f

R̂[f |X,Y, β̂] + λΩ[f, f0] (12)

f̂β,λ := argmin
f

R̂[f |X,Y, β] + λΩ[f, f0] (13)

We instantiate Theorem 1 with function T̂ [f ] =
R[f |X,Y, β], i.e., empirical risk with true weights β.

Bound C: The following result provides bound C of the
metatheorem.

Lemma 2 Suppose f∗p,λp is as defined in Equation (7). We
have the following with probability at least 1− δ:

sup
f :‖f−f0‖≤ν

∣∣∣R[f |X,Y, β]−Rp[f∗p,λp ]
∣∣∣ ≤

ηL

2ν

m

√
tr(K) + 3

√
log(2/δ)

2m
+

1

m

√√√√ m∑
i=1

f2
0 (xi)



Bound B: We now derive a relation between f̂β̂,λ and f̂β,λ,
i.e., Bound B of the metatheorem. The key insight here is
that due to distribution stability property of kernel meth-
ods (Cortes et al., 2008), the empirical risk minimizer with
shifted weights is close to the one with true weights. The
following result formalizes this insight.

Lemma 3 Suppose f̂β̂,λ and f̂β,λ are as defined in Equa-
tions (12) and (13) respectively, and β ∈ G. Let the reg-
ularization parameter γm = cm−2/(2+τ) for some τ > 0
and a constant c. Then we have the following with proba-
bility at least 1− δ:∣∣∣Rp[f̂β̂,λ]−Rp[f̂β,λ]

∣∣∣ ≤ 2κ2L2

λ

(
√
ηγm + η 4

√
8

m
log

(
2

δ

))

We now state the main results about generalization bounds
for PRM, which follow as corollaries of Theorem 1.

Theorem 3 Suppose f̂p,λp and f∗p,λp are as defined in
Equations (4) and (7) respectively, and β ∈ G. Let the reg-
ularization parameter for PRM be γm = cm−2/(2+τ) for
some τ > 0 and a constant c. Then we have the following
with probability at least 1− δ.

Rp[f̂p,λp ] ≤ Rp[f∗p,λp ] + ∆W,S + ∆W,R. (14)
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∆W,S and ∆W,R, representing the covariate shift and func-
tion complexity parts of the bound, are defined below.

∆W,S =
2κ2L2

λ

(
√
ηγm + η 4

√
8

m
log

(
4

δ

))

∆W,R = 2ηL

(
2ν

m

√
tr(K) + 3

√
1

2m
log

(
4

δ

))

Theorem 4 Suppose f̂DR and f∗p,λp are as defined in
Equations (5) and (7) respectively, and β ∈ G. Let the reg-
ularization parameter for PRM be γm = cm−2/(2+τ) for
some τ > 0 and a constant c. Then we have the following
with probability at least 1− δ.

Rp[f̂DR] ≤ Rp[f∗p,λp ] + ∆DR,S + ∆DR,R. (15)

∆DR,S and ∆DR,R, denoting the covariate shift and func-
tion complexity parts of the bound, are defined below.

ν′ = νDR +

√√√√4L

λq

(
2νq
√

tr(K)

m
+ 3

√
log(6/δ)

2m

)

∆DR,S =
2κ2L2

λ′

(
√
ηγm + η 4

√
8

m
log

(
6

δ

))

∆DR,R = 2ηL

(
2ν′
√

tr(K)

m
+ 3

√
log(6/δ)

2m
+
‖f̂q,λq‖2

m

)

Discussion on the Generalization Bounds
In order to understand the benefit of our doubly robust es-
timator, we make a qualitative comparison of the various
generalization bounds in this section. We only compare
the bounds for PRM because the bounds for KMM (in Ap-
pendix) yield similar conclusions. From Assumption 3, we
have ν′ � νp and λ′ > λp, provided bound A is small.
When the variance of f̂q,λq is small, it is easy to see that
∆DR,R � ∆W,R (in Equations 14 and 15). Moreover, we
perform better than generic covariate shift in both the cases
— good and weak estimate of weights. This is due to the
fact that the bounds ∆W,S and ∆DR,S are of similar mag-
nitude, and ∆DR,R � ∆W,R. Therefore, these bounds em-
phasize the doubly robust nature of our approach. Before
ending our discussion, we need to make it explicit that our
analysis only compares the upper bounds and hence, needs
to be interpreted with caution. Nonetheless, our empiri-
cal evaluation, in the next section, supports our theoretical
analysis and provides a compelling case to use our estima-
tors in practice.

