
MAP estimation in Binary MRFs via Bipartite
Multi-cuts

Sashank J. Reddi∗ Sunita Sarawagi Sundar Vishwanathan
IIT Bombay IIT Bombay IIT Bombay

sashank@cse.iitb.ac.in sunita@cse.iitb.ac.in sundar@cse.iitb.ac.in

Abstract

We propose a new LP relaxation for obtaining the MAP assignment of a binary
MRF with pairwise potentials. Our relaxation is derived from reducing the MAP
assignment problem to an instance of a recently proposed Bipartite Multi-cut prob-
lem where the LP relaxation is guaranteed to provide an O(log k) approximation
where k is the number of vertices adjacent to non-submodular edges in the MRF.
We then propose a combinatorial algorithm to efficiently solve the LP and also
provide a lower bound by concurrently solving its dual to within an ε approxima-
tion. The algorithm is up to an order of magnitude faster and provides better MAP
scores and bounds than the state of the art message passing algorithm of [1] that
tightens the local marginal polytope with third-order marginal constraints.

1 Introduction

We consider pairwise Markov Random Field (MRF) over n binary variables x = x1, . . . , xn ex-
pressed as a graph G = (V, E) and an energy function E(x|θ) whose parameters θ decompose over
its vertices and edges as:

E(x|θ) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E
θij(xi, xj) + θconst (1)

Our goal is to find a x∗ = argminx∈{0,1}nE(x|θ). This is called the MAP assignment problem in
graphical models and for general graphs and arbitrary parameters is NP complete. Consequently,
there is an extensive literature of approximation schemes for the problem and new algorithms con-
tinue to be explored [2, 3, 4, 5, 6, 7, 8]. The most popular of these are based on the following linear
programming relaxation of the MAP problem.

min
µ

∑
i,xi

θi(xi)µi(xi) +
∑

(i,j),xi,xj

θij(xi, xj)µij(xi, xj)

∑
xj

µij(xi, xj) = µi(xi) ∀(i, j) ∈ E ,∀xi ∈ {0, 1}∑
xi

µi(xi) = 1 ∀i ∈ V, µij(xi, xj) ≥ 0 ∀(i, j) ∈ E ,∀xi, xj ∈ {0, 1}

(2)

Broadly two main techniques are used to solve this relaxation: message-passing algorithms [9, 10,
11, 7, 12] such as TRW-S and Max-sum diffusion on the dual and, combinatorial algorithms based
on graph cuts and network flows [13, 14]. Both these methods find the exact MAP when the edge
parameters are submodular. For non-submodular parameters, these methods provide partial optimal-
ity guarantees for variables that get integral values. This observation is exploited in [14] to design
∗The author is currently affiliated with Google Inc.
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an iterative probing scheme to expand the set of variables with optimal assignments. However,
this scheme is useful only for the case when the graphical model has a few non-submodular edges.
More principled methods to improve the solution output by the relaxed LP are based on progres-
sively tightening the relaxation with violated constraints. Cycle constraints [15, 16, 17, 18, 1, 19]
and higher order marginal constraints [17, 1, 20] are two such types of constraints. However, these
are not backed by efficient algorithms and thus most of these tightenings come at a considerable
computational cost.

In this paper we propose a new relaxation of the MAP estimation problem via reduction to a recently
proposed Bipartite Multi-cut problem in undirected graphs [21]. We exploit this to show that after
adding a polynomial number of constraints, we get aO(log k) approximation guarantee on the MAP
objective where k is the number of variables adjacent to non-submodular edges in the graphical
model, and this can be tightened to O(

√
log(k) log(log(k))) using a semi-definite programming

relaxation1. In this paper we explore only LP-based relaxation since our goal is to design practical
algorithms.

