Carnegie Mellon University

Information Networking Institute

A Monitoring Tool for Self-Organizing Overlay Networks

Thesis Proposal

TungFai Chan

Annie Cheng

Approved by

Professor Hui Zhang

Advisor

Professor Dave Nagle

Reader

Professor Richard Stern

INI Associate Director

A Monitoring Tool for Self-Organizing Overlay Networks

Thesis Proposal

TungFai Chan and Annie Cheng

Information Networking Institute

Carnegie Mellon University

{tungfai, ahcheng}@andrew.cmu.edu

1. Background

Overlay networks are being used more frequently for developing experimental protocols and implementing dedicated networks over shared infrastructure. They use encapsulation to present a virtual infrastructure without exposing the details of physical topology. They are composed of routing software installed at selected sites, connected by encapsulation tunnels [6] or direct links. Existing examples of overlays include the M-Bone [5] for multicast IP and 6-Bone for Ipv6 [4]. Both M-Bone and 6-Bone are statically organized overlays that require manual configuration and management to establish connectivity and to ensure efficient resource utilization.

Recent research efforts have focused on building self-organizing overlay network. A self-organizing overlay network automatically adjusts itself into a good structure. It is adaptive to new nodes joining the overlay, failure of existing nodes, and to dynamic network condition. Some examples of self-organization include Yoid [3], X-Bone [2], and Adaptive Web Caching [7]. Yoid is a host-based content distribution protocol that allows a group of end hosts to dynamically self-organize themselves into a tunneled and distributed topology. X-Bone provides a coordinated system in which IP-level overlays can be automatically deployed and managed. In addition, it provides a framework to manage inter-overlay resources contention by using a uniform coordination point for overlays. Adaptive web caching is a self-organizing cache hierarchy that works under the assumption of native IP Multicast support.

Self-organizing overlay networks are becoming increasingly important and necessary for general infrastructure support. However, no visualization tool is currently available for an observer to find out the internal logistics of the overlay protocols. Here, we propose a monitoring tool that allows system administrators or researchers to observe the overlay topology changes during run time. While the tool will be designed with reusable and modifiable components for generic self-organizing overlay networks, the implementation will focus within the context of Narada.

Narada [1] is a proof of concept protocol for End System Multicast. End System Multicast allows the routers to remain the minimal functionality as they are today and pushes the multicast related functionality, such as group membership, multicast routing and packet duplication, to the end system. End System Multicast was developed under the motivation that even though Internet services are reaching an era where multicast services can deliver a valuable service, the concerns regarding deployment, scalability, network management, and the difficulty for higher layer support of reliability and congestion control hinder IP Multicast's deployment over the internet. Chu, Rao, and Zhang in [1] propose an alternative architecture, End System Multicast, to distribute data to small and sparse group of receivers. The authors design a distributed protocol, Narada, which enables the end systems to self organize into an efficient overlay structure. After studying the performance result of an initial study, the authors believe that the end system overlay approach can efficiently support multicast functionality for small sized groups.

Currently, Narada does not provide a visualization tool for an observer to find out the internal logistics of the protocol. This monitoring tool allows system administrators or researchers to observe overlay topology change during run time. In addition, the tool can be used as a debugging tool by providing run time views for the following sequence of events: member join, member leave or failure, mesh partitions and repairs, and link add and drop operations.

2. Motivations and Project Goal

The following complexities make the self-organized overlay an interesting research topic. First, the participating members in an overlay may change. The members may join and leave the group dynamically. Some members may die during the lifetime of the overlay. A good protocol needs to ensure overlay connectivity during the overlay memberships change. Second, the underlying physical network may change dynamically. Delay between members may vary over time due to congestions. The overlay protocol needs to maintain efficient resources utilization automatically. Lastly, the participating members in an overlay have limited knowledge of network conditions. Most members do not know the delay to other members when they just join. The overlay protocol must self-improve as more information becomes available.
We believe with the assistance of a monitoring tool, we will be able to have a better understanding of the self-organized overlay. We envision four ways this tool can contribute to the protocol development. First, the monitoring tool can help the researchers to observe the changes of the participating membership. Second, the researchers may view the self-organizing sequences of dynamic adding and dropping of overlay links. Third, the tool may provide an understanding of how overlay maps onto the underlying network. Lastly, the tool may provide information of latency, bandwidth, and packet loss experienced between any pair of members along the overlay.

With above motivations, we identify two specific goals for this tool. First, we will design and implement a monitoring tool for Narada that provides visualization for the following sequences of events: initial overlay, member join, member leave, member failure, mesh partitions and repairs, addition of links and dropping of links. In addition, this tool will allow user to keep track of the overlay performance and provide enough debugging information for analyzing the overlay protocol. Second, we want to gain a better understanding of Narada in order to further improve the existing protocol.

3. Project Plan

The monitoring tool will be designed and implemented in three phases. They are centralized offline, centralized real time, and distributed real time phase. The benefit of implementing this tool in three phases is that depending on the challenge we encounter or the interest we have, we will be able to alter the project plan and at the same time, have some presentable and measurable outcome.

3.1 Centralized Offline Phase

In this phase, the monitoring tool regenerates and displays the sequence of events based on the offline log files. The log files are generated during the Narada simulation and are collected from each end system to a centralized location after the simulation. The monitoring tool uses the log files as input and replays the events in the chronological order. Two major problems to solve in this phase are the time synchronization of the events in the log files and the visualization formats.