4. Experiments
We present our empirical results in this section. We apply
doubly robust covariate shift correction to a broad range

of UCI datasets and a real-world dataset to demonstrate its
performance. In particular, we show that it is effective both
for classification and regression settings, both for linear
methods (by using a Support Vector Classifier) and non-
linear approaches (by using a Regression Tree). Moreover,
we investigate its efficacy using a proprietary classification
problem of a large internet company.

For our experiments we compare the performance of un-
weighted (referred to as UNWEIGHTED), weighted (re-
ferred to as WEIGHTED) and doubly robust (referred to
as DOUBLYROBUST) empirical estimators. That is, UN-
WEIGHTED ignores the problem of covariate shift correc-
tion; WEIGHTED uses the weights computed by KLIEP
(Sugiyama et al., 2008) with Gaussian kernel. For sim-
plicity we use a reduced rank expansion with 100 basis
functions in our experiments. The bandwidth of the kernel
is chosen by cross-validation; Finally, DOUBLYROBUST
refers to the results obtained by our method.

Synthetic Data: This experiment is meant to provide
a comparison of WEIGHTED and DOUBLYROBUST ap-
proaches when varying effective sample sizemeff . The data
for this experiment is generated based on a polynomial ob-
jective (Gretton et al., 2008)

y = −x+ x3 + ε where ε ∼ N (0, 0.3) . (16)

We set p(x) = N (0, 1) and use as biasing distribution
p(x) = N (µ, 0.3) where µ is adjusted such that we ob-
tain different effective samples sizes. 300 training and test
samples are drawn. We use linear regression with standard
`2 penalization.

Figure 4 shows the root mean square error (RMSE) ratio
of DOUBLYROBUST to WEIGHTED. It can be seen that
DOUBLYROBUST outperforms WEIGHTED for lower val-
ues of meff and is marginally worse for higher values of
meff . The latter is not surprising, since DOUBLYROBUST
makes use of the data thrice rather than twice.

Real Data: For a more realistic comparison we apply our
method to several UCI2 and benchmark3 datasets. To con-
trol the amount of bias we use PCA to obtain the leading
principal component. The projections onto the first prin-
cipal component are then used to construct a subsampling
distribution q. Let t0 and t1 be the minimum and the max-
imum of the projected values respectively. Let σPC be the
standard deviation of the projected values. We then sub-
sample using their projected values according to normal
distributionN (t0 +α(t1− t0), 0.5σPC). Varying the value
of α changes themeff of the training data by shifting q rela-
tive to p. The value α ∈ (0, 1) is independently set for each

2http://archive.ics.uci.edu/ml/datasets.
html

3http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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classification UNWEIGHTED WEIGHTED DOUBLYROBUST

hill 1.00 (± 0.05) 1.03 (± 0.04) 0.98 (± 0.03)
splice 1.00 (± 0.01) 0.98 (± 0.01) 0.97 (± 0.01)
german 1.00 (± 0.04) 1.08 (± 0.05) 0.96 (± 0.03)
diabetes 1.00 (± 0.05) 0.89 (± 0.02) 0.85 (± 0.01)
ionosphere 1.00 (± 0.04) 0.82 (± 0.01) 0.79 (± 0.01)
cod-rna 1.00 (± 0.05) 1.05 (± 0.03) 0.94 (± 0.02)
ijcnn 1.00 (± 0.03) 0.99 (± 0.02) 0.96 (± 0.02)
breast-cancer 1.00 (± 0.03) 0.96 (± 0.02) 0.97 (± 0.02)
fourclass 1.00 (± 0.03) 1.04 (± 0.02) 1.03 (± 0.02)
australian 1.00 (± 0.04) 1.02 (± 0.03) 0.97 (± 0.03)
sonar 1.00 (± 0.05) 0.98 (± 0.04) 0.97 (± 0.04)
spambase 1.00 (± 0.05) 0.99 (± 0.03) 0.98 (± 0.03)