We propose a combinatorial algorithm to efficiently solve this LP by casting it as a Multi-cut prob-
lem on a specially constructed graph, the dual of which is a multi-commodity flow problem. The
algorithm, adapted from [22, 23], simultaneously updates the primal and dual solutions, and thus at
any point provides both a candidate solution and a lower bound to the energy function. It is guaran-
teed to provide an ε- approximate solution of the primal LP inO(ε−2(|V|+|E|)2) time but in practice
terminates much faster. No such guarantees exist for any of the existing algorithms for tightening
the MAP LP based on cycle or higher order marginals constraints. Empirically, this algorithm is an
order of magnitude faster than the state of the art message passing algorithm[1] while yielding the
same or better MAP values and bounds. We show that our LP is a relaxation of the LP with cycle
constraints, but we still yield better and faster bounds because our combinatorial algorithm solves
the LP within a guaranteed ε approximation.

2 MAP estimation as Bipartite Multi-cut

We assume a reparameterization of the energy function so that the parameters ofE(x|θ) (Equation 1)
are

1. Symmetric, that is for {xi, xj} ∈ {0, 1}2 θij(xi, xj) = θij(xi, xj) where xi = 1− xi,
2. Zero-normalized, that is min

xi

θi(xi) = 0 and min
xi,xj

θij(xi, xj) = 0.

It is easy to see that any energy function over binary variables can be reparameterized in this form2.

Our starting point is the LP relaxation proposed in [13] for approximating MAP x∗ =
argminxE(x|θ) as the minimum s-t cut in a suitably constructed graph H = (VH , EH). We present
this construction for completeness.

2.1 Graph cut-based relaxation of [13]

For ease of notation, first augment the n variables with a special “0” variable that always takes a
label of 0 and has an edge to all n variables. This enables us to redefine the node parameters θi(xi)
as edge parameters θ0i(0, xi). Add to H two vertices i0 and i1 for each variable i, 0 ≤ i ≤ n. For
each edge (i, j) ∈ E , add an edge between i0 and j0 with weight θij(0, 1) if the edge is submodular,
else add edge (i0, j1) with weight θij(0, 0). For every vertex i, if θi(1) is non-zero add an edge
between 00 and i0 with weight θi(1) else add edge between 01 and i0 with weight θi(0). It is easy
to see that the MAP problem minx∈{0,1}n E(x) is equivalent to solving the following program if all

1We note however that these multiplicative bounds may not be relevant for MAP estimation problem in
graphical models where reparameterization leaves behind negative constants which are kept outside the LP
objective.

2Set: θ′ij(0, 0) = θ′ij(1, 1) = (θij(0, 0) + θij(1, 1))/2, θ′ij(0, 1) = θ′ij(1, 0) = (θij(0, 1) +
θij(1, 0))/2, θ′i(1) = θi(1) +

P
(i,j)∈E (θij(1, 0) + θij(1, 1) − θij(0, 1) − θij(0, 0))/2, θ′const = θconst +P

(i,j)∈E (θij(0, 0)− θij(1, 1))/2. Then zero normalize as in [9].
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variables are further constrained to take integral values (with D(i0) ≡ xi).

min
de,D(.)

∑
e∈EH

wede

de +D(is)−D(jt) ≥ 0 ∀e = (is, jt) ∈ EH
de +D(jt)−D(is) ≥ 0 ∀e = (is, jt) ∈ EH

D(00) = 0 (Min-cut LP)
D(is) ∈ [0, 1] ∀is ∈ VH

de ∈ [0, 1] ∀e ∈ EH
D(i0) +D(i1) = 1 ∀i ∈ {0, . . . , n}

An efficient way to solve this LP exactly is by finding a s-t Min-cut in H with (s t) as (00, 01) and
settingD(i0) = 1/2 when both i0 and i1 fall on the same side otherwise setting it to 0 or 1 depending
on whether i0 or i1 are in the 00 side [13, 14]. It is easy to see that this LP is equivalent to the basic LP
relaxation in Equation 2 for which many alternative algorithms have been proposed [3, 6, 7, 9, 11].
On graphs with many cycles containing an odd number of non-submodular edges, this method yields
poor MAP assignments.

