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Abstract

Agent-basedon-linenegotiationtechnologyhasthe
potential ability to radically changethe way e-
businessis conducted. In this paper, we present
a formal model for autonomousagentsto negoti-
ate on the Internet. In the basicnegotiation sce-
nario, we validateour model by showing that an
agentwill nevermakeanoffer thatcanpossiblybe
exploited by its opponents.In our model, the ne-
gotiation processis driven by the internal beliefs
of participatingagents.Weempiricallyidentify the
relativestrengthof agroupof beliefupdatingmeth-
odsandshow how anagentcanchangeits behavior
by adjustingsomecritical parameters.

1 Intr oduction
With the rapid growth of Internet, autonomoussoftware
agents,which canbe viewed asdelegatesof humanbeings
in thecyberspace,havedrawn muchattentionin recentyears
becauseof theirpotentialcapacityto radicallychangethecur-
rent style of practicinge-business.For example,a software
agent,deployedasa delegateof its master, canshopon the
Web. Oncefinding the commodityit is looking for, it will
bargainwith theownerabouttheprice, just asa humanwill
do. The owner, probably, is an agentaswell. Comparedto
today’s passive on-line shopping,wherepeoplethemselves
searchthe Web andfinish the trademanually, we think the
agent-delegatedshoppingwill be the way of future on-line
trading.

However, beforethe wide applicationof multi-agentsys-
tems in the real-world electroniccommerce,several chal-
lenges,including both technicalandsocialaspects,mustbe
addressed[Sycara,1998]. Oneof thesechallengesis to deter-
minehow theseheterogeneous,self-interestedagentsshould
interactandnegotiatewith eachother, given that thereis no
global control on the Internet. A commonapproachto this
problemis to constructa negotiationmodel that guidesthe
agents’negotiationactivities.

Researchershave investigatedvariousnegotiationmodels
from differentpoints of view for a long time. Gametheo-
ristsview anegotiationasadynamic,incompleteinformation
game,and try to solve the gameby giving somepredicted
outcomesin certainconditions. Volumesof literatureexist

in this field. A goodsurvey canbe found in Bichler [2000].
Althoughsuccessfulin someproblems,thegame-theoretical
approachis hardto extendto generalproblemdomains,sim-
ply becausethecomplexity andinherentuncertaintyin real-
world negotiationthwartaccurateanalysis.

In thispaper, wepresentacomputationalmodelfor on-line
agentnegotiation. Insteadof focusingon the predictedout-
comes,our modelemphasizesthe negotiationprocessitself.
Specifically, we modela negotiationprocessasa sequential
decision-makingprocess:In every negotiation iteration, an
agentchecksthe history of the process,updatesits beliefs
aboutits opponentsand then tries to maximizeits own ex-
pectedpayoff basedon its own subjectivebeliefs.

Whenbargainingwith others,a human’ssubjectivebeliefs
play an importantrole. A buyer (she)may just believe that
the seller(he)will never decreasehis priceoffer in the next
negotiation round. Shemay be right (becauseher spy told
hercurrentoffer is theseller’s reservationprice).Or shemay
bewrong(becausethesellerintentionallyleakedthefalsein-
formation to her spy). Whatever sheis right or wrong, her
mentalbeliefswill play a samerole in thenegotiationasfar
asthe outcomesareconcerned.In this paper, we conducta
seriesof experimentsto examinethe impactof differentbe-
liefs on theoutcomesof a basicon-linenegotiationscenario.
Ourapproach,directlymodelthementalbeliefsandexamine
their impacton theoutcomes,is sharedby otherresearchers
in multiagentsystems.BazzanandBordini [2000] studiedthe
impactof agents’“personalities”on outcomesof theMinor-
ity Game.Senet al.[2000] examineda probabilisticstrategy,
which can be interpretedas the agent’s beliefs aboutother
agents,usedby an agentto help othersin a not-perfectly-
friendly environment. Gmytrasiewicz andLisetti [2000] di-
rectly modeledanagent’s “mentalemotion”asa probability
distributionover thepossiblestatesof theenvironment.Here
we directly modelan agent’s beliefsover its opponents’ac-
tion sets.Thejoint actionsof all theagentsdrivetheenviron-
mentto shift. Everyagenttriesto maximizeits final payoff by
choosingits own optimalactionbasedon its own subjective
beliefs.