regression UNWEIGHTED WEIGHTED DOUBLYROBUST

abalone 1.00 (± 0.01) 0.97 (± 0.03) 0.95 (± 0.01)
mg 1.00 (± 0.04) 1.04 (± 0.03) 0.97 (± 0.03)
enuite 1.00 (± 0.04) 0.95 (± 0.03) 0.93 (± 0.02)
space 1.00 (± 0.05) 0.98 (± 0.04) 0.94 (± 0.03)
mpg 1.00 (± 0.03) 0.93 (± 0.02) 0.94 (± 0.03)
bodyfat 1.00 (± 0.04) 0.96 (± 0.03) 0.97 (± 0.03)
cadata 1.00 (± 0.03) 1.11 (± 0.04) 1.03 (± 0.04)
housing 1.00 (± 0.02) 0.99 (± 0.04) 0.97 (± 0.03)

Figure 4. Relative performance of SVM classifiers and regression trees on UCI datasets. We normalize the unweighted performance to
1 and report relative variance. DOUBLYROBUST consistently outperforms the other estimators. Error bars are obtained using 30 trials
for each experiment. The graph on the RHS summarizes these results. We combine both regression and classification results since their
behavior is entirely analogous. Boxes indicate the extent of uncertainty, with a red solid dot in the middle. The horizontal / vertical
lines at 1 indicate whenever covariate shift performs better / worse than its unweighted counterpart. The straight diagonal line indicates
whenever DOUBLYROBUST outperforms WEIGHTED. As can be seen, our method is much less susceptible to an increase in variance.
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Figure 3. Comparison of WEIGHTED and DOUBLYROBUST us-
ing a synthetic dataset. We plot the error ratio as a function of the
effective sample size. Note that a ratio of 1 implies that there is
no covariate shift. As can be seen, our method improves the most
whenever the increase in variance is the highest. This is consistent
with the fact that it acts as variance reducer.

dataset in such a way that the effective sample size meff is
less than 1/3 of the training data.

For classification, we use support vector machines with
a linear kernel. As mentioned earlier, Ω[f, f ′] =
1
2 ‖w − w

′‖2, i.e., the correction is additive in feature
space. The regularization parameters are chosen separately
for each empirical estimator by cross validation. We report
the classification error Pr {yf(x) < 0}. We normalize the
errors with the UNWEIGHTED error.

For regression we apply regression trees to several UCI
datasets. We report the square error loss for these exper-
iments. As explained earlier, we first train a regression tree
on the unweighted dataset and then build a differential re-
gression tree on the residual with restricted tree depth in

order to train the doubly robust regression tree.

The results are reported in Figure 4. We report the aver-
age RMSE error and the standard deviation over 30 trials
for each experiment. The errors in both the above cases
are normalized by the error of UNWEIGHTED. In both the
tasks, it can be clearly seen that DOUBLYROBUST outper-
forms both UNWEIGHTED and WEIGHTED on most of the
datasets. Note that neither UNWEIGHTED nor WEIGHTED
are significantly better than each other. On the other hand,
our approach consistently outperforms both. This is in line
with our intuition that the unweighted solution is an excel-
lent variance reducer. Overall, we conclude that the pro-
posed method is promising for covariate shift correction
problem.

Application: We also tested the proposed method on a
proprietary dataset using logistic regression. The sample
size was m = 20, 555 with d = 30 dimensions. Due
to extreme covariate shift the effective sample size was
only meff = 28. When normalizing the performance for
the uncorrected estimate to 1, we obtained a relative er-
ror of 1.192 for covariate shift corrected risk minimization.
A heuristic approach of hand tuning an upper-bound the
covariate shift correction weights improved matters some-
what to a relative error of 0.986. Doubly robust covariate
shift achieved a relative error of 0.975.

5. Conclusion
In this paper we proposed an intuitive and easy-to-use strat-
egy for improving covariate shift correction. It addresses a
key issue that plagues many covariate shift correction al-
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gorithms, namely that the variance increases considerably
whenever samples are reweighted. It achieves this goal by
using the unweighted solution as a variance-reducing proxy
for the correct weighted solution. This is a rather general
strategy and has been used with great success, e.g. as con-
trol variate, in the context of reinforcement learning (Sutton
& Barto, 1998).

