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Abstract

Agent-basedn-linenegotiationtechnologyhasthe

potential ability to radically changethe way e-

businessis conducted. In this paper we present
a formal modelfor autonomousagentsto negoti-

ate on the Internet. In the basic negotiation sce-
nario, we validate our model by shaving that an

agentwill never make an offer thatcanpossiblybe

exploited by its opponents.In our model, the ne-

gotiation processis driven by the internal beliefs
of participatingagents We empiricallyidentify the

relative strengthof agroupof beliefupdatingmeth-
odsandshav how anagentcanchangats behavior

by adjustingsomecritical parameters.

1 Intr oduction

With the rapid growth of Internet, autonomoussoftware
agents,which canbe viewed as delggatesof humanbeings
in the cyberspacehave dravn muchattentionin recentyears
becausef theirpotentialcapacityto radicallychangehecur-
rent style of practicinge-hbusiness.For example,a software
agent,deployed asa delggateof its mastey canshopon the
Weh Oncefinding the commodityit is looking for, it will
bamgainwith the owneraboutthe price, just asa humanwill
do. The owner, probably is anagentaswell. Comparedo
today’s passve on-line shopping,where peoplethemseles
searchthe Web and finish the trademanually we think the
agent-delgatedshoppingwill be the way of future on-line
trading.

However, beforethe wide applicationof multi-agentsys-
temsin the real-world electroniccommerce,sereral chal-
lenges,including both technicaland socialaspectsmustbe
addressefiSycara]1994. Oneof thesechallengess to deter
mine how theseheterogeneouself-interestecgentsshould
interactand negotiatewith eachother, giventhatthereis no
global control on the Internet. A commonapproachto this
problemis to constructa negotiation modelthat guidesthe
agents’nggotiationactuities.

Researcherbave investigatedvariousnegotiationmodels
from different points of view for a long time. Gametheo-
ristsview aneggotiationasa dynamic,incompletenformation
game,andtry to solve the gameby giving somepredicted
outcomesin certainconditions. Volumesof literature exist

in this field. A goodsurwey canbe foundin Bichler [2004.
Although successfuln someproblems the game-theoretical
approachs hardto extendto generalproblemdomains sim-
ply becausehe complexity andinherentuncertaintyin real-
world negotiationthwart accurateanalysis.

In this paperwe presentacomputationamodelfor on-line
agentnegotiation. Insteadof focusingon the predictedout-
comes,our modelemphasizeghe negotiation processtself.
Specifically we modela negotiation processasa sequential
decision-makingprocess:In every negotiationiteration, an
agentchecksthe history of the process,updatesits beliefs
aboutits opponentsandthentries to maximizeits own ex-
pectedpayof basednits own subjectie beliefs.

Whenbamainingwith others,a humans subjectve beliefs
play animportantrole. A buyer (she)may just believe that
the seller(he) will never decreasdnis price offer in the next
negotiationround. Shemay be right (becauseher spy told
hercurrentoffer is the sellersresenation price). Or shemay
bewrong(becausehesellerintentionallyleakedthefalsein-
formationto herspy). Whatever sheis right or wrong, her
mentalbeliefswill play a samerole in the negotiationasfar
asthe outcomesare concerned.In this paper we conducta
seriesof experimentsto examinethe impactof differentbe-
liefs on the outcomeof a basicon-line negotiationscenario.
Ourapproachdirectly modelthementalbeliefsandexamine
their impacton the outcomesjs sharedby otherresearchers
in multiagentsystemsBazzarandBordini [2004 studiedthe
impactof agents™personalities”on outcomeof the Minor-
ity Game.Senetal.[200d examineda probabilisticstratayy,
which can be interpretedas the agents beliefs aboutother
agents,usedby an agentto help othersin a not-perfectly-
friendly environment. Gmytrasievicz and Lisetti [2000 di-
rectly modeledan agents “mental emotion” asa probability
distribution over the possiblestateof the ervironment.Here
we directly modelan agents beliefsover its opponentsac-
tion sets.Thejoint actionsof all theagentdrive the environ-
mentto shift. Everyagentriesto maximizeits final payof by
choosingits own optimal actionbasedon its own subjectve
beliefs.

