
Soft decoding, dual BCH codes, and better

list-decodable ε-biased codes∗

Venkatesan Guruswami† Atri Rudra‡

Abstract

Explicit constructions of binary linear codes that are efficiently list-decodable up to a fraction
(1/2−ε) of errors are given. The codes encode k bits into n = poly(k/ε) bits and are constructible
and list-decodable in time polynomial in k and 1/ε (in particular, in our results ε need not
be constant and can even be polynomially small in n). These results give the best known
polynomial dependence of n on k and 1/ε for such codes. Specifically, they are able to achieve
n 6 O(k3/ε3+γ) or, if a linear dependence on k is required, n 6 Õ(k/ε5+γ), where γ > 0
is an arbitrary constant. The best previously known constructive bounds in this setting were
n 6 O(k2/ε4) and n 6 O(k/ε6). Non-constructively, a random linear encoding of length n =
O(k/ε2) suffices, but no sub-exponential algorithm is known for list decoding random codes.

The construction with a cubic dependence on ε is obtained by concatenating the recent
Parvaresh-Vardy (PV) codes with dual BCH codes, and crucially exploits the soft decoding
algorithm for PV codes. The result with the linear dependence on k is based on concatenation
of the PV code with an inner code of good minimum distance.

In addition to being a basic question in coding theory, codes that are list-decodable from a
fraction (1/2−ε) of errors for ε→ 0 are important in several complexity theory applications. For
example, the construction with near-cubic dependence on ε yields better hardness results for the
problem of approximating NP witnesses. In addition, the codes constructed have the property
that all nonzero codewords have relative Hamming weights in the range (1/2− ε, 1/2 + ε); this
ε-biased property is a fundamental notion in pseudorandomness.

∗A preliminary conference version of this paper was presented at the 23rd Annual IEEE Conference on Computa-
tional Complexity (CCC 2008).
†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA. Part of this work was done while

visiting the School of Mathematics, Institute for Advanced Study, Princeton, NJ. Research supported in part by a
Packard fellowship, and NSF grants CCF-0343672, CCF-0953155. guruswami@cmu.edu
‡Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo,

NY, 14620. Research supported in part by startup funds from University at Buffalo and by NSF CAREER award
CCF-0844796. atri@buffalo.edu

1 Introduction

Consider the task of communicating k message bits of information over a channel that is going
to adversarially corrupt a fraction 1/2 − ε of the transmitted bits. What is the fewest number
n = n(k, ε) codeword bits we need to communicate so that no matter which of the (1/2− ε)n bits
are corrupted, we can recover the k message bits efficiently, i.e., in time polynomial in k and 1/ε?
The main goal of this paper is to understand the asymptotic dependence of n on k and ε. This
natural coding-theoretic problem, where we want to correct close to the information-theoretically
maximum possible fraction of errors, also arises in several applications of error-correcting codes in
complexity theory including: construction of hardcore predicates from one-way functions [10, 31],
approximating the VC dimension [23], constructions of extractors [28], membership comparability of
NP-complete sets [30], hardness amplifications of Boolean functions [32], worst-case to average-case
connection for the permanent [6], and approximating NP-witnesses [20, 9].

The process of recovering the transmitted message from the received corrupted codeword is
called decoding. If we want the decoder to uniquely recover the transmitted codeword, then it is
well known that one cannot recover from more than a 1/4 fraction of errors. Unfortunately, all
the applications mentioned above need to work with a fraction 1/2− ε > 1/4 of errors. In fact, in
some cases ε could be polynomially small in n. In such high noise regimes, one has to settle with
a relaxation of unique decoding called list decoding. Under list decoding, the decoder is allowed to
output a (small) list of codewords with the guarantee that the transmitted codeword is present in
the list. The fact that a list decoder can output a small list of codewords could be problematic since
we need to recover the actual transmitted codeword. Fortunately, in all the applications mentioned
above, the decoder has access to some side information, which allows it to go through the list and
pick the transmitted codeword. The only constraint that this introduces is that the size of the list
needs to be bounded by a polynomial in n. Note that this is also an a priori requirement for the
list decoding algorithm to run in polynomial time.

Thus, the natural question to ask is: what is the smallest n one can achieve with a code that
needs to be list decoded from a 1/2− ε fraction of errors? It is well known that there exist codes
with n = O(k/ε2) such that for every error pattern only O(1/ε2) many codewords need to be
output; in fact a random code with 2k codewords of such a block length has this property with
high probability [33, 7]. Further, this bound is tight, that is, for n = o(k/ε2), for any code, there
exists an error pattern for which a super-polynomial number of codewords need to be output. Thus,
n = Θ(k/ε2) is information-theoretically best possible. The upper bound of n = O(k/ε2) above is
non-constructive: a code that is guaranteed to have these properties is not known to be efficiently
computable, and even if we are content with a randomized Monte Carlo construction of such a
code, there is no polynomial time list decoding algorithm known for such codes. This is a serious
drawback since the applications need efficient constructions and decoding algorithms.