Our approach is particularly simple insofar as it requires
essentially no additional code to use — all that is required
in practice is to allow for reweighting and offset-correction
in a linear model, a decision tree, or any other estimator
that might be at hand. Of particular importance is the fact
that we found our approach never to be harmful, something
that cannot be said in general for covariate shift correction.
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Appendix
Throughout this paper, we use on Rademacher averages
for uniform convergence results. We define the empirical
Rademacher average of a function class F as:

Radm(F) = E

[
sup
f∈F

2

m

∣∣∣∣∣
m∑
i=1

σif(xi)

∣∣∣∣∣
]

where σ1, · · · , σm are independent uniform {±1}. For the
case of kernel methods, the Rademacher average of func-
tion class F = {f : ‖f‖ ≤ ν} is:

Radm(F) =
2ν

m

√
tr(K).

where K is the kernel matrix corresponding to the training
points X .

Following is an useful property of Rademacher average
when the function class is translated by a function (refer
(Bartlett & Mendelson, 2002) for details).

Lemma 4 For any function class F , we have

Radm(F + h) ≤ Radm(F ) + 2

√∑m
i=1 h

2(xi)

m2

for any function h.

A. Metatheorem
Proof of Theorem 1

Proof Consider the following conditions: (1) It is possi-
ble to obtain a good estimator of f∗q,λ from X,Y and that
the covariate shift correction algorithm works i.e. Equa-
tion 8 holds (2) The minimizer of T̂ [f ] is close to the es-
timator f̂DR i.e Equation 9 is satisfied (3) Finally, Equa-
tion refeq:bound-c holds for a suitably small ν0. Split-
ting probabilities of δ/3 over violations of these condi-
tions and then using union bound over these conditions, we
get that with at least probability 1 − δ, all the three con-
ditions hold. More specifically, we invoke Equation (10)
with f0 = f̂q,λ and ν′ = νDR +A(λ,m, δ/3). From Equa-
tion (8) it follows that under Assumption 3 with probability
at least 1− δ/3 the risk minimizer with regard to p satisfies
Ω[f, f̂q,λq ] ≤ ν′. Figure 5 shows a pictorial representation
of the proof. Therefore, we have,

Rp[f̂T,λ′ ] ≤ T̂ [f̂T,λ′ ] + C(f̂q,λ, λ
′,m, β, δ/3)

≤ T̂ [f∗p,λp ] + C(f̂q,λ, λ
′,m, β, δ/3)

≤ Rp[f∗p,λp ] + 2C(f̂q,λ, λ
′,m, β, δ/3)

The first and third steps follow from Equation (10). The
second step follows from the fact that f∗p,λp satisfies

f∗p,λp

f∗q,λq

ν
D

R

f̂q,λq

ν ′

A

Figure 5. Pictorial representation of metatheorem and intuition
behind doubly robust estimation. The estimate f̂q,λq is close to
f∗q,λq with high probability and hence, close to the risk minimizer
we are concerned about, namely f∗p,λp

.

Ω[f∗p,λp , f̂q,λq ] ≤ ν′. Finally using Equation (9), we get
the required result.

B. Unweighted Estimator
The following result provides a bound on the difference of
risk with respect to the distributions p and q.

Lemma 5 Suppose we have ‖p − q‖1 ≤ ε and
‖EY |X [`(Y, f(X))]‖∞ ≤ L then |Rp[f ]−Rq[f ]| ≤ Lε.

Proof The proof directly follows from the definition, as
shown below.

|Rp[f ]−Rq[f ]| =
∣∣∣∣∫
X×Y

`(y, f(x))(p(x)− q(x))dydx

∣∣∣∣
=

∣∣∣∣∫
X
EY |X [`(y, f(x))](p(x)− q(x))dx

∣∣∣∣
≤ L‖p− q‖1 = Lε.

The first step follows from the definition of risk. The sec-
ond step follows from the on conditional expectation.

It should be noted that the above bound is tight. For ex-
ample, suppose the distributions p and q have disjoint sup-
ports and EY |X [`(Y, f(X))] is the constant function L then
|Rp[f ]−Rq[f ]| = Lε.

Proof of Theorem 2

Proof From the standard Rademacher analysis of kernel
methods (e.g., (Bartlett & Mendelson, 2002)) on function
class F = {‖f‖ ≤ νq}, we have the following:

|R[f |X,Y ]−Rq[f ]| ≤ 2Lνq
m

√
tr(K) + 3L

√
log(2/δ)

2m
.