Ourwork is closerelatedto theline of researchon“belief-
desire-intention(BDI) model”, in which agentsadaptthem-
selvesto theuncertainenvironmentby usingdifferent“inten-
tion reconsiderationpolicies”. In our model,theuncertainty
roots in the negotiationprocessitself: agentsare uncertain



aboutwhat actionstheir opponentsmay take andusediffer-
ent“belief updatingmethods”to interactwith eachother. An
empirical study of different “intention reconsiderationpoli-
cies” canbefoundin [SchutandWooldridge,2000].

2 Formal models
Consider a game with � states played by � players
in a limited time horizon ������� . In each time period�
	���
���
������ ��������� � , eachplayertakesanactionsimulta-
neously. Drivenby the joint actionstakenof all theplayers,
the gametransfersto anotherstateat time

�����
. For each

player � thefollowing informationis associatedwith it.

Publicinformation(sharedwith all otherplayers):����� : afinite setof all possibleactionsplayer � maytake.� � � : afinite setof all possibletypesplayer � maybe.�"! 	$#&%'
)(�*+
-, � %.
)/10 : a transitionautomatonthatde-
finesthestructureof thegame.Where

–
%

is a finite set of states.
%

consistsof terminal
statesandnonterminalstates.

–
(�*

is theinitial stateof thegame.
–
, � % is theinputalphabetof theautomaton,where, � %2	4365�87:9 � � is the Cartesianproductionof n
players’actionsets.Eachmemberin the

, � % is a
n-tuple,the � �<; elementof this tuplecorrespondsto
theactiontakenby playeri. Thefact thattheinput
symbolsaren-tuplesmeansthat thestateto which
thegamewouldtransferdependsonall players.For
any individualplayer, evenaftertakingacertainac-
tion, it doesn’t know whatthenext statewould be.
Thename

, � % standsfor JointAction Sets.
–
/

: transition function of the automaton,which
mappingajoint actionto astate,i.e.

/>=?(�
A@CB
, where(ED�%.
<@FDG, � % , denotesthestateto which theau-

tomatonwould transferfrom state
(

giventhejoint
action

@
.

Privateinformation(onlyknown to player � itself):� HI� : therealtypeof player � , H�� D �J� .�LK � =?(�
 H � B : utility functionof playeri, which denotesthe
payoff player � will get if thegameendsat state

(�D"%
andits realtypeis HI� .��MNHPO+Q � = �SR B : theprobabilityplayer � believesthatplayerT

would takeaction � R .
At eachtime period

��U �����V� , if currentstateis a ter-
minal state

(
, thegameendsandall playersobtaintheir final

payoffs K�� =?(�
 H�� B . Otherwise,thegamegoesforward,player� computesits payoff by following formula,

MW� @ O+XJXZY� =[(IB\	^]`_PabdcfeSgJc # 5hR 7:9 R&i7j� MNHPO+Q � = �SR B
k MW� @ O+XJX Yml 9� =[(InoBd0
(1)

where
( n 	p/>=?(�
 � B is the stateto which the gametransfers

from state
(
, drivenby thejoint action � 	 365q 7:9 � q takenby

all theplayers.