In summary, the applications of these codes demand that they be list-decodable from a 1/2− ε
fraction of errors in time polynomial in k/ε. Further, these codes need to be constructed in time
polynomial in k/ε. In particular, the focus of this paper is on codes with construction and list
decoding time complexity of poly(k/ε) with as small a block length n as possible.

We should remark that in the complexity-theoretic applications, the exact dependence of n on
k often does not matter as long as the exponent of k is some constant. However, in the traditional
setting of coding theory and asymptotically good codes, the interesting regime is when the exponent

2

of k equals one. On the other hand, in some complexity theory settings, one would like ε to be
as small a function of n as possible. In particular, the goal of approaching the optimal 1/ε2

dependence of the block length n on ε becomes well-motivated in the context of those applications.
An example of such an application of list-decodable codes is the hardness of approximating NP
witnesses. Here the goal is to show that for NP languages, it is hard to even find a witness with
non-trivial agreement (in terms of Hamming distance) with an actual witness. Since this application
does not play a central role for the technical contribution of this work, we defer the details of this
discussion to Appendix D.

1.1 Our Bounds and Comparison With Previously Best Known Bounds

Prior to this work, the following were the best known dependence of the block length n on k and ε
for binary [n, k]2 codes with poly(k/ε) construction and list decoding time (for correcting a fraction
1/2− ε of errors):

(a) By concatenating an outer Reed-Solomon code with an inner Hadamard code, a bound of
n = O(k2/ε4) was achieved in [15].

(b) By concatenating Reed-Solomon codes with a binary linear code of relative distance (1/2 −
O(ε2)), a bound of n = O(k/ε6) was obtained in [16]. This was a polynomial time Las Vegas
construction (where the list decoding property of the code is certified).

Both the above results exploit the powerful soft decoding algorithm for Reed-Solomon codes
(a.k.a., weighted polynomial reconstruction) from [14]. In the case when the time for construction
and list decoding are allowed to be exponential in 1/ε, the recent work on binary codes list-decodable
up to the Zyablov bound yields a bound of n = O(k/ε3) [13]. Earlier, an encoding length of
n = O(k/ε4) was obtained in [12], but the construction time was once again exponential in 1/ε.

In this work, we improve the previous best known results by designing binary linear codes
that achieve n to be about O(k3/ε3) as well as O(k/ε5), each with a construction and decoding
complexity of poly(k/ε). In particular,

(1) By concatenating the Parvaresh-Vardy codes [25] with dual BCH codes (cf. [22]), we achieve
n = O

(
k3

ε3+γ

)
for any constant γ > 0.

(2) By concatenating the Parvaresh-Vardy codes [25] with a binary linear code of relative distance
(1/2 − O(ε2)), we achieve a bound of n = O(k/ε5+γ) for any constant γ > 0. Using a recent
result of Porat and Rothschild [26], we can construct such codes in deterministic poly(k/ε)
time.1

We remark that the Parvaresh-Vardy (PV) codes are a generalization of Reed-Solomon codes
and the dual BCH codes are generalizations of Hadamard codes. Thus, for our result (1), we gener-
alized both the outer and inner codes used in result (a) from [15] mentioned earlier. Interestingly,
our improvement seems to crucially require generalizing both the outer and the inner codes. The

1In fact the n = O(k/ε6) result from [16] can also be achieved with a deterministic poly(k/ε) construction time
using the result from [26].

3

Hadamard code is too wasteful and we cannot afford to use it as inner code when the outer code
is a PV code, since PV codes have a much larger alphabet size than Reed-Solomon codes. Dual
BCH codes, which are generalized Hadamard codes, are much more efficient in encoding length.
On the other hand, they necessarily provide weaker guarantees. In particular, the second moment
of a certain coset weight distribution is bounded in the case of Hadamard codes (this follows from
the Parseval’s identity for Fourier coefficients, and was the key to the result in [15]). For duals of
BCH codes with distance (2t+ 1), an analogous bound holds only for the 2t’th moment (this was
shown in the work [17] on property testing of dual BCH codes). But quite remarkably, there is a
soft decoding algorithm for PV codes that works under the weaker guarantee of bounded higher
order moments, and this enables us to obtain our result (1). We stress that the power of the soft
decoding algorithm for PV codes, and the ability to exploit it via meaningful weights passed from
the dual BCH decoder, is crucial for our result (1).

Our result (2) achieving n = O(k/ε5+γ) is simpler. It is based on list decoding the inner codes up
to a radius of (1/2−O(ε)) (each output list will have size at most O(1/ε2) by the Johnson bound).
The resulting lists from the inner decoding stage are used by a list recovery algorithm for PV codes to
complete the decoding. To achieve the deterministic poly(k/ε) construction time we use the recent
result of Porat and Rothschild who present an 2O(K) time deterministic algorithm to construct
codes with dimension K and block length N on the Gilbert-Varshamov bound. (Previously, it was
known how to construct such codes in 2O(N−K) time, for example by greedily picking the columns
of a parity check matrix, or see [5]. However, such a construction time is too expensive for our
purposes.)