We next show how to tighten this LP based on a connection to a recently proposed Bipartite Multi-cut
problem [21].

2.2 Bipartite Multi-cut based LP relaxation

The Bipartite Multi-cut (BMC) problem is a generalization of the standard s-t Min-cut problem.
Given an undirected graph J = (N ,A) with non-negative edge weights, the s-t Min-cut problem
finds the subset of edges with minimum total weight, whose deletion disconnects s and t. In BMC,
we are given k source-sink pairs ST = {(s1, t1) . . . (sk, tk)}, and the goal is find a subset of
vertices M ⊂ N such that | {si, ti} ∩ M |= 1 and the total weight of edges from M to the
remaining verticesN −M is minimized. The BMC problem was recently proposed in [21] where it
was shown to be NP-hard and O(log k) approximable using a linear programming relaxation. The
BMC problem is also related to the more popular Multi-cut problem where the goal is to identify
the smallest weight set of edges such that every si and ti are separated. Any feasible BMC solution
is a solution to Multi-cut but not the other way round. To see this, consider a graph over six vertices
(s1, s2, s3, t1, t2, t3) and three edges (s1, s3), (t1, t2), (s2, t3). If ST = {(si, ti) : 1 ≤ i ≤ 3}, then
all pairs in ST are separated and optimal Multi-cut solution has cost 0. But, for BMC one of the
three edges has to be cut. The LP relaxations for Multi-cut provide only a Ω(k) approximation to
the BMC problem.

We reduce the MAP estimation problem to the Bipartite Multi-cut problem on an optimized version
of graphH constructed so that the set of variablesR adjacent to non-submodular edges is minimized.
Later in Section 2.3 we will show how to create such an optimized graph. Without loss of generality,
we assume that the variables in R are 0, 1, . . . , k. The remaining variables j ∈ V − R do not need
the j1 copy of j in H since there have no edges adjacent to j1. We create an instance of a Bipartite
Multi-cut problem on H with the source-sink pairs ST = {(i0, i1) : 0 ≤ i ≤ k}. Let M be
the subset of vertices output by BMC on this graph, and without loss of generality assume that M
contains 00. The MAP labeling x∗ is obtained from M by setting xi = s if is ∈ M and xi = s̄ if
is ∈ VH −M . This gives a valid MAP labeling because for each variable j that appears in the set
R, BMC ensures that M contains exactly one of (j0, j1).

Using this connection, we tighten the Min-cut LP as follows. For each u ∈ {00, 01, . . . , k0, k1} and
js ∈ VH we define new variables Du(js) and use these to augment the Min-cut LP with additional
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constraints as follows:

min
de,Du(.)

∑
e∈EH

wede

de +Du(is)−Du(jt) ≥ 0
de +Du(jt)−Du(is) ≥ 0

}
∀e = (is, jt) ∈ EH , ∀u ∈ {00, 01 . . . , k0, k1}

Di0(i1) ≥ 1 ∀i ∈ {0, . . . , k} (BMC LP)
Du(js) ≥ 0 ∀js ∈ VH , ∀u ∈ {00, 01 . . . k0, k1}

de ≥ 0 ∀e ∈ EH
Di0(j0) = Di1(j1)
Di0(j1) = Di1(j0)

}
∀i, j ∈ {0, . . . , k}

A useful interpretation of the above LP is provided by viewing variables de as the distance between
is and jt for any edge e = (is, jt), and variables Du(js) as the distance between u and js. The
first two constraints ensure that these distance variables satisfy triangle inequality. These, along
with the constraint Di0(i1) ≥ 1 ensure that for every ST pair (i0, i1), any path P from i0 to i1
has

∑
e∈P de ≥ 1. In contrast, the Min-cut LP ensures this kind of separation only for the (00, 01)

terminal pair. Later, in Section 5 we will establish a connection between these constraints and cycle
constraints [15, 16, 17, 18, 19]. When the LP returns integral solutions, we obtain an optimal MAP
labeling using M = {js : D00(js) = 0}. When the variables are not integral, [21] suggests a region
growing approach for rounding them so as to get a O(log k) approximation of the optimal objective.
In practice, we found that ICM starting with fractional node assignments xi = D00(i0) gave better
results.