Ourwork is closerelatedto theline of researcton “belief-
desire-intentionBDI) model”, in which agentsadaptthem-
selesto theuncertainernvironmentby usingdifferent“inten-
tion reconsideratiomolicies”. In our model,the uncertainty
rootsin the negotiation processtself: agentsare uncertain



aboutwhat actionstheir opponentsnay take and usediffer-
ent“belief updatingmethods'to interactwith eachother An
empirical study of different“intention reconsideratiorpoli-
cies” canbefoundin [SchutandWooldridge,2004.

2 Formal models

Consider a game with m states played by n players
in a limited time horizon mazT. In eachtime period
t=0,1,...mazxT — 1, eachplayertakesanactionsimulta-
neously Drivenby thejoint actionstaken of all the players,
the gametransfersto anotherstateat time ¢t + 1. For each
playeri thefollowing informationis associatedvith it.

Publicinformation(shareavith all otherplayers):
e A, : afinite setof all possibleactionsplayeri maytake.
e T; : afinite setof all possibletypesplayeri maybe.

o M ={S,sg,JAS, O} : atransitionautomatorthatde-
finesthe structureof thegame.Where

— S is afinite setof states. S consistsof terminal
statesaandnonterminaltates.

— 3¢ istheinitial stateof thegame.

— JAS istheinputalphabebf theautomatonwhere
JAS = H?:l A; is the Cartesiarproductionof n
players’actionsets.Eachmembeiin the JAS is a
n-tuple,theith elemenbf thistuplecorrespondo
theactiontakenby playeri. Thefactthattheinput
symbolsaren-tuplesmeanghatthe stateto which
thegamewouldtransferdependsnall players.For
ary individualplayer, evenaftertakingacertainac-
tion, it doesnt know whatthe next statewould be.
ThenameJAS standdor JointAction Sets.

— O : transitionfunction of the automaton,which
mappingajoint actionto astatej.e. O(s, y), where
s € S,y € JAS, denoteghestateto which theau-
tomatonwould transferfrom states giventhejoint
actiony.

Privateinformation(onlyknown to player: itself):
e r; : therealtypeof playeri, r; € T;.

e U;(s,r;) : utility functionof playeri, which denoteshe
payof player: will getif thegameendsat states € S
andits realtypeis r;.

e Prob;(a;): the probability playeri believesthat player
J wouldtake actiona;.

At eachtime periodt < mazT, if currentstateis a ter
minal states, the gameendsandall playersobtaintheirfinal
payofs U;(s,r;). Otherwise the gamegoesforward, player
1 computests payof by following formula,

Payof fi(s) = maj({ H Prob;(aj) x Payof fi™(s')}
a; €EA; ]:1‘7#1

wheres’ = O(s,a) is the stateto which the gametransfers

from states, drivenby thejoint actiona = [];_, a takenby

all theplayers.

To maximizeits expectedpayof, playeri shouldtake ac-
tion a; suchthat

af = arg max { H Prob;(a;) x Payof fit(s")}. (2)
a;EA;
J=15#4
At thelastperiodmazT', thepayof is realizedasutility func-
tion of playeri. i.e.:

Payof f**"(s") = Ui(s', r3). ®3)

In the classicgametheory the word “type” refersto some
private information that characterizesn individual playet
All the players’ beliefs aboutwhat “types” othersmay as-
sumeform the“commonknowledge”of thegamej.e.,every-
oneknowsthateveryoneknowsthat....everyoneknowsthose
beliefs. Basedon the “commonknowledge”, the gamecon-
vergesto certainequilibrium. In a Internetnegotiationsce-
nario, for instance the shoppingexamplementionedbefore,
it is generalhardfor the software agentsto form the “com-
monknowledge”aboutothers’types(resenationprices).In-
steadagents’actions(price offers)arealwaysobsenable.In
ourmodel,playersobsenetheir opponentsactions,jnterpret
thoseactionsbasedon somesubjectve beliefsandthentake
correspondingctionto maximizetheir own payofs. Every
playerssubjective beliefsareits own “personalexperiences”,
not sharedwith anyoneelse. Justas“experiences’of a hu-
mannegotiatorwill determinehis stratgy, “beliefs” held by
anagentin our modelwill determindts behaior in negotia-
tion.