To maximizeits expectedpayoff, player � shouldtake ac-
tion ��r� suchthat

� r� 	�_SsAt`]`_Pab-cueSgJc # 5hR 7v9 R&i7j� MNHPO+Q � = �SR B
k MW� @ O+XJX Yml 9� =?( n B)0��
(2)

At thelastperiod�����V� , thepayoff is realizedasutility func-
tion of player � . i.e.:MW� @ O+XJXxw bdyIz� =[(�noB{	 K � =?(In|
 H � Bd� (3)

In theclassicgametheory, theword “type” refersto some
private information that characterizesan individual player.
All the players’ beliefs aboutwhat “types” othersmay as-
sumeform the“commonknowledge”of thegame,i.e.,every-
oneknowsthateveryoneknowsthat....everyoneknowsthose
beliefs. Basedon the “commonknowledge”, the gamecon-
vergesto certainequilibrium. In a Internetnegotiationsce-
nario, for instance,theshoppingexamplementionedbefore,
it is generalhardfor the softwareagentsto form the “com-
monknowledge”aboutothers’types(reservationprices).In-
stead,agents’actions(priceoffers)arealwaysobservable.In
ourmodel,playersobservetheiropponents’actions,interpret
thoseactionsbasedon somesubjective beliefsandthentake
correspondingactionto maximizetheir own payoffs. Every
player’ssubjectivebeliefsareits own “personalexperiences”,
not sharedwith anyoneelse. Justas“experiences”of a hu-
mannegotiatorwill determinehis strategy, “beliefs” heldby
anagentin our modelwill determineits behavior in negotia-
tion.

If aplayerchoosesto negotiatewith only oneotherplayer,
thetime spentby it to computeits bestoffer is } =A~ � 9 ~�~ ��� ~I�� � �����V� B in eachiteration, where

~ ��9 ~�
&~ � � ~ are the re-
spective sizesof the action setsof thesetwo players. The
gamekeepsgoing for at most �����V� periods,hencethe to-
tal computationcomplexity is } =A~ � 9 ~�~ ��� ~P� � � �����V� � B at
worstcase.If onechoosesto negotiationwith multiple play-
erssimultaneously, thecomputationtime will beexponential
to thenumberof players.But onecansolve this problemby
carefully choosingthe numberof playersbasedon its com-
putationalresourceconstraints.

3 Negotiation process
In this section,we show how to applyabovemodelto model
a basicnegotiationscenarioinvolving onebuyer, oneseller
andonecommodity. The buyer andthe sellerhave reserva-
tion prices �S� , �S� on the commodity, respectively. In each
negotiation iteration

�
, the buyer and the seller offer price

proposalssimultaneously. If the buyer’s offer Q Y is no less
thantheseller’soffer

( Y , thegameends.Otherwise,thegame
goesto next iterationuntil reachingthe maximal time hori-
zon �����V� . Clearly, � � , thereservationpriceof thebuyer, is
a crucialpieceof informationto characterizethebuyer, thus
wesetthe“real type” of thebuyerto be �S� . Similarly, thereal
typeof theselleris � � . To explicitly expressthestatesof the
negotiationgame,we maketwo assumptions:� Thereis a price range � � �u� M 
 ������M�� agreedby both

players,and �S� , �S� , Q Y , ( Y all belongto this range.



� The playershave seta minimal price increase/decrease
unit beforethegamebegins.

Giventhese2 assumptions,we canchangethepricescale
suchthat all the pricesinvolved in the negotiationare inte-
gers. For example,if the price rangeis ��� ��
 �S�+� ����� � andthe
price increase/decreaseunit is 0.1 dollar, we can scalethe
unit to 1 dimeandthenthepricerangebecomes� �V
 �+� � � . So,
in thefollow partof thispaper, wealwaysassumethatall the
prices,lowerandupperboundof thepricerange,areintegers.
Oncewe make the price rangediscrete,we candefineother
parametersof thegamebasedon thepricerange.Namely:� Thestatesetof thegameis definedas � � �u� M 
 ������M�� k� � �u� M 
 ������M�� . A state