ε-biased codes. Our constructions also yield linear codes that are ε-biased, namely every nonzero
codeword has Hamming weight in the range [(1/2−ε)n, (1/2+ε)n]. The rows of an n×k generator
matrix of an ε-biased code are called an ε-biased set of length k strings. (We adopt the convention
that the columns of the generator matrix span the code.) Our constructions yield explicit ε-biased
sets of size O

(
k3/ε3+γ

)
or O

(
k/ε5+γ

)
which are in addition list-decodable up to a fraction (1/2−ε)

of errors. The concept of an ε-biased set, which originated in the seminal work [24], is a fundamental
one in pseudorandomness with a rich body of work and numerous applications.

The best non-constructive bound on the size of an ε-biased set of length k strings equals O(k/ε2).
(It is also known that the size needs to be at least Ω(k/(ε2 log(1/ε))).) The best known explicit
bounds for ε-biased sets are O

(
k2

ε2 log2(k/ε)

)
[2] and O

(
k

ε3 log(1/ε)

)
[1] that can be obtained by con-

catenating respectively Reed-Solomon codes and appropriate algebraic-geometric codes (that lie on
the Tsfasman-Vlădut-Zink bound) with the Hadamard code. However, these codes have weaker
decoding guarantees than the (1/2− ε) radius we achieve; in particular, the best known algorithms
based on passing soft information from decoding the inner Hadamard codes to outer algebraic soft-
decision decoders correct only a fraction ≈ (1/2−O(

√
ε)) of errors [15]. Recently, an incomparable

explicit upper bound of n = O
((
k/(ε2 log(1/ε))

)5/4) was obtained for ε-biased [n, k]2 codes by
concatenating Hermitian codes with the Hadamard code [3], but once again these codes are not
known to be list-decodable up to a fraction (1/2− ε) of errors.

We would like to point out that in some applications of ε-biased codes, ε needs to be exponen-
tially small in k. For example, in construction of ε-biased pseudorandom generators, we need such
a small ε. In particular, the list decodability is not important but one desires that any row of the

4

corresponding generator matrix can be constructed in time poly(k, log(1/ε)). This property holds
for our result (1) as both the outer and inner codes are explicit, i.e. any entry in the generator
matrix can be constructed in time poly-logarithmic in the size of the matrix. On the other hand,
our result (2) does not have this property as the inner code from [26] is not explicit– indeed such a
result would imply explicit codes on the Gilbert-Varshamov bound, which is an outstanding open
question in coding theory.

Remark 1 (Extension to non-binary alphabets). Our construction with linear dependence of n
on k based on concatenation of PV codes with inner codes meeting the Gilbert-Varshamov bound
generalizes in a straightforward way to larger alphabets. However, our construction with near-cubic
dependence on ε based on dual BCH codes at the inner level only works over the binary alphabet.
Over a p-ary alphabet, BCH codes of block length n and designed distance d (where d is a fixed
constant and n is allowed to grow) have dimension about n − d(1 − 1/p) logp n, so the dual BCH
codes have size about nd(1−1/p). For p > 2, this is much larger than the ≈ nd/2 size of binary BCH
code. As a result, the upper bound on the required moment of the coset weight distribution of
non-binary dual BCH codes (corresponding to Lemma 9) is too weak for use in the soft decoding
scheme.

Remark 2. Our constructions can also be based on folded Reed-Solomon codes, which were shown
to achieve the optimal trade-off between list decoding radius and rate over large alphabets by the
authors [13], in place of Parvaresh-Vardy codes. However, as our constructions are in the low-rate
regime, using folded RS codes does not offer any asymptotic advantage, and so we state our results
based on the simpler PV codes.

1.2 Organization of the Paper

We review some basic terminology from coding theory in Section 2. Our final construction combines
different codes which are described along with their salient properties in Section 3. In particular,
the outer Parvaresh-Vardy codes and their list decoding properties are discussed in Section 3.1 and
the inner dual BCH codes and their necessary coset weight distribution properties are discussed in
Section 3.4. We then present and analyze our two binary code constructions that are list decodable
from a fraction (1/2 − ε) of errors in Section 4. We present a simple lower bound showing a
quadratic dependence of the block length n on ε in Section 5. We conclude the main body of
the paper with some open questions in Section 6. The application of list-decodable codes to the
hardness of approximating NP witnesses is discussed in Appendix D.