2.3 Reducing the size of ST set

In the LP above, for every edge that is non-submodular we add a terminal pair to ST corresponding
to any of its two endpoints. The problem of minimizing the size of the ST set is equivalent to the
problem of finding the minimum set R of variables of G such that all cycles with an odd number of
non-submodular edges are covered. It is easy that see that in any such cycle, it is always possible
to flip the variables such that any one selected edge is non-submodular and the rest are submodular.
Since finding the optimal R is NP-hard, we used the following heuristics.

First, we pick the set of variables to flip so as to minimize the number of non-submodular edges,
and then obtain a vertex cover of the reduced non-submodular edges using a greedy algorithm.
Interestingly, this problem can be cast as a MAP inference problem on G defined as follows: For
each variable, label 0 denotes that the variable is not flipped and 1 denotes that the node is flipped.
Thus, if an edge is submodular and both variables attached to it are flipped (i.e labeled 1) then the
edge remains submodular. We need to minimize the number of non-submodular edges. Therefore,
energy function for this new graphical model will be

θij(xi, xj) = xi ⊕ xj ⊕ is non submodular(i, j) ∀(i, j) ∈ E
θi(0) = θi(1) = 0 ∀i ∈ V

WhenG is planar, for example a grid, the special structure of these potentials (Ising energy function)
enables us to get an optimal solution using the matching algorithm of [24, 8].

With the above LP formulation, we were able to obtain exact solutions for most 20x20 grids and 25
node clique graphs. However, the LP does not scale beyond 30x30 grid and 50 node clique graphs.
We therefore provide a combinatorial algorithm for solving the LP.

3 Combinatorial algorithm

We will adapt the primal-dual algorithm that was proposed in [22, 23] for solving the closely related
Multi-cut problem. We review this algorithm in Section 3.1 and in Section 3.2 show how we adapt
it to solve the BMC LP.
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3.1 Garg’s algorithm for the Multi-cut problem

Recall that in the Multi-cut problem, the goal is to remove the minimum weight set of edges so as to
separate each (si, ti) pair in ST. This problem is formulated as the followed primal dual LP pair in
[22].

Multi-cut LP: Primal

min
d

∑
e∈EH

wede

∑
e∈P

de ≥ 1 ∀P ∈ P

de ≥ 0 ∀e ∈ EH

Multi-cut LP: Dual

max
f

∑
P∈P

fP∑
P∈Pe

fP ≤ we ∀e ∈ EH

fP ≥ 0 ∀P ∈ P

whereP denotes all paths between a pair of vertices in ST andPe denotes the set of paths inP which
contain edge e. Garg’s algorithm [22, 23] simultaneously solves the primal and dual so that they are
within an ε factor of each other for any user-provided ε > 0. The algorithm starts by setting all dual
variables flow variables to zero and all primal variables de = δ where δ is (1+ε)/((1+ε)L)1/ε, and
L is the maximum number of edges for any path in P . It then iteratively updates the variables by
first finding the shortest path P ∈ P which violates the

∑
e∈P de ≥ 1 constraint and then, modifying

variables as fP = mine∈P we i.e f = f+fP and de = de(1+ εfP

we
) ∀e ∈ P . At any point a feasible

solution can be obtained by rescaling all the primal and dual variables. Termination is reached when
the rescaled primal objective is within (1 + ε) of the rescaled dual objective for error parameter ε.
This process is shown to terminate in O(mlog1+ε

1+ε
δ ) steps where m = |EH |.