(
is an orderedpair

= � 
A@CB ,
where � is theseller’s priceoffer,

@
is thebuyer’s price

offer. If ��� @ , ( is a terminalstate,otherwise,it is a
nonterminalstate.� The action setsand the type setsfor both playersare� � �u� M 
 ������M�� .� The transition function of the game is defined as/>=[(S
 � BF	 � for nonterminalstate

(
, i.e., from a non-

terminalstate,the gamecantransferto any otherstate
definedby two playersjoint actions.For example,if the
currenttime is

�
andthecurrentstateis

=f���V
���B
, sincethe

seller’soffer
�I�

is greaterthanthebuyer’soffer
�
, it is a

nonterminalstate.If theselleroffers9 andthebuyerof-
fers6, thenthegametransfersto state

=|�V
A��B
in thenext

iteration
�����

. For a terminalstate,
/

is undefinedsince
thegameendsin thisstate.� Every playermaintainsa vectorof beliefsover its op-
ponent’s action set. During eachiteration, the beliefs
arefixed. A playermay updateits beliefsbetweenit-
erations. The methodsof updatingthe beliefs will be
discussedin next section.

In a real-world negotiation, a buyer always prefers to
a lower price for a certain commodity. Our model in-
corporatesthis observation by requiring that the buyer’s
utility function to be monotonous, i.e., K �[�&����� satisfiesK �[�&����� =?( 9 
 �S� B"� K �[�I����� =[( � 
 �S� B for any states

( 9 
)( � such
that
( 9 	�= � 
A@ 9 B-
�( � 	�= � 
<@ � B and

@ 9 � @ � . If the game
endsatanonterminalstate,theplayersdonotagreewith each
otherandhenceno tradewill happen.In this case,both the
buyer and the seller get nothing. So, K �[�&����� =[(�
 �S� B should
equalto 0 for any nonterminalstate

(
, i.e., thereis nopenalty

for bothplayersif they fail tomakeanagreement.If thesetwo
conditionshold, for whatever beliefs(aslong asthey form a
probabilitydistribution) a buyermayhold,shewill neverof-
fer a pricehigherthanherreservationprice.

Proposition 1: The buyer will never offer a price higher
thanherreservationprice �S� .

Proof: Referto [ HuangandSycara,2000].
By symmetry, we cangetanotherpropositionwith respect

to theseller:
Proposition 2: The seller will never offer a price lower

thanhis reservationprice � � .
Thesetwo propositionsvalidateourmodelin thebasicne-

gotiationscenario.They look reasonableandsimple,but the
interestthinghereis thatweachievethis reasonablebehavior

by purecomputationsinsteadof imposinglogic rulesto the
model.

4 Experiments and analysis

In all experiments,we assumethat all the conditionsmen-
tionedin section3 hold. And we still stick to thebasicnego-
tiationsetting:onebuyer, onesellerandonecommodity.

Beforecheckingtheupdatingmethods,we first definethe
players’utility functions.Throughoutthissection,bothplay-
ersusethelinearutility functions.Thebuyer’sutility function
is definedas:

K �?�&���f� =<= � 
A@CB-
 �S� B�	�� �S� � y l �� ��� @� O � �E�
Theseller’sutility functionis definedas:

K �f�u���8�f� =A= � 
A@�Bd
 �S� B�	$� � �S� � y l �� ��� @� O � �E�
In aboveformulas,

(�	�= � 
<@�B is astate.Assaidbefore,� � @
means

(
is a terminalstate.

Supposeat time
�
, the seller’s offer is

( Y ,andthe buyer’s
offer is Q Y , wecomparethefollowing beliefupdatingmethods
(Herewestatethemethodsfrom thebuyer’sperspective. It is
easyto give thecorrespondingformulasfor theseller):

1. Thebuyerdoesn’t updateatall, andalwaysusestheuni-
form distributionover thepriceinterval � � �[� M 
 �����ZM��

2. The buyer sets a uniform distribution over interval� � �u� M 
)( Y �
3. Thebuyersetsan exponentialdistribution over interval� � �u� M 
)( Y � , and

( Y hasthehighestprobability:

MNHPO+Q �[�I����� = � B�	 �¡F¢ �S£ # �1� ( Y¤ = �����V�¥� �<B 0
where � D � � �u� M 
�( Y � , ¡ is a normalizationfactor,

�
is the current time, ������� is the time horizon,

¤
is a

parameter.