2 Coding Basics

In this section, we will quickly review the basic terminology concerning codes that we will use. A
code of dimension k and block length n over an alphabet Σ is a subset of Σn of size |Σ|k. The rate
of such a code equals k/n. Each vector in C is called a codeword. In this paper, we will focus on
the case when Σ is a finite field. We will denote by Fq the field with q elements, where q is a prime
power. A code C over Fq is called a linear code if C is a subspace of Fnq . In this case the dimension
of the code coincides with the dimension of C as a vector space over Fq. By abuse of notation we
will also think of a code C as a map from elements in Fkq to their corresponding codeword in Fnq . If

5

C is linear, then the linear code corresponding to its orthogonal space is called the dual of C and
is denoted by C⊥.

The Hamming distance between two vectors u,v ∈ Σn, denoted by ∆(u,v), is the number of
places they differ in. The (minimum) distance of a code C is the minimum Hamming distance
between any two pairs of distinct codewords from C. The relative distance is the ratio of the
distance to the block length. The Hamming weight of a vector u ∈ Fnq , denoted by wt(u), is
the number of non-zero positions in u. A linear code over Fq of block length n, dimension k, and
minimum distance d will be denoted compactly as an [n, k, d]q code; when the distance d is omitted,
such a code will be referred to as an [n, k]q code.

A list decoding algorithm for a code C of block length n needs to do the following. Given an
error parameter 0 6 ρ < 1 and a received word y ∈ Σn the decoder needs to output all codewords
c ∈ C such that ∆(c,y) 6 ρn. We define the associated notion of a code being list decodable as
follows. Note that this definition is a combinatorial one and does not address the efficiency of the
algorithmic list decoding task.

Definition 1. A code C ⊆ Σn of block length n is (ρ, L)-list-decodable, if for every y ∈ Σn, there
are at most L codewords which satisfy ∆(c,y) 6 ρn.

Code Concatenation. Concatenated codes are constructed from two different kinds of codes
that are defined over alphabets of different sizes. Say we are interested in a code over a finite field
Fp (in this paper, we will present all our results for p = 2). Then the outer code Cout is defined
over Fq, where q = pk for some positive integer k and has block length N . The second type of code,
called the inner code, which is denoted by Cin is defined over Fp and is of dimension k (note that
the message space of Cin and the alphabet of Cout have the same size). The concatenated code,
denoted by C = Cout ◦Cin, is defined as follows. Let the rate of Cout be R and let the block length
of Cin be n. Define K = RN and r = k/n. The input to C is a vector m = 〈m1, . . . ,mK〉 ∈ (Fpk)K .
Let Cout(m) = 〈x1, . . . , xN 〉. The codeword in C corresponding to m is defined as follows

C(m) = 〈Cin(x1), Cin(x2), . . . , Cin(xN)〉.

It can be verified that C has rate, dimension and block length of rR, kK and nN . Further, the
minimum distance of C is at least the product of the distances of Cout and Cin.

3 Coding Ingredients

3.1 Parvaresh-Vardy codes and their soft decoding

The following theorem can be deduced via a straightforward adaptation of the work of Parvaresh
and Vardy [25] to the “soft-decoding” setting. The case s = 1 of the statement was shown by
Guruswami and Sudan [14] for Reed-Solomon codes. Let us first define the codes constructed by
Parvaresh and Vardy.

Definition 2. For an integer parameter s > 1, the Parvaresh-Vardy (PV) code for s > 1 encodes a
polynomial f(X) of degree less than K by the evaluations of f(X), and s−1 correlated polynomials

fj(X) = (f(X))h
j

(mod E(X)) for 1 6 j 6 s− 1 ,

6

at N distinct elements of Fq. Here E(X) is an arbitrary irreducible polynomial over Fq of degree
K, and h is an integer parameter (which has to be large enough for the list decoding guarantee).

Note that when h is a power of p` where p = char(Fq) and ` > 1 is an arbitrary integer, the
above encoding is Fp`-linear (this will be important for us to get linear codes in the end, after
concatenation with a suitable linear inner code).

Theorem 1. For all integers s > 1, for all prime powers r and all powers q of r, every pair of
integers 1 < K 6 N 6 q, there is an explicit Fr-linear map E : FKq → FNqs such that:

1. The image of E, C ⊆ FNqs, is a code of minimum distance at least N −K + 1.

2. Let W = (s+ 1)!
∑

i,α

(wi,α+s
s+1

)
and L =

(
r ·
((

W
K−1

)1/(s+1)
+ 2
))s

. There is a list decoding

algorithm, that given a collection of nonnegative integers {wi,α}, 1 6 i 6 N , α ∈ Fqs, runs in
time poly(q, L), and outputs a list of size at most L that includes precisely the set of codewords
(c1, . . . , cN) ∈ C that satisfy

N∑
i=1

wi,ci >
⌈
((K − 1)sW)

1
s+1

⌉
+ 1 . (1)

Since the theorem is not proved in the literature in the exact form stated above, for the sake of
completeness, we sketch the proof of Theorem 1 in Appendix A.