(17)
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for all f ∈ F . Therefore,

Rq[f̂q,λq ]

≤ Rq[f̂q,λq |X,Y ] +
2Lνq
m

√
tr(K) + 3L

√
log(2/δ)

2m

≤ Rq[f∗q,λq ] +
4Lνq
m

√
tr(K) + 6L

√
log(2/δ)

2m
.

The second inequality follows from the fact that
Rq[f̂q,λq |X,Y ] ≤ Rq[f

∗
q,λq

] and Equation (17). Now
using the relation between the Rp and Rq in Lemma 5, we
have the result.

Proof of Lemma 1

Proof From Theorem 2, we know that the risks of f̂q,λq
and f∗q,λq are close. Now by using the relationship between
minimizers and the objective value of two strongly convex
functions, from Lemma 6, we have the required result.

The following result relates between the minimizers of two
strongly convex function with the difference in their respec-
tive objective function values.

Lemma 6 Assume that we have two strongly convex aux-
iliary functions u, v with ‖u− v‖∞ ≤ ε and with modu-
lus of strong convexity λ. Then their minima xu, xv satisfy
‖xu − xv‖ ≤

√
2ε/λ.

Proof By the assumption of proximity and by strong con-
vexity we have

u(xu) + ε ≥ v(xu)

≥ v(xv) + 〈xu − xv, ∂xv(xv)〉+
λ

2
‖xu − xv‖2

≥ v(xv) +
λ

2
‖xu − xv‖2

The same also holds with u and v interchanged. Summing
both inequalities and subtracting identical terms yields that
2ε ≥ λ ‖xu − xv‖2. Rearrangement of terms proves the
claim.

C. Generalization bounds for PRM
Proof of Lemma 2

Proof Using standard Rademacher average bound for ker-
nel methods from (Bartlett & Mendelson, 2002), we have
the following:

Radm({f : ‖f‖ ≤ ν}) =
2ν

m

√
tr(K)

Combining the above result with Lemma 4 gives

Radm(f : ‖f − f0‖ ≤ ν) =
2ν

m

√
tr(K) +

1

m
‖f0‖2.

Finally, using the standard Rademacher bounds, again from
(Bartlett & Mendelson, 2002), we get the required result.

Lemma 7 Suppose f̂β̂,λ and f̂β,λ are as defined in Equa-
tion (12) and Equation (13) respectively. We have the fol-
lowing relationship between these risk minimizers:

‖f̂β̂,λ − f̂β,λ‖ ≤
2κL

λm
‖β̂ − β‖1

where ‖φ(x)‖ ≤ κ ∀x ∈ X .

Proof We define the following function:

S[f ] =
〈
∂fR[f̂β,λ|X,Y, β]− ∂fR[f̂β̂,λ|X,Y, β̂], f − f̂β̂,λ

〉
+
λ

2
‖f − f̂β̂,λ‖

2.

We note that by construction, S[f̂β̂,λ] = 0. Also, note that

∂fS[f̂β,λ] = 0 by definition of f̂β̂,λ and f̂β,λ. Using the

above and second order condition, it is easy to see that f̂β,λ
is the minima of S[f ]. By above facts, we get〈
∂fR[f̂β,λ|X,Y, β]− ∂fR[f̂β̂,λ|X,Y, β̂], f̂β,λ − f̂β̂,λ

〉
+
λ

2
‖f − f̂β̂,λ‖

2 ≤ 0.

Now by adding and subtracting 〈∂fR[f̂β̂,λ|X,Y, β], f̂β,λ−
f̂β̂,λ〉 we obtain the following:

λ

2
‖f̂β,λ − f̂β̂,λ‖

2

+
〈
∂fR[f̂β,λ|X,Y, β]− ∂fR[f̂β̂,λ|X,Y, β], f̂β,λ − f̂β̂,λ

〉
+
〈
∂fR[f̂β̂,λ|X,Y, β]− ∂fR[f̂β,λ|X,Y, β̂], f̂β,λ − f̂β̂,λ

〉
≤ 0.