4. Thebuyersetsan exponentialdistribution over interval� � �u� M 
)( Y � , and � �u� M hasthehighestprobability

5. The buyer sets a uniform distribution over interval� Q Y 
�( Y �
6. Thebuyersetsan exponentialdistribution over interval� Q Y 
�( Y � , and

( Y hasthehighestprobability

7. Thebuyersetsan exponentialdistribution over interval� Q Y 
�( Y � , and Q Y hasthehighestprobability

In the method3,4,6and7, the time horizonof the game
hasbeentakeninto consideration.In themethod3 and6, the
lessthe time left, the morethe buyerbelievesthat the seller
will not changehis currentoffer

( Y . While in method4 and
7, the buyerdoesnot believe that the selleris offering her a
reasonableprice.Thelessthetimeleft, themoreshebelieves
thatthesellerwill decreasehiscurrentoffer

( Y .



4.1 Both players usethe samemethod
For the buyer, the updatingmethod2, 3 and4 setprobabil-
ities over interval � � �u� M 
�( Y � . For the seller, the interval is� Q Y 
 �����ZM�� . In Figure 1, we show the tradepricesfor the
caseswhereboththebuyerandthesellerusethesamemethod
in this group(method2, 3 and4). We fix the buyer’s reser-
vationprice to be

���S�
, increasethe seller’s reservationprice

from
�

to
���S�

with steplength
�
. We set

¤ 	$�
for method

3 and
¤ 	¦�I�S�

for method4. In Figure1, the x-coordinate
is the seller’s reservation price; and the y-coordinateis the
final tradeprice. From the results,we canfind that method
4 producesthe“hardest”negotiatoramongthesethreemeth-
ods: only whentheseller’s reservationprice falls between

�
and § � , theplayerscanmakeadeal.If theseller’s reservation
priceis higherthan § � , eventhoughthereexistsa potentially
widenegotiationrange,they donotgetanagreement.On the
otherhand,method3 producesthe “easiest”negotiator: for
the seller’s reservation price varying from

�
to
�S�

, they can
alwaysclosea deal. Method2 standsbetweenthe “easiest”
andthe“hardest”. Therangefor method2 to make a dealis
[0, 45].

Whatis theeffectof changing
¤

in method3 andmethod4?
A little thoughtwill confirmusthatwith abigger

¤
, method3

will become“harder”,andmethod4 will become“easier”.A
bigger

¤
will make theexponentialdistributionsof methods

3 and4 (with oppositetail directions)convergeto anuniform
distribution,which is thedistributionusedin method2.
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Figure1: o:method2, *:method3 with ¨L©«ª , +:method4 with¨F©­¬d®�®
In method2, 3 and4, when the currentprice offeredby

the seller is
( Y , the buyer setsthe probabilitiesover range� � �u� M 
�( Y � . Giventhat thebuyerhasoffered Q Y at time

�
, the

sellerwill neveroffer apricelower than Q Y aftertime
�
. Simi-

larly, thebuyerwill neveroffer apricehigherthanthelowest
priceproposedby thesellerbefore.Therefore,it seemsmore
reasonablefor thebuyerandthesellerto settheprobabilities
over � Q Y 
)( Y � . That is what method5, 6 and7 do. We show
theresultsin Figure2. In this experiment,all thesettingsare
the sameasthosein the first experimentexceptthat the up-
datingmethodsarechangedto method5, 6 and7. Wecansee
that this groupof methodsaremoreefficient thanthe meth-
odsusedin thefirst experiment:with thebuyer’s reservation
price fixed at 100 and the seller’s reservation price varying
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Figure2: o:method5,*:method6 with ¨F©�ª , +:method7 with ¨¯©¬d®�®
from 0 to 95, the playerscanalways reacha dealby using
any oneof thesethreemethods.An explanationto thesere-
sultsis thatsincebothplayershavemore“reasonable”beliefs
on what price their opponentwill offer, it is easierfor them
to negotiatesuccessfully. Similarly, increasing

¤
will make

method6 and7 convergeto method5.