We now state a version that holds for all nonnegative weights (and eliminates the pseudopoly-
nomial dependence on the weights). It is obtained by a suitable scaling and rounding of the weights
to convert them to integer weights and then applying the above statement. A similar proof for RS
codes (s = 1) appears in [11, Chap. 6]. For the sake of completeness, we include a proof below.

Theorem 2. For all integers s > 1, for all prime powers r and all powers q of r, every pair of
integers 1 < K 6 N 6 q, there is an explicit Fr-linear map E : FKq → FNqs such that:

1. The image of E, C ⊆ FNqs, is a code of minimum distance at least N −K + 1.

2. Let {wi,α}, 1 6 i 6 N , α ∈ Fqs be a collection of non-negative weights. Let wmax =

maxi,αwi,α and W ′ =
(∑

i,αw
s+1
i,α

)
/ws+1

max. Then for every ζ > 0 there is an algorithm,

that given {wi,α}, 1 6 i 6 N , α ∈ Fqs, runs in time bounded by (rs/ζ)O(s)(W ′q)O(1), and
outputs a list of size at most (rs)O(s)W ′/ζs that includes precisely the set of codewords c ∈ C
satisfying

N∑
i=1

wi,ci > (s+ 1)

(K − 1)s
∑
i,α

ws+1
i,α

 1
s+1

+ ζ · (N + 2)wmax . 2 (2)

2We can make the multiplicative factor of (s+1) a constant arbitrarily close to 1 with suitable choice of parameters.
For the low-rate regime we are interested in, this does not make much difference so we state here a crude bound that
suffices.

7

Proof . The linear map E is the one from Theorem 1. If all the weights equal 0, then the condition
(2) cannot be satisfied for any codeword, so assume that not all the wi,α’s are zero. As mentioned
above, the idea is to scale the weights by multiplication by a large constant to convert them to
integers and then use the guarantee of Theorem 1.

Let B be a large enough integer (the choice B = d1
ζ e will do). Set w′i,α =

⌊
Bwi,α
wmax

⌋
. Note that

Bwi,α
wmax

− 1 6 w′i,α 6
Bwi,α
wmax

. Each w′i,α is a nonnegative integer that is at most B. Clearly the
condition (1) will be satisfied by a certain codeword c = (c1, . . . , cN) with respect to the integer
weights w′i,α if the following condition is met:

N∑
i=1

(
Bwi,ci
wmax

− 1
)
> s+1

√√√√(K − 1)s(s+ 1)!
∑
i,α

(
w′i,α + s

s+ 1

)
+ 2.

Now if w′i,α = 0 then
(w′i,α+s

s+1

)
= 0. Since w′i,α is an integer (s+ 1)!

(w′i,α+s

s+1

)
6
(
w′i,α(s+ 1)

)s+1
.

Thus, the condition above is met if

N∑
i=1

(
Bwi,ci
wmax

− 1
)
> (s+ 1) s+1

√√√√(K − 1)s
∑
i,α

(
Bwi,α
wmax

)s+1

,

which in turn is equivalent to the condition

N∑
i=1

wi,ci > (s+ 1) s+1

√
(K − 1)s

∑
i,α

ws+1
i,α +

(N + 2)wmax
B

.

By the choice of B, this is implied by (2).

It remains to justify the claims about the runtime and output list size. As as we have seen
before, W = (s+ 1)!

∑
i,α

(w′i,α+s

s+1

)
is at most (s+ 1)s+1

∑
i,α(w′i,α)s+1. As w′i,α 6 Bwi,α/wmax,

W 6

(
B(s+ 1)
wmax

)s+1∑
i,α

ws+1
i,α 6

(
2s
ζ

)s+1

W ′

by the choice of B and definition of W ′. The claimed bounds on runtime and list size now follow
from those of Theorem 1. �

A List Recovery Bound for Parvaresh-Vardy Codes. The following is a corollary of The-
orem 1 using only 0, 1 weights wi,α, namely wi,α = 1 if α ∈ Si (for some subsets Si ⊆ Fqs for
1 6 i 6 N) and 0 otherwise. This variant is called list recovery in the literature.

Corollary 3. For all integers s > 1, for all prime powers r and all powers q of r, every pair of
integers 1 < K 6 N 6 q, there is an explicit Fr-linear map E : FKq → FNqs such that:

1. The image of E, C ⊆ FNqs, is a code of minimum distance at least N −K + 1.

8

2. There is an algorithm, that given a collection of subsets Si ⊆ Fqs for i = 1, 2, . . . , N , each of
size at most `, runs in poly((rs)s, q, `) time, and outputs a list of size at most O((rs)sN`/K)
that includes precisely the set of codewords (c1, . . . , cN) ∈ C that satisfy ci ∈ Si for at least
αN values of i, provided

α > (s+ 1)(K/N)s/(s+1)`1/(s+1) . (3)

3.2 Johnson Bound

The following well known result called the Johnson bound states that a code of good minimum
distance also has good list-decodability. We state it only for binary codes. Proofs can be found,
for example, in [15] and [11, Chap. 3].