3.2 Centralized Online Phase

The centralized real time monitor displays real time events during the simulation. The existing Narada protocol needs to be modified for each end system to send out additional messages to a central server. The central server sorts out the events in chronological order for display. In this phase, time synchronization of the events needs to put the propagation delay of messages into consideration. A message sent first chronologically may not be received first by the central server.

3.3 Distributed Online Phase*

The distributed real time monitor also displays real time events during the simulation. With the distributed approach, each end system will send out additional messages to each other. Here, we envision that the monitoring tool is installed at each end system. Since there is no central point of control for monitoring the events, we will need to define a distributed message exchange protocol among the end system nodes. In addition, we need to define the user experience. One approach is allowing each end system user to view the events acting on a multicast group as whole, where all end system users see the same events in same order. Another way is allowing each end system user to view the events on per node bases, where each end system user may see events in different order depending on the propagation of event messages.

*This phase may or may not be implemented depending on the challenges and our interests.

3.4 Visualization Goal

We consider usability and customizability as important quality attributes for visualization. The system administrator who only has basic MIS knowledge should find this tool easy to use. At the same time, the tool should provide enough information for researchers who want to use this tool for debugging purpose. The degree of information displayed can be customized and configured by the user. We want to design an architecture where the tool can easily project additional information for visualization.

3.5 Expected Challenges

The challenges we foresee are time synchronization mechanism, traffic minimization, visualization, possible Narada protocol modification, and the reusable, protocol independent architectural design.

Time synchronization mechanism needs to be defined in all three phases with incremental challenges. In the centralized offline phase, time synchronization needs to be done in the log files level. In the centralized real time phase, time synchronization needs to be dealt with in the message level. In the distributed real time phase, distributed time synchronization mechanism needs to be defined.

For both real time phases, the end system will send out additional messages to either the central server or to each other. Minimizing the message traffic is important. One of the key performance concerns for Narada is to minimize the bandwidth penalty. The monitoring tool should not penalize the original Narada protocol by injecting huge overhead.

Visualization is another challenge. We will need to work with the tool user closely to figure out the display format. As mentioned in section 3.4, usability and customizability are two major visualization goals.

Modification to Narada can be a challenge. First, additional message passing should not affect the original mechanism. Second, additional message passing should not introduce too much processing overhead at each end nodes.

Furthermore, we would like to design an architecture that consists of reusable and protocol independent components. We want to design a component-based architecture that allows this monitoring tool to work on other self-organized overlay protocol with minimum porting effort.

4. Measure of Success

The success of the monitoring tool is determined by the following criteria: correctness, ease to use, minimal traffic and processing overheads. Correctness refers that the monitoring tool should reflect the events flawlessly in terms of both timing and sequences. Events shown on the tool will have the exact orders as they are in real time. Secondly, the tool should have an easy to use and friendly interface. The learning curve for using and customizing the monitor is kept to be minimum. Lastly, the monitoring tool should be running efficiently and generate least overheads to the hosted machines and underlying network environment.

5. Deliverables

Deliverable 1: Centralized real-time monitor.

The monitoring tool can reflect sequences of events such as members join, leave, nodes failure accurately with minimal traffic and processing overhead. The monitoring tool will be running on a separately dedicated host in which logging information is collected and centralized for processing. The message passing is performed in real-time basis.

Deliverable 2: Distributed real-time monitor (Optional)

The monitoring tool can reflect sequences of events with the same requirements. The tools are supposed to run on multiple hosts and each can show the events known by hosting node in loosely synchronized manner.

6. Timeline

	Week
	Tasks

	6/4
	Proposal Approval and Project Starts

	6/11
	Get Familiar with Narada Protocol and Logging Scheme

	6/18
	

	6/25
	
	Phase 1 Design

	7/2
	
	

	7/9
	
	Visualization Design

	7/16
	
	Phase 1 and Visualization Implementation

	7/23
	
	

	7/30
	
	Phase 1 Testing and Gather Feedbacks

	8/6
	
	Phase 2 Design

	8/13
	
	Phase 2 Implementation

	8/20
	
	

	8/27
	
	Phase 2 Testing and Gather Feedbacks

	9/3
	
	Improvement and Buffers

	9/10
	
	Phase 3 Design

	9/17
	
	

	9/24
	
	

	10/1
	
	Phase 3 Implementation

	10/8
	
	

	10/15
	
	

	10/22
	
	Phase 3 Testing and Gather Feedbacks

	10/29
	
	

	11/5
	
	Improvement and Buffers

	11/12 Onwards
	
	Report Write-up

Italic- Optional

References

[1] Chu, Y.H., Rao, S.G., and Zhang, H., “A Case For End System Multicast”, to appear in Proceedings of ACM Sigmetrics, Santa Clara, CA, June 2000.

[2] Touch, J, and Hotz, S., "The X-Bone", Third Global Internet Mini-Conference in conjunction with Globecom '98 Sydney, Australia, Nov. 8-12, 1998.

[3] Francis, P, "Yoid: Extending the Internet Multicast Architecture", April 2, 2000

[4] 6-Bone web pages – http://www.6bone.net/
[5] Eriksson, H., “MBone: The Multicast Backbone”, Communications of the ACM, Aug. 1994, Vol. 37, pp.54-60.’

[6] Simpson, W., “IP in IP Tunneling”, Internet RFC 1853, Daydreamer, Oct. 1995.

[7] S. Michel, K. Nguyen, A. Rozenstein, L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching: towards a new global caching architecture. Computer Networks and ISDN Systems, November 1996.

PAGE