Since ` is convex, the second term is non-negative. This
leads to the fact that following expression is negative:〈
∂fR[f̂β,λ|X,Y, β]− ∂fR[f̂β̂,λ|X,Y, β̂], f̂β,λ − f̂β̂,λ

〉
+
λ

2
‖f̂β,λ − f̂β̂,λ‖

2. (18)

We observe that〈
∂fR[f̂β̂,λ|X,Y, β]− ∂fR[f̂β,λ|X,Y, β̂], f̂β,λ − f̂β̂,λ

〉
≤ ‖∂fR[f̂β,λ|X,Y, β]− ∂fR[f̂β̂,λ|X,Y, β̂]‖‖f̂β,λ − f̂β̂,λ‖

≤
κL

m
‖β̂ − β‖1‖f̂β,λ − f̂β̂,λ‖
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The first step follows from Cauchy-Schwartz inequality.
The second step follows from Lipschitz continuity of ` and
definition of κ. Summing the above inequality with Equa-
tion 18, we get

‖f̂β,λ − f̂β̂,λ‖ ≤
2κL

λm
‖β̂ − β‖1

We next prove the following result, which is useful in
proving generalization bounds for PRM. We define (gen-
eralized) hellinger distance between two functions non-
negative functions f and g under distribution q and its em-
pirical version as:

hq(f, g)2 =

∫
(
√
f(x)−

√
g(x))2q(x)dx

ĥq(f, g)2 =
1

m

∑
i

(√
fi −

√
gi

)2

.

Lemma 8 Suppose β̂ is the estimator for β obtained using
PRM. Let γm = cm−2/2+τ for some τ > 0 and a constant
c. We have the following:

1

m

∥∥∥β̂ − β∥∥∥
1
≤ √ηγm + η 4

√
8

m
log

(
2

δ

)
with probability at least 1− δ.

Proof The following holds:[
1

m

∥∥∥β̂ − β∥∥∥
1

]2

=
1

m2

[∑
i

(∣∣∣∣√β̂i −√βi∣∣∣∣)(√β̂i +
√
βi

)]2

≤ 1

m2

[∑
i

(√
β̂i −

√
βi

)2
][∑

i

(√
β̂i +

√
βi

)2
]

≤ 1

m
ĥq(β̂, β)24mη = 4ηĥ2

q(β̂, β).

The first and second step follow from Cauchy-Schwartz in-
equality and the fact that RND is bounded above by η re-
spectively. Now using Hoeffding bound, we have the fol-
lowing relation between hq(β̂, β) and its empirical estimate
ĥq(β̂, β):

ĥq(β̂, β) ≤ hq(β̂, β) + 4

√
η2

2m
log

(
2

δ

)
with probability 1− δ. Combining the above two facts and
the bound on hellinger distance hq(β̂, β) in Theorem 2 of
(Nguyen et al., 2008) gives us the required result.

Proof of Lemma 3

Proof We have the following:∣∣∣Rp[f̂β̂,λ]−Rp[f̂β,λ]
∣∣∣

=
∣∣∣EX,Y [`(Y, f̂β̂,λ(X)

)
− `
(
Y, f̂β,λ(X)

)]∣∣∣
≤ κL‖f̂β̂,λ − f̂β,λ‖ ≤

2κ2L2

λm
‖β̂ − β‖1

≤ 2κ2L2

λ

(
√
ηγm + η 4

√
8

m
log

(
2

δ

))
The first inequality follows from L-Lipschitz nature of
the loss function ` and Cauchy-Schwartz inequality. The
second and third inequalities follow from Lemma 7 and
Lemma 8 respectively.

Proof of Theorem 3

Proof The result follows on similar lines as Theorem 1
by using f0 = 0. Here, since we do not require bound
A, we split probability δ/2 over bounds B and C. The
bounds B and C are obtained from Lemma 3 and Lemma 2
respectively.

Proof of Theorem 4

Proof The result follows from Theorem 1 by instantiating
bounds A, B and C using Lemma 1, Lemma 3 and
Lemma 2 respectively.

D. Covariate Shift Bounds using KMM
In this section, as promised earlier, we provide theoreti-
cal details of KMM appoach. We use two different in-
stantiations — using distribution stability and mean embed-
ding properties — of function T̂ [f ] to derive generalization
bounds for KMM.

Bounds using Distribution Stability

We first use distribution stability to derive the generaliza-
tion bounds for KMM. Similar to the PRM case, we use
T̂ [f ] = R̂[f |X,Y, β] here.