4.2 Players usedifferent methods
In the above experiments,we showed the final tradeprices
if bothplayersusethe samebelief updatingmethod. In this
section,we usea seriesof experimentsto show what will
happenif playersusedifferentupdatingmethods.In all these
experiments,the settingsare the sameas thosein previous
subsection.

Figure 3 shows the casewherethe seller usesmethod4
andthebuyerusesmethod2. In Figure1, we show thecases
wherebothplayersusemethod4 andmethod2. In orderto
comparewith thoseresults,we show theresultsof thosetwo
caseshereagain. Comparedto the casewhereboth player
usemethod4, now the buyerswitchesto a “weaker” updat-
ing method,sothesellermanagesto sell his item at a higher
price,andalsoextendsthe reservationprice rangeon which
heis willing to make a dealwith thebuyer. Comparedto the
casewherebothplayersusemethod2, now thesellerusesa
harderupdatingmethod,sohe still managesto sell his item
at a higherprice but shrinksthe reservation price rangeon
which heis willing to makea deal.

In thecasewherethesellerusesmethod2, thebuyeruses
method3, asshown in Figure4, we canfind that the seller
takesmuchadvantageover thebuyer. Comparedto thecase
where both playersuse method2, the fact that the buyer
switchesto a weaker method3 is exploited by the seller, so
he canmanageto sell his item at a muchhigherprice while
extendingthe reservationprice rangesimultaneously. Com-
paredto thecasewherebothplayersusemethod3, although
the seller decreasesthe reservation price rangea little, the
tradepricesaremuchhigherthanthoseobservedin Figure2.

Figure5 showsthecasewherethesellerusesmethod7 and
the buyerusesmethod5. Herewe only comparethe results
with thosein the casewhereboth playersusemethod5 be-
causethe resultsobtainedby usingmethod5 andmethod7
arevery close,asshown in Figure2. In Figure5, we also
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Figure3: o:bothusemethod2,+:bothusesmethod4 with ¨¯©­¬d®�® ,
x: thesellerusesmethod4 with ¨¯©­¬d®�® , thebuyerusesmethod2
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Figure4: o:bothusemethod2, *:both usemethod3 with ¨F©�ª , x:
thesellerusesmethod2, thebuyerusesmethod3 with ¨F©�ª
show theresultswherethesellerusesmethod5 andthebuyer
usesmethod6. In this case,sincethe seller usesa weaker
method, the trade prices are lower than thosein the case
whereheusesmethod6.

In Figure6, we show thetradepriceswheretheselleruses
method4, thebuyerusesmethod7, andbothwith

¤ 	°�����
.

We canseethat the seller takesobvious advantageover the
buyer.

In Figure7. weshow thetradepriceswheretheselleruses
method2 andthebuyerusesmethod5.

In Figure 8. we show the resultswhere the seller uses
method3 andthebuyerusesmethod6. Herethebuyeruses
a strongermethodandshemanagesto buy the item at lower
prices.

Till now, we have not elaboratedon method1. In Figure
9 we show theresultswherethesellerusesmethod1 andthe
buyer usesmethod3. We canseethat method1 is closeto
method3 with

¤ 	$�
. But method3 hasanextra desirable

feature:it performsaswell asmethod1 whenthesellerhasa
low reservationprice,andis moreflexible whenthesellerhas
ahighreservationprice.As shown in thefigure,if theseller’s
reservationpriceexceeds40 andbothplayersusemethod1,
they can’t reacha deal. But if thebuyerusesmethod3, they
canmakeadeal.