Lemma 4. Let C be a binary code of block length n and relative distance δ < 1/2. Then, for every
L > 1, C is (

1
2

(
1−

√
1− 2δ +

2δ
L

)
, L

)
-list-decodable .

In particular, the above implies that a code of relative distance (1/2− ε2) is (1/2− ε, 1
ε2

)-list-
decodable, a fact we will make use of later on (in Theorem 14). Note that this is a combinatorial
guarantee– such a code need not be efficiently list decodable.

3.3 Codes on the Gilbert-Varshamov Bound

We will need the following recent result due to Porat and Rothschild:

Theorem 5 ([26]). Let q be a prime power and let n > 1 be a large enough integer. Then for any
d < (1−1/q)n, ε > 0 and k 6 b(1−Hq(d/n))nc, where Hq(x) = −x logq(x/(q−1))−(1−x) logq(1−x)
is the q-ary entropy function, there exists a deterministic poly

(
qk, n

)
algorithm to compute an

[n, k, d]q code.

The above implies the following result:

Corollary 6. Let k > 1 be a large enough integer and let ε > 0 be a real. Then in poly
(
2k, k/ε

)
time one can construct an ε2-biased [O(k/ε4), k]2 code.

The claim about the bias of the code was not stated explicit in [26] but their algorithm can be
easily modified to make sure that the constructed code also has this extra property.

3.4 Dual BCH Codes

3.4.1 Weight Distribution and Duals of Linear Codes

In this subsection, we will recollect some known results on linear codes. Given a binary linear code
C of block length n, and y ∈ Fn2 , let Cy denote the code C∪ (C+y), where y+C

def
= {c+y|c ∈ C}

is a coset of C. For any 0 6 w 6 n, we will use Aw(C) to denote the number of codewords of
Hamming weight w.

9

If f(X) is a univariate polynomial over the reals, then we have

E
c∈C

[f(wt(c))] =
1
|C|
·
n∑
i=0

Ai(C)f(i). (4)

Our goal will be to compute the expectation of a certain low-degree polynomial over a coset of
a linear code. The following lemma is handy for this task.

Lemma 7 ([18]). Let C be a binary linear code of block length n and let f(X) be a polynomial over
the reals. The following holds for every y ∈ Fn2 :

E
c∈C

[f(wt(y + c))] = 2 E
c′∈Cy

[
f(wt(c′))

]
− E

c∈C
[f(wt(c))] .

Proof . Indeed, by definition

E
c′∈Cy

[
f(wt(c′))

]
=

1
2 E

c∈C
[f(wt(c))] +

1
2 E

c∈C+y
[f(wt(c))] .

�

We will make crucial use of the following result from [17], which states that the weight distri-
bution of a linear code appears binomial to all polynomials of degree bounded by the distance of
its dual. For the sake of completeness, we present its proof in the Appendix B.

Lemma 8 ([17]). Let t > 1 be an integer. Let C be a binary linear code of block length n such that
C⊥ has minimum distance at least 2t + 1. Then for every polynomial f(X) of degree at most 2t
over the reals:

n∑
i=0

Ai(C)f(i) =
|C|
2n

n∑
i=0

(
n

i

)
f(i).

The above result implies the following:

Lemma 9. Let t > 1 be an integer. Let C be a binary linear code of block length n such that C⊥

has minimum distance at least 2t+ 1. Then the following holds for every y ∈ Fn2 :

∑
c∈C

(
1− 2

wt(y + c)
n

)2t

6 2 · |C|
nt
· (2t)!

2tt!
.

Proof . By definition, C ⊆ Cy and thus, C⊥y ⊆ C⊥. In other words, C⊥y has a minimum distance
of at least 2t+ 1. This implies that by Lemma 8, the following are true:

n∑
i=0

Ai(Cy)
(

1− 2i
n

)2t

=
|Cy|
2n

n∑
i=0

(
n

i

)(
1− 2i

n

)2t

,

n∑
i=0

Ai(C)
(

1− 2i
n

)2t

=
|C|
2n

n∑
i=0

(
n

i

)(
1− 2i

n

)2t

.

10

The above along with Lemma 7 and (4), implies that

E
c∈C

[(
1− 2

wt(y + c)
n

)2t
]

=
1
2n

n∑
i=0

(
1− 2i

n

)2t

.

The lemma follows from the above relation and the following inequality (which is proved in Ap-
pendix A of [17]):

1
2n

n∑
i=0

(
n

i

)
(n− 2i)2t 6 2nt

(2t)!
2tt!

.

�

3.4.2 Moments of Coset Weight Distribution of Dual BCH Codes

Let t,m > 1 be integers such that 2t − 2 < 2m/2. Recall that an [2m − 1, 2m − 2t − 1, 2t + 1]2m
Reed-Solomon code C1 is the evaluation of degree 2m − 2t − 1 polynomials over all the non-zero
elements in F2m . Let CBCH(t,m) denote the code C1 ∩ F2m−1

2 . CBCH(t,m) is the well known BCH
code.