Bound C: Bound C is exactly same as in PRM i.e.
Lemma 2.

Bound B: For Bound B, we can borrow bounds from
(Cortes et al., 2008). In case of generic covariate shift, it
amounts to straightforward application of the following re-
sult. Doubly robust case is less trivial. We need to prove
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that the stability bounds hold even in the case of regular-
ization with a prior. This amounts to essentially identical
result as above. In particular, we need to argue that Theo-
rem 1 of (Cortes et al., 2008) holds for a given prior. The
proof essentially follows the argument with minor modifi-
cations in the regularization. Hence, we do not provide it
here.

Lemma 9 Suppose f̂β̂,λ and f̂β,λ are as defined in Equa-
tion (12) and Equation (13) respectively. Let sigma(K)
denote the condition number of matrix K. Let the regular-
ization parameter γm = m−2/(2+τ) for some τ > 0, then
we have the following with probability at least 1− δ:∣∣∣Rp[f̂β̂,λ]−Rp[f̂β,λ]

∣∣∣
≤ L2κ3/2σ1/2(K)

λ

√
η2 + 1

m

(
1 +

√
2 log

(
2

δ

))

We now state the main results about generalization bounds
for KMM, which follow as corollary of Theorem 1.

Theorem 5 Suppose f̂p,λp and f∗p,λp are as defined in
Equation (4) and Equation (7) respectively. Then we have
the following with probability at least 1− δ:

Rp[f̂p,λp ] ≤ Rp[f∗p,λp ] + ∆W,S + ∆W,R (19)

where ∆W,S and ∆W,R, representing the covariate shift
and function complexity parts of the bound, are defined as
below.

∆W,S =
L2κ3/2σ1/2(K)

λp

√
η2 + 1

m

(
1 +

√
2 log

(
4

δ

))

∆W,R =
4ηLνp

√
tr(K)

m
+ 6ηL

√
log(4/δ)

2m

Theorem 6 Suppose f̂DR and f∗p,λp are as defined in
Equation (5) and Equation (7) respectively. Then we have
the following with probability at least 1− δ:

Rp[f̂DR] ≤ Rp[f∗p,λp ] + ∆DR,S + ∆DR,R (20)

where ∆DR,S and ∆DR,R, representing the covariate shift
and function complexity parts of the bound, are defined as
below.

ν′ = νDR +

√√√√4L

λq

(
2νq
√

tr(K)

m
+ 3

√
log(6/δ)

2m

)

∆DR,S =
L2κ3/2σ1/2(K)

λ′

√
η2 + 1

m

(
1 +

√
2 log

(
6

δ

))

∆DR,R =
4ηLν′

√
tr(K)

m
+ 6ηL

√
log(6/δ)

2m
+
ηL

m
‖f̂q,λq‖2

Bounds using Mean Embedding

Consider the following empirical risk minimization prob-
lems:

f̂ := argmin
f∈F

R̂[f |X,Y ] s.t. f ∈ F (21)

Recall, our goal here is to obtain a bound on |Rp[f̂ ] −
Rp[f

∗
p ]|. Here, we use a different approach to obtain the

required generalization bound along the lines of (Gretton
et al., 2008). In particular, here we instantiate metatheo-
rem with T̂ [f ] = R̂[f |X,Y, β] i.e. empirical risk with shift
weights. This specific instantiation leads to a trivial bound
B i.e. B = 0.

Bound C: We now focus our attention towards obtaining
the bound C in this case. First, similar to (Gretton et al.,
2008), we require assumptions on the loss function.

Assumption 4 We assume that l(x, f) = Ey|x[`(y, f(x))]
belongs to a RKHS on X such that ‖`(x, f)‖ ≤ ρ when
f ∈ F . In addition, we also assume l(x, y, f) = `(y, f(x))
is an element of an RKHS with feature map Θ such that
‖Θ‖ ≤ κ and ‖l(x, y, f)‖ ≤ ρ when f ∈ F . 4

Under these assumptions, we can directly appeal to Corol-
lary 1.9 and Lemma 1.5 to obtain the main result of this
section.