If aplayerchoosedo negotiatewith only oneotherplayer,
thetime spentby it to computeits bestofferis O(| A; || 42| *
m * mazT) in eachiteration, where|4,|,|A4,| arethe re-
spectie sizesof the action setsof thesetwo players. The
gamekeepsgoing for at mostmazT" periods,hencethe to-
tal computationcomplexity is O(| A || 42| x m * maxT?) at
worstcase.lf onechoosedo negotiationwith multiple play-
erssimultaneouslythe computatiortime will be exponential
to the numberof players.But onecansolve this problemby
carefully choosingthe numberof playersbasedon its com-
putationalresourceconstraints.

3 Negotiation process

In this section,we shav how to apply abore modelto model
a basicnegotiation scenarioinvolving one buyer, one seller
andone commodity The buyerandthe sellerhave resena-
tion priceswy,, vs on the commodity respectiely. In each
negotiation iteration ¢, the buyer and the seller offer price
proposalssimultaneously If the buyer’s offer b; is no less
thanthesellers offer s;, thegameends.Otherwisethegame
goesto next iterationuntil reachingthe maximaltime hori-
zonmazT. Clearly, v, theresenation price of the buyer, is
a crucial pieceof informationto characterizehe buyer, thus

(Lwe setthe“real type” of thebuyerto bewv,. Similarly, thereal

type of the selleris vs. To explicitly expressthe statesof the
negotiationgame we make two assumptions:

e Thereis a price range[minP, maxP] agreedby both
playersanduy, vs, be, s¢ all belongto this range.



e The playershave seta minimal price increase/decrease
unit beforethe gamebegins.

Giventhese2 assumptionswe canchangethe price scale
suchthat all the pricesinvolvedin the negotiationareinte-
gers. For example,if the price rangeis [$0, $78.10] andthe
price increase/decreaamit is 0.1 dollar, we can scalethe
unitto 1 dimeandthenthe pricerangebecomes0, 781]. So,
in thefollow partof this paper we alwaysassumehatall the
prices Jowerandupperboundof thepricerange areintegers.
Oncewe malke the price rangediscrete we candefineother
parametersf thegamebasecdbn the pricerange.Namely:

¢ Thestatesetof thegameis definedas[minP, maxz P] x
[minP,maxP]. A states is an orderedpair (z,y),
wherez is the sellers price offer, y is the buyer’s price
offer. If z < y, s is aterminalstate,otherwise,it is a
nonterminalktate.

e The action setsand the type setsfor both playersare
[minP, mazP].

e The transition function of the game is defined as
O(s,a) = a for nonterminalstates, i.e., from a non-
terminal state,the gamecantransferto ary other state
definedby two playersjoint actions.For example,if the
currenttimeis ¢ andthe currentstateis (10, 5), sincethe
sellers offer 10 is greatetthanthe buyer's offer 5, it is a
nonterminalktate.If the selleroffers9 andthe buyerof-
fers6, thenthe gametransfersto state(9, 6) in the next
iterationt 4+ 1. For aterminalstate,© is undefinedsince
thegameendsin this state.

e Every player maintainsa vectorof beliefs over its op-
ponents action set. During eachiteration, the beliefs
arefixed. A playermay updateits beliefs betweenit-
erations. The methodsof updatingthe beliefswill be
discussedh next section.

In a real-world negotiation, a buyer always prefersto
a lower price for a certain commodity Our model in-
corporatesthis obsenation by requiring that the buyer’s
utility function to be monotonous,i.e., Upyyer Satisfies
Ubuyer(51,08) > Upuyer(s2,vp) for ary statess;, so such
thats; = (z,v1),82 = (z,y2) andy; < y». If the game
endsatanonterminaktate theplayersdonotagreewith each
otherandhenceno tradewill happen.In this case boththe
buyer and the seller get nothing. So, Upyyer(s,vs) Should
equalto O for ary nonterminaktates, i.e.,thereis no penalty
for bothplayersf they fail to makeanagreementif thesewo
conditionshold, for whatever beliefs (aslong asthey form a
probability distribution) a buyermay hold, shewill never of-
fer apricehigherthanherresenationprice.

Proposition 1: The buyer will never offer a price higher
thanherresenationpricevy.

Proof: Referto [ HuangandSycara2004.