Theorem 10 ([22]). Let m, t > 1 be integers such that 2t − 2 < 2m/2. Then CBCH(t,m) is an
[2m − 1, 2m −mt− 1, d]2 code, where d > 2t+ 1.

Let CdBCH(t,m) = (CBCH(t,m))⊥. Thus, CdBCH(t,m) is an [n
def
= 2m − 1, k

def
= mt]2 code. Note

that Lemma 9 can be applied to CdBCH(t,m). Further, |CdBCH(t,m)| = 2mt 6 (2(2m − 1))t = 2tnt.
Thus, by Lemma 9 we have

Lemma 11. Let m, t > 1 be integers such that 2t − 2 < 2m/2. Then the following is true for any
y ∈ Fn2 : ∑

c∈CdBCH(t,m)

(
1− 2

∆(y, c)
n

)2t

6
2(2t)!
t!

.

We will also need the following property of the dual BCH code.

Theorem 12 (Weil-Carlitz-Uchiyama Bound, [22]). Let m, t > 1 be integers such that 2t−2 < 2m/2.
Then for every non-zero c ∈ CdBCH(t,m),

2m−1 − (t− 1)2m/2 6 wt(c) 6 2m−1 + (t− 1)2m/2.

4 Binary Codes List Decodable in Presence of High Noise

4.1 Construction With Near-Cubic Dependence on ε

We will prove the following result in this section.

11

Theorem 13. Given an integer K > 1 and reals γ > 0 and 0 < ε < 1/2, the following holds.
There exists an explicit binary linear code of dimension at least K and block length N at most(

1
γ

)O(1)
·
(
K3

ε3+γ

)
with the following properties:

(i) There is an algorithm that can list decode the code from a fraction (1/2− ε) of errors in time

at most
(
K
γε

)O(1/γ)
and outputs a list of size at most

(
1
γε

)O(1/γ)
.

(ii) The code is 5ε
6 -biased, i.e., all the codewords have Hamming weights in the range[

(1
2 −

5ε
6)N , (1

2 + 5ε
6)N

]
.

Proof . The idea is to concatenate the Parvaresh-Vardy codes guaranteed by Theorem 2 with an
appropriate dual BCH code. The decoding algorithm will decode the inner blocks (by brute-force)
and pass appropriate soft information to the outer decoder of Theorem 2. The details follow. Since
the proof is long, we break it into stages. We start with the parameter choices which have to made
carefully.

Parameter choices. Given K, ε and γ we will pick positive integer parameters r, q, K, N , s, t
and m (for use in Theorem 2 and choosing the inner dual BCH code) as follows.

We pick K =
⌈

2K
logK

⌉
. Let t =

⌈
1+γ
2γ

⌉
, and s = 2t− 1.

Let r = 2 and q be the smallest power of 2 larger than
(

2(2t)!
t!

)1/s
K

(ε/(2s+2))1+1/s . In particular,

(
2(2t)!
t!

)1/s K

(ε/(2s+ 2))1+1/s
6 q 6 2

(
2(2t)!
t!

)1/s K

(ε/(2s+ 2))1+1/s
. (5)

The reason for the specific choice of q is to ensure a decoding radius of (1/2− ε) and will become
clear at the end of the proof.

Finally we take N = q and define m =
⌈
s log q
t

⌉
.

Code construction. Let Cout be the F2-linear code over Fq from Theorem 2 with dimension K
and block length N for parameter s. Let CdBCH(t,m) be the [n = 2m− 1, k = mt]2 dual BCH code.
We must verify that with our choice of parameters, 2t − 2 < 2m/2 holds, so that the condition of
Theorem 10 is met. To check this, note that 2m/2 > qs/(2t) > (2s+ 2)(1+1/s)·s/(2t) = 2s+ 2 > 2t−2,
where the relationships follow from the choices of m, q and s respectively. Note that k > s log q,
and we take Cin to be an arbitrary subspace of CdBCH(t,m) of dimension k′ = s log q.

The binary code C with the claimed properties of Theorem 13 will be the concatenated code
Cout ◦Cin. The claim on explicitness of C follows from the fact that both Cout and Cin are explicit
codes. We begin by verifying the parameters of C.

Rate of C. The dimension of C equals Ks log q which is clearly at least K by the choice of K
and q. The block length n = 2m−1 of Cin satisfies q2−1/t−1 6 n 6 2q2−1/t. Now, the block length

12

of C satisfies

N = nN = nq 6 2q3−1/t 6 16
(

2(2t)!
t!

)(3t−1)/(ts) K3−1/t

(ε/(2s+ 2))(3−1/t)(1+1/s)
. (6)

It can be verified that by our choices of s, t and K, K3−1/t is O(K3), (3 − 1/t)(1 + 1/s) 6 3 + γ

and 16
(

2(2t)!
t!