3.2 Solving the BMC LP

We first modify the edge weights on graph H constructed for the BMC LP so that for all edges
e = (is, jt) and its complement ē = (is̄, jt̄), the weights are equal, that is, we = wē. This can be
easily ensured by setting we = wē = average of previous edge weights of e and e inH . This change
adds all (2n + 2) possible vertices to H i.e all nodes 0 ≤ i ≤ n contain terminal pairs (i0, i1)
in the ST set. For any path P in H we define its complementary path P̄ to be the path obtained
by reversing the order of edges and complementing all edges in P . For example, the complement
of path (20, 11, 30, 21) is (20, 31, 10, 21). Next, we consider the following alternative LP called
BMC-Sym LP for BMC on symmetric graphs, that is, graphs where we = wē

min
∑
e∈EH

wede

∑
e∈P

de ≥ 1 ∀P ∈ P (BMC-Sym LP)

de ≥ 0, de = de ∀e ∈ EH

Lemma 1 When H is symmetric, the BMC-Sym LP, BMC LP, and Multi-cut LP are equivalent.

PROOF Any feasible solution of BMC-Sym LP can be used to obtain a solution to BMC LP with the
same objective as follows: Set de variables unchanged, this keeps the objective intact. Set Du(is)
as the length of the shortest path between u and is that is, Du(is) = minP∈paths(u,is)

∑
e∈P de.

This yields a feasible solution — the constraints de + Du(is) − Du(jt) ≥ 0 hold because Du(is)
variables are the shortest path between u and is. The constraints Di0(i1) ≥ 1 hold because all paths
between i0 and i1 have a distance ≥ 1 in BMC-Sym LP. The constraints Di0(j0) = Di1(j1) and
Di0(j1) = Di1(j0) are satisfied because the distances are symmetric de = de.

We next show that any feasible solution of BMC LP gives a feasible solution to Multi-cut LP with
the same de and objective value. For any pair (p0, p1) ∈ ST the constraint Dp0(p1) ≥ 1 along with
repeated application of de+Dp0(is)−Dp0(jt) ≥ 0 ensures that

∑
e∈P de ≥ 1 for any path between

p0 and p1.

Finally, we show that if {de} is a feasible solution to Multi-cut LP then it can be used to construct a
feasible solution {d′e} to BMC-Sym LP without changing the value of the objective function using
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d′e = d′e = (de + de)/2. The objective value remains unchanged since we = we. The path con-
straints

∑
e∈P d

′
e ≥ 1 hold ∀P ∈ P because both path P and its complementary path P are in P

and we know that
∑
e∈P de ≥ 1 and

∑
e∈P de =

∑
e∈P de ≥ 1.

We modify Garg’s algorithm [22, 23] to exploit the fact that the graph is symmetric so that at each
iteration we push twice the flow while keeping the approximation guarantees intact. The key change
we make is that when augmenting flow f in some path P , we augment the same flow f to the
complementary path P as outlined in our final algorithm in Figure 1. This change ensures that we
always obtain symmetric distance values as we prove below.

Lemma 2 Suppose H is a symmetric graph then de = de ∀ e ∈ EH at the end of each iteration of
the while loop in algorithm in Figure 1.

PROOF We prove by induction. The claim holds initially, since de = δ ∀e ∈ EH and H is sym-
metric. Let Pi denote the path selected in the ith iteration of the algorithm. Now, suppose that the
hypothesis is true for the nth iteration. In the (n + 1)th iteration, we augment flow f in both paths
Pn+1 and Pn+1. These paths Pn+1 and Pn+1 do not share any edge because this would imply that
there is another pair (j0, j1) of shorter length, and we would choose Pn+1 to be this path instead.
We then do the following update de = de(1 + εfP

we
) with fP = mine∈P we for both the paths Pn+1

and Pn+1. Since we = we for all e ∈ E and de = de ∀ e ∈ EH before this iteration, de = de
∀ e ∈ EH after (n+ 1)th step.

Theorem 3 The modified algorithm also provides an ε-approximation algorithm to the BMC LP.

PROOF Suppose, we do not augment the flow in the complementary path P while augmenting P .
In the next iteration the original algorithm of [22, 23] picks P or any path with the same path length
since the path length of P and P is equal before the iteration and they do not share any common
edges. Therefore, by forcing P we are not modifying the course of the original algorithm and the
analysis in [22, 23] holds here as well.