By symmetry we cangetanothempropositionwith respect
to theseller:

Proposition 2: The sellerwill never offer a price lower
thanhisresenationpricev,.

Thesetwo propositionsvalidateour modelin the basicne-
gotiationscenario.They look reasonablendsimple,but the
interestthing hereis thatwe achieve this reasonabléehaior

by pure computationsnsteadof imposinglogic rulesto the
model.

4 Experiments and analysis

In all experiments,we assumethat all the conditionsmen-
tionedin section3 hold. And we still stick to the basicnego-
tiation setting:onebuyer, onesellerandonecommaodity

Beforecheckingthe updatingmethodswe first definethe
players'utility functions.Throughoutthis sectionpothplay-
ersusethelinearutility functions.Thebuyer’sutility function
is definedas:

- <
Ubuyer ((z, ), vp) :{ Vp , 2ox<y

Thesellers utility functionis definedas:

- Yy <
Useller((-z';y)avs) = { vs—(i)_ 2 mO?Uy

In aboreformulas,s = (z,y) isastate.As saidbeforez < y
meanss is aterminalstate.

Supposeat time t, the sellers offer is s;,andthe buyer’s
offeris b;, we comparehefollowing beliefupdatingmethods
(Herewe statethemethoddrom thebuyer’'s perspectre. It is
easyto give the correspondindormulasfor the seller):

1. Thebuyerdoesnt updateatall, andalwaysuseghe uni-
form distribution over the priceintenal [min P, max P]

2. The buyer sets a uniform distribution over interval
[minP, ;]

3. The buyer setsan exponentialdistribution over interval
[minP, s¢], ands; hasthehighestprobability:

1 a—

s
Probyyyer(a) = - 6P ¢

{ﬂ(mamT — 1) }

wherea € [minP,s;], Z is a normalizationfactor, ¢
is the currenttime, maxzT is the time horizon, 8 is a
parameter

4. Thebuyer setsan exponentialdistribution over interval
[minP, s¢], andmin P hasthe highestprobability

5. The buyer sets a uniform distribution over interval
[bt, 5¢]

6. The buyer setsan exponentialdistribution over interval
[bs, s¢], ands; hasthe highestprobability

7. The buyer setsan exponentialdistribution over interval
[bt, s¢], andb; hasthe highestprobability

In the method3,4,6and 7, the time horizon of the game
hasbeentakeninto considerationin the method3 and6, the
lessthe time left, the morethe buyer believesthatthe seller
will not changehis currentoffer s;. While in method4 and
7, the buyer doesnot believe that the selleris offering hera
reasonabl@rice. Thelessthetime left, themoreshebelieves
thatthesellerwill decreaséis currentoffer s;.



4.1 Both players usethe samemethod

For the buyer, the updatingmethod2, 3 and4 setprobabil-
ities over interval [minP, s;]. For the seller the interval is
[bt, mazP]. In Figure 1, we shav the tradepricesfor the
casesvhereboththebuyerandthesellerusethesamemethod
in this group(method2, 3 and4). We fix the buyer’s reser
vation price to be 100, increasehe seller’s resenation price
from 0 to 100 with steplength5. We setg = 5 for method
3 andpg = 100 for method4. In Figure 1, the x-coordinate
is the sellers resenation price; and the y-coordinateis the
final tradeprice. Fromthe results,we canfind that method
4 producedhe “hardest”negotiatoramongthesethreemeth-
ods: only whenthe sellers resenation price falls betweer)
and30, theplayerscanmake adeal.If thesellersresenation
priceis higherthan30, eventhoughthereexistsa potentially
wide negotiationrange they donotgetanagreementOnthe
otherhand, method3 produceghe “easiest’negotiator: for
the sellers resenation price varying from 0 to 90, they can
alwaysclosea deal. Method 2 standsbetweenthe “easiest”
andthe “hardest”. The rangefor method2 to make a dealis
[0, 45].