To explain all theseresults,let’s first take a closelook at
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Figure5: o:bothusemethod5, x: the buyer usesmethod5 , the
sellerusesmethod7 with ¨F©­¬d®�® , +: thebuyerusesmethod5, the
sellerusesmethod6 with ¨¯©"ª
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Figure6: *:both usemethod4 with ¨F©­¬)®I® , +: bothusesmethod
7 with ¨F©¥¬d®�® , x: thebuyerusesmethod7, thesellerusesmethod
4, bothset ¨`©�¬)®I®
the groupof method2,3 and4. We claim that method4 is
“harder” thanmethod2. To show this, let’s take thebuyer’s
pointof view. Method4 andmethod2 bothsettheprobabili-
tiesover interval � � �u� M 
�( Y � . Theprobabilityin method4 de-
creasesexponentiallyfrom � �u� M to

( Y . This meansthat the
buyerbelievesthat the chancefor the sellerto offer a lower
priceis exponentiallyhigherthanthechancefor thesellerto
offer a higherprice. The probability distribution in method
2 is uniform. This meansthat the buyerbelievesthatall the
pricesin range � � �[� M 
)( Y � areequally likely to be proposed
by theseller. In a real-word negotiation,no oneknows what
kind of beliefsare “right” without extra information; but it
is exactly the differentbeliefs that make the negotiatorsbe-
have differently. Obviously, if thebuyerholdsthebeliefsof
method4, shewill be a hardernegotiatorthanthe onewho
holds the beliefs of method2. Similarly, we can say that
method2 is harderthanmethod3. In thegroupof methods5,
6 and7, we canfind thatmethod7 is harderthanmethod5,
andmethod5 is harderthanmethod6. By thesameargument,
we cansaythatmethod2 is harderthanmethod5. Giventhe
same

¤
, method3 is harderthanmethod6, andmethod4 is

hardthanmethod7. Of course,two methodsarecompared
with thesame

¤
valueif they involve this parameter.
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Figure7: *:both usemethod5, o: bothusesmethod2, x: thebuyer
usesmethod5, thesellerusesmethod5
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Figure8: ¨G©±ª , o:bothusemethod6, *: bothusesmethod3, x:
thebuyerusesmethod3, thesellerusesmethod6

5 Conclusions
We have developeda computationalmodelfor on-lineagent
negotiation.In thebasicnegotiationscenario,wevalidateour
modelby showing thatanagentwill nevermakeanoffer that
will possiblycompromiseits own ability to gainabenefit.We
achievethisobjectiveby purecomputations,notby imposing
logical constraintson the agentmodel. Oneof the difficul-
tiespresentedto a negotiationagenton the Internetis that it
haslittle informationaboutits opponents.To achievemutual
interactionswhile defendingits own benefitsat thethesame
time, an agentcanadoptthe “beliefs” mechanismto adjust
its behavior. We show that with different“internal beliefs”,
agentscan behave differently, just as humanbeings: some
arehardnegotiators,while othersarevery willing to make a
dealwith his/heropponent.By simulations,we empirically
show the relative strengthof a groupof “internal belief up-
dating”methods.Our experimentsshow thatanagentshould
make a trade-off in negotiation: if it is too hard, it maylose
thechanceto earnmoreprofitsby makinga dealwith its op-
ponent;while if it is too weak,theagentprobablyjust earns
marginal profits even it getsa deal with its opponent. We
show thatwe canadjustthe parameter

¤
to make this trade-

off in ourmodel.Theadvantageof ourmodelis thatit is flex-
ible andeasyto implement.To show different”personalities”
in anegotiation,oneonly needto plug in suitable“subjective
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Figure9: o:bothusemethod1, x: the buyer usesmethod3, the
sellerusesmethod1

beliefs” to one’sagents.
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