Input: Graphical model G with reparameterized energy function E, approximation guarantee ε
Create symmetric graph H from G and E
Initialize de = δ (δ derived from ε as shown in Section 3.1), and f = 0, fe = 0,
x=arbitrary initial labeling of graphical model G.
Define: Primal objective P ({de}) =

∑
e wede/minP∈P

∑
e∈P de

Define: Dual objective D(f, {fe}) = f/(maxe fe/we)
while min (E(x)− θconst, P ({de})) > (1 + ε)D(f, {fe}) do
P = Shortest path between (i0, i1) ∀(i0, i1) ∈ ST
if (
∑
e∈P de < 1) then

With fP = min
e∈P

we update f = f + fP , fe = fe + fP , de = de(1 + εfP

we
) ∀e ∈ P .

Repeat above for the complement path P
x′ = current solution after rounding, x =better of x and x′

end if
end while
Return bound = D(f, {fe}) + θconst, MAP = x.

Figure 1: Combinatorial Algorithm for MAP inference using BMC.

Our algorithm in addition to updating the primal and dual solutions at each iteration, also keeps track
of the primal objective obtained with the current best rounding (x in Figure 1). Often, the rounded
variables yielded lower primal objective values and led to early termination. The complexity of the
algorithm can be shown to be O(ε−2km2) ignoring the polylog(m) factors. Fleischer [25] subse-
quently improved the above algorithm by reducing the complexity to O(ε−2m2). It is interesting
to note that running time is independent of k. Though we have presented modification to algorithm
in [22, 23], we can fit our algorithm in Fleischer’s framework as well. In fact, we use Fleischer’s
modification for practical implementation of our algorithm.
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Figure 2: Clique size scaled values of MAP, Upper bound, and running time with increasing clique
size on three methods: BMC, MPLP, and TRW-S.
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Figure 3: Comparing convergence rates of BMC and MPLP for three different clique graphs.

4 Experiments

We compare our proposed algorithm (called BMC here) with MPLP, a state-of-art message passing
algorithm [1] that tightens the standard MAP LP with third order marginal constraints, which are
equivalent to cycle constraints for binary MRFs. As reference we also present results for the TRW-S
algorithm [9]. BMC is implemented in Java whereas for MPLP we ran the C++ code provided by
the authors. We run BMC with ε = 0.02. MPLP was run with edge clusters until convergence (up to
a precision of 2×10−4) or for at most 1000 iterations, whichever comes first. Our experiments were
performed on two kinds of datasets: (1) Clique graph based binary MRFs of various sizes generated
as per the method of [17] where edge potentials are Potts sampled from U [−σ, σ] (our default setting
was σ = 0.5) and node potentials via U [−1, 1], and (2) Maxcut instances of various sizes and
densities from the BiqMac library3. Since the second task is formulated as a maximization problem,
for the sake of consistency we report all our results as maximizing the MAP score. We compare the
algorithms on the quality of the final solution, the upper bound to MAP score, and running time. It
should be noted that multiplicative bounds do not hold here since the reparameterizations give rise
to negative constants.

In the graphs in Figure 2 we compare BMC, MPLP, and TRW-S with increasing clique size aver-
aged over five seeds. We observe that BMC provides much higher MAP scores and slightly tighter
bounds than MPLP. In terms of running time, BMC is more than an order of magnitude faster than
MPLP for large graphs. The baseline LP (TRW-S) while much faster than both BMC and MPLP
provides really poor MAP scores and bounds. We also compare BMC and MPLP on their speed of
convergence. In Figures 3(a), (b), and (c) we show the MAP and Upper bounds for different times
in the execution of the algorithm on cliques of size 50 and different edge strengths. BMC, whose
bounds and MAP appear as the two short arcs in-between the MAP scores and bounds of MPLP,
converges significantly faster and terminates well before MPLP while providing same or better MAP
scores and bounds for all edge strengths.