Whatis theeffectof changing3 in method3 andmethod4?
A little thoughtwill confirmusthatwith abiggers, method3
will becoméharder”,andmethod4 will becomé‘easier”. A
biggerg will make the exponentialdistributions of methods
3 and4 (with oppositetail directions)corvergeto anuniform
distribution, whichis thedistribution usedin method2.
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Figure1: o:method2, *:method 3 with 3 = 5, +:method4 with
B =100

In method2, 3 and 4, whenthe currentprice offered by
the selleris s;, the buyer setsthe probabilitiesover range
[minP, s¢]. Giventhatthe buyerhasofferedb; attimet, the
sellerwill never offer apricelowerthanb; aftertimet. Simi-
larly, the buyerwill never offer a price higherthanthelowest
price proposedy thesellerbefore. Thereforejt seemsnore
reasonabléor the buyerandthe sellerto setthe probabilities
over [bs, s;]. Thatis whatmethod5, 6 and7 do. We shaw
theresultsin Figure2. In this experimentall the settingsare
the sameasthosein the first experimentexceptthatthe up-
datingmethodsarechangedo method5, 6 and7. We cansee
thatthis groupof methodsare more efficient thanthe meth-
odsusedin thefirst experiment:with the buyer's resenation
price fixed at 100 and the sellers resenation price varying

%10 20 30 40 50 60 70 80 80 100
Figure2: o:methods, *:method6 with 8 = 5, +:method7 with3 =
100

from 0 to 95, the playerscan always reacha deal by using
ary oneof thesethreemethods.An explanationto thesere-
sultsis thatsincebothplayershave more“reasonablebeliefs
on what price their opponentwill offer, it is easierfor them
to negotiatesuccessfully Similarly, increasingd will make
method6 and7 convergeto methods.

4.2 Playersusedifferent methods

In the above experiments,we showved the final trade prices
if both playersusethe samebelief updatingmethod. In this
section,we usea seriesof experimentsto shav what will
happenf playersusedifferentupdatingmethodsin all these
experiments the settingsare the sameas thosein previous
subsection.

Figure 3 shaws the casewherethe seller usesmethod4
andthebuyerusesmethod?2. In Figurel, we show the cases
whereboth playersusemethod4 andmethod?2. In orderto
comparewith thoseresults,we show theresultsof thosetwo
caseshereagain. Comparedo the casewhereboth player
usemethod4, now the buyer switchesto a “weaker” updat-
ing method,sothe sellermanageso sell hisitem at a higher
price, andalsoextendsthe resenation price rangeon which
heis willing to make a dealwith the buyer Comparedo the
casewhereboth playersusemethod2, now the sellerusesa
harderupdatingmethod,so he still managego sell his item
at a higher price but shrinksthe resenation price rangeon
which heis willing to make adeal.

In the casewherethe sellerusesmethod2, the buyer uses
method3, asshowvn in Figure 4, we canfind that the seller
takesmuchadwantageover the buyer. Comparedo the case
where both playersuse method 2, the fact that the buyer
switchesto a wealer method3 is exploited by the seller so
he canmanageto sell his item at a muchhigherprice while
extendingthe resenation price rangesimultaneously Com-
paredto the casewhereboth playersusemethod3, although
the seller decreaseshe resenation price rangea little, the
tradepricesaremuchhigherthanthoseobsenedin Figure2.

Figure5 shavsthecasewherethesellerusesmethod7 and
the buyer usesmethod5. Herewe only comparethe results
with thosein the casewhereboth playersusemethod5 be-
causethe resultsobtainedby using method5 and method7
arevery close,asshavn in Figure2. In Figure5, we also
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Figure3: o:bothusemethod?, +:bothusesnethod4 with 3 = 100,
x: thesellerusesmethod4 with3 = 100, the buyerusesmethod2
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Figure4: o:bothusemethod?, *:both usemethod3 with 3 = 5, x:
thesellerusesmethod2, the buyerusesmethod3 with 8 = 5

shaw theresultswheretheselleruseamethods andthebuyer
usesmethod6. In this case,sincethe sellerusesa wealer
method, the trade prices are lower than thosein the case
whereheusesmethod6.

In Figure6, we shav the tradepriceswherethe selleruses
method4, the buyerusesmethod7, andbothwith g = 100.
We canseethatthe sellertakesobvious advantageover the
buyer.

In Figure7. we show thetradepriceswherethe selleruses
method2 andthe buyerusesmethod5.

In Figure 8. we shav the resultswhere the seller uses
method3 andthe buyerusesmethod6. Herethe buyeruses
a strongemethodandshemanagego buy the item at lower
prices.