Theorem 7 Suppose Assumptions 4 are satisfied for func-
tion class F = ‖f − f0‖ ≤ ν. Then, we have the following
with probability at least 1− δ:

sup
f :‖f−f0‖≤ν

|Rp[f ]−Rp[f∗p,λp ]| ≤ ∆K + ∆R

where meff = ‖β̂‖21/‖β̂‖22 is the effective sample size, and
∆K and ∆R, defined below, represent the covariate shift
correction and function complexity portion of the bound.

∆K =
ρκ(2 +

√
2 log(2/δ))

√
meff

+
2ρκ

√
(η2 + 1)(1 +

√
2 log(2/δ)√

m

∆R =
2Lν

√
tr(K)

m
+ 3L

√
log(2/δ)

2m
+

√∑m
i=1 f

2
0 (xi)

m

Proof Using Corollary 1.9 and Lemma 1.5 of (Gretton
et al., 2008), we have the following:∣∣∣R̂[f |X,Y, β̂]− R̂[f |X ′]

∣∣∣ ≤ ρκ(2 +
√

2 log(2/δ))
√
meff

+ 2ρκ(1 +
√

2 log 2/δ)
√

(η2 + 1)/m

4We use the same constants κ and ρ in both the cases, without
loss of generality.
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for all f ∈ F . Now using standard uniform convergence
bounds we have:

∣∣∣R̂[f |X ′]−Rp[f ]
∣∣∣ ≤ 2Lν

√
tr(K)

m
+ 3L

√
log(2/δ)

2m

Summing both the equations above and by using triangle
inequality, we get the required result.

We can now use the above bounds to derive generalization
bounds for weighted and doubly robust estimators.

Theorem 8 Suppose f̂p,λp and f∗p,λp are as defined in
Equation (4) and Equation (7) respectively. Also, suppose
the function class F = {f : ‖f‖ ≤ νp} satisfies Assump-
tion 4 with parameter ρp. Letmeff = ‖β̂‖21/‖β̂‖22 be the ef-
fective sample size. Then we have the following with prob-
ability at least 1− δ:

Rp[f̂p,λp ] ≤ Rp[f∗p,λp ] + ΓW,S + ΓW,R

where ΓW,S and ΓW,R, representing the covariate shift and
function complexity parts of the bound, are defined as be-
low.

ΓW,S =
2ρpκ(2 +

√
2 log(2/δ))

√
meff

+
4ρpκ

√
(η2 + 1)(1 +

√
2 log(2/δ)√

m

ΓW,R =
4Lνp

√
tr(K)

m
+ 6L

√
log(2/δ)

2m

Proof The result follows is similar to Theorem 1 by using
f0 = 0. In this case, Bound B is trivial. Bound C is
obtained from Lemma 3 and Lemma 2 respectively.

Theorem 9 Suppose f̂DR and f∗p,λp are as defined in
Equation (5) and Equation (7) respectively. Also, suppose
the function class F = {f : ‖f − f̂q,λq‖ ≤ ν′} satisfies
Assumption 4 with parameter ρ′, where ν′ is as defined be-
low.. Let meff = ‖β̂‖21/‖β̂‖22 be the effective sample size.
Then we have the following with probability at least 1− δ:

Rp[f̂DR] ≤ Rp[f∗p,λp ] + ΓDR,S + ΓDR,R

where ΓW,S and ΓW,R, representing the covariate shift and
function complexity parts of the bound, are defined as be-

low.

ν′ = νDR +

√√√√4L

λq

(
2νq
√

tr(K)

m
+ 3

√
log(6/δ)

2m

)

ΓDR,S =
2ρ′κ(2 +

√
2 log(6/δ))

√
meff

+
4ρ′κ

√
(η2 + 1)(1 +

√
2 log(6/δ)√

m

ΓDR,R =
4Lν′

√
tr(K)

m
+ 6L

√
log(6/δ)

2m
+
L

m
‖f̂q,λp‖2

Proof The result follows from Theorem 1 by instantiating
bounds A, B and C using Lemma 1, trivial bound 0 and
Lemma 2 respectively.

It is easy to see that generalization bound for doubly ro-
bust estimator is much better than the generic bound when
ρ′ � ρp, which is roughly the rationale behind the As-
sumption 3. Note the dependence of bounds on the effec-
tive sample size. It is also worthwhile to mention that while
we derive generalization bounds under aformentioned as-
sumptions, it is not hard to extend it to a more general set-
ting by employing ideas from the recent work of (Yu &
Szepesvári, 2012).