In Table 1 we compare the three algorithms on the various graphs from the BiqMac library. The
graphs are sorted by increasing density and are all of size 100. We observe that the MAP values for
BMC are significantly higher than those for TRW-S. For MPLP, the MAP values are always zero
because it decodes marginals purely based on node marginals which for these graphs are tied. The
upper bounds achieved by MPLP are significantly tighter than TRW-S, showing that with proper
rounding MPLP is likely to produce good MAP scores, but BMC provides even tighter bounds in

3http://biqmac.uni-klu.ac.at/
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MAP Bound Time in seconds
Graph density BMC MPLP TRW-S BMC MPLP TRW-S BMC MPLP TRW-S
pm1s 0.1 110 0 91 131 200 257 45 43 0.005
pw01 0.1 1986 0 1882 2079 2397 2745 48 46 0.006
w01 0.1 653 0 495 720 1115 1320 46 41 0.004
g05 0.5 1409 0 1379 1650 1720 2475 761 317 0.021
pw05 0.5 7975 0 7786 9131 9195 13696 699 1139 0.021
w05 0.5 1444 0 1180 2245 2488 6588 737 1261 0.021
pw09 0.9 13427 0 13182 16493 16404 24563 106 2524 0.041
w09 0.9 1995 0 1582 4073 4095 11763 123 2671 0.053
pm1d 0.99 347 0 277 842 924 2463 12 1307 0.047

Table 1: Comparisons on Maxcut graphs of size 100 from the BiqMac library.

most cases. The running time for BMC is significantly lower than MPLP for dense graphs but for
sparse graphs (10% edges) it requires the same time as MPLP.

Thus, overall we find that BMC achieves tighter bounds and better MAP solutions at a significantly
faster rate than the state-of-the-art method for tightening LPs. The gain over MPLP is highest for
the case of dense graphs. For sparse graphs many algorithms work, for example recently [8, 26]
reported excellent results on planar, or nearly planar graphs and [27] show that even local search
works when the graph is sparse.

5 Discussion and Conclusion

We put our tightening of the basic MAP LP (Marginal LP in Equation 2 or the Min-cut LP) in
perspective with other proposed tightenings based on cycle constraints [17, 18, 1, 19] and higher
order marginal constraints [17, 1, 20]. For binary MRFs cycle constraints are equivalent to adding
marginal consistency constraints among triples of variables [28]. We show the relationship between
cycle constraints and our constraints. Let S = (VS , ES) denote the minimum cut graph created
from G as shown in Section 2.1 but without the i1 vertices for (1 ≤ i ≤ n) so that weights of
non-submodular edges in S will be negative. The LP relaxation of MAP based on cycle constraints
is defined as:

min
d

∑
e∈ES

w′ede∑
e∈F

(1− de) +
∑

e∈C\F
de ≥ 1 ∀C ∈ C, F ⊆ C and | F | is odd

de ∈ [0 . . . 1] ∀e ∈ ES
where C denotes the set of all cycles in S. Suppose we construct our symmetric minimum cut graph
H with edges (is, jt) corresponding to all four possible values of (s, t) for each edge (i, j) ∈ E ,
instead of two that we currently get due to zero-normalized edge potentials. Then, BMC-Sym LP
along with the constraints disjt + disjt = 1 ∀(is, jt) ∈ EH is equivalent to the cycle LP above. We
skip the proof due to lack of space.

Our main contribution is that by relaxing the cycle LP to the Bipartite Multi-cut LP we have been
able to design a combinatorial algorithm which is guaranteed to provide an ε approximation to the
LP in polynomial time. Since we solve the LP and its dual better than any of the earlier methods of
enforcing cycle constraints, we are able to obtain tighter bounds and MAP scores at a considerable
faster speed.

Future work in this area includes developing combinatorial algorithm for solving the semi-definite
program in [21] and extending our approach to multi label graphical models.
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