Till now, we have not elaboratecbn method1. In Figure
9 we shav theresultswherethe sellerusesmethodl andthe
buyer usesmethod3. We canseethat method1 is closeto
method3 with 3 = 5 . But method3 hasan extra desirable
feature:it performsaswell asmethodl whenthesellerhasa
low resenationprice,andis moreflexible whenthesellerhas
ahighresenationprice. As shavnin thefigure,if thesellers
resenation price exceeds40 andboth playersusemethodi,
they cant reacha deal. But if the buyerusesmethod3, they
canmale adeal.

To explain all theseresults,let’s first take a closelook at
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Figure5: o:bothusemethod5, x: the buyer usesmethod5 , the

sellerusesmethod? with 8 = 100, +: the buyerusesmethod5, the
sellerusesmethod6 with 3 = 5
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Figure6: *:both usemethod4 with 8 = 100 , +: bothusesmethod
7 with 8 = 100, x: the buyerusesmethod?, the sellerusesmethod
4,bothset = 100

the group of method2,3 and4. We claim that method4 is
“harder” thanmethod2. To show this, let’s take the buyer’s
pointof view. Method4 andmethod2 both setthe probabili-
tiesoverinterval [min P, s;]. Theprobabilityin method4 de-
creasegxponentiallyfrom minP to s;. This meanghatthe
buyer believesthat the chancefor the sellerto offer a lower
priceis exponentiallyhigherthanthe chancefor the sellerto
offer a higherprice. The probability distribution in method
2 is uniform. This meansthatthe buyer believesthatall the
pricesin range[minP, s;] are equallylikely to be proposed
by theseller In areal-word negotiation,no oneknows what
kind of beliefsare “right” without extra information; but it
is exactly the differentbeliefsthat malke the negotiatorsbe-
have differently. Obviously, if the buyer holdsthe beliefs of
method4, shewill be a hardernegotiatorthanthe onewho
holds the beliefs of method2. Similarly, we can say that
method?2 is harderthanmethod3. In thegroupof methodss,
6 and7, we canfind thatmethod?7 is harderthanmethod5,
andmethodbis hardethanmethod6. By thesameargument,
we cansaythatmethod? is hardethanmethod5. Giventhe
samef, method3 is harderthanmethod6, and method4 is
hardthanmethod7. Of course,two methodsare compared
with the sameg valueif they involve this parameter
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Figure7: *:both usemethods5, o: bothusesmethod2, x: thebuyer
usesmethod5, the sellerusesmethod5
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Figure8: g8 = 5, o:bothusemethod6, *: both usesmethod3, x:
the buyerusesmethod3, the sellerusesmethod6

5 Conclusions

We have developeda computationamodelfor on-line agent
negotiation.In thebasicnegotiationscenariowe validateour
modelby shaving thatanagentwill never make anoffer that
will possiblycompromisets own ability to gainabenefit.We
achieve this objective by purecomputationsnotby imposing
logical constraintson the agentmodel. One of the difficul-
ties presentedo a negotiationagenton the Internetis thatit
haslittle informationaboutits opponentsTo achieve mutual
interactionswhile defendingits own benefitsat the the same
time, an agentcan adoptthe “beliefs” mechanisnto adjust
its behavior. We shav thatwith different“internal beliefs”,
agentscan behae differently, just as humanbeings: some
arehardnegotiators,while othersarevery willing to make a
dealwith his/heropponent.By simulations,we empirically
shaw the relative strengthof a group of “internal belief up-
dating” methods Our experimentshawv thatanagentshould
male a trade-of in negotiation:if it is too hard, it maylose
thechanceo earnmoreprofits by makinga dealwith its op-
ponent;while if it is too weak,the agentprobablyjust earns
mauginal profits even it getsa deal with its opponent. We
shav thatwe canadjustthe parameted to malke this trade-
off in ourmodel. Theadvantageof our modelis thatit is flex-
ible andeasyto implement.To shawv different’personalities”
in anegotiation,oneonly needto plugin suitable*subjective
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Figure 9: o:bothusemethodl, x: the buyer usesmethod3, the
sellerusesmethodl

beliefs”to onesagents.
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