)(3t−1)/(ts)
(2s+ 2)(3−1/t)(1+1/s) is (1/γ)O(1), which proves the claimed bound on N .

ε-biasedness of C. We now verify the claim that C is 5ε
6 -biased. First, note that since Cout

is F2-linear and Cin is linear, the concatenated code is a binary linear code. (5) and the fact
that N = q implies that K/N 6 ε. This along with Theorem 2 implies that Cout has relative
distance at least 1 − ε. Thus, by Theorem 12, all the non-zero codewords in C have relative
Hamming weights in the range

[
(1− ε)

(
2m−1

2m−1 −
(t−1)2m/2

2m−1

)
, 2m−1

2m−1 + (t−1)2m/2

2m−1

]
. We first claim that[

2m−1

2m−1 −
(t−1)2m/2

2m−1 , 2m−1

2m−1 + (t−1)2m/2

2m−1

]
⊆
[

1
2 −

t+1
2m/2

, 1
2 + t+1

2m/2

]
. One can check that this inclusion is

satisfied if
2m/2+1 >

t+ 1
2m/2

+
1
2
.

Using the fact that 2t − 2 < 2m/2, the above is satisfied if 2m/2+1 > 1 + 2/2m/2, which is true for
m > 1. The claim on C being 5ε

6 -biased follows from the fact that t+1
2m/2

6 ε/3. The latter inequality
is easily checked, since

2m/2 > qs/(2t) = q1−1/(2t) >
1

(ε/(2s+ 2))(1+1/s)(1−1/(2t))
= 4t/ε > 3(t+ 1)/ε ,

where the last inequality follows from the fact that t > 1.

List decoding algorithm. Finally, we turn to the claims on list decodability of C. The list
decoding algorithm for C is as follows. Let y = (y1, . . . ,yN) ∈ (Fn2)N be the received word. We
now define appropriate weights for use in the soft decoding algorithm from Theorem 2. For every
1 6 i 6 N and α ∈ Fqs define:

wi,α = max
(

1− 2∆(yi, Cin(α))
n

, 0
)
. (7)

Define wmax = maxi,αwi,α. (Since y is promised to have a codeword of C within distance N/2,
wmax > 0.) Finally, run the soft decoder from Theorem 2 with the choice

ζ =
ε

3wmax
. (8)

Correctness of algorithm. We will defer the analysis of the running time and worst case list
size to the end of the proof. First, we show that the algorithm above outputs a list that contains
c′, for any codeword c′ ∈ C such that ∆(c′,y) 6 (1/2− ε)N .

13

As s + 1 = 2t is even, ws+1
i,α 6

(
1− 2∆(yi,Cin(α))

n

)s+1
. Since Cin is a subcode of the dual BCH

code CdBCH(t,m) (and 2t − 2 < 2m/2), Lemma 11 implies the following property of these weights
(for every 1 6 i 6 N): ∑

α∈Fqs
ws+1
i,α 6

2(2t)!
t!

. (9)

Let c = (c1, . . . , cN) ∈ Cout be the intermediate codeword corresponding to c′. Thus, if we use
the soft decoding algorithm from Theorem 2 with the choice ζ = ε

3wmax
, it will output c if the

following condition is satisfied:

N∑
i=1

wi,ci > (s+ 1) s+1

√√√√√Ks

N∑
i=1

∑
α∈Fqs

ws+1
i,α +

εN

2
,

where we have assumed that N > 4 so that εN/2 > ε(N +2)/3. Now as wi,α >
(

1− 2∆(yi,Cin(α))
n

)
,

the above condition is satisfied if the following is true:

N∑
i=1

(
1− 2

∆(yi, Cin(ci))
n

)
> (s+ 1) s+1

√√√√√Ks

N∑
i=1

∑
α∈Fqs

ws+1
i,α +

ε

2
N .

By (9) the above will be satisfied for c if (where we have used the fact that
∑N

i=1 ∆(yi, Cin(ci)) =
∆(y, c′)):

N − 2
∆(c′,y)

n
> (s+ 1) s+1

√
2(2t)!
t!

KsN + εN/2,

or equivalently

1− 2
∆(c′,y)
N

> (s+ 1) s+1

√
2(2t)!
t!

(
K

N

)s
+
ε

2
.

From the lower bound in (5) and the fact that N = q, the above condition is met as long as
∆(c′,y) 6 1

2(1− ε)N . This proves the claim that C can be list decoded from a fraction 1/2− ε of
errors.

List size and running time of algorithm. We now bound the worst case list size output by

our list decoding algorithm. By Theorem 2, the worst case list size is at most (2s)O(s)
(

1
wmaxζ

)s+1
·∑

i,αw
s+1
i,α , which by (9) and the choice of ζ in (8) is upper bounded by (s/ε)O(s). The claimed

bound on the worst case list size follows from the choice of s.

To complete the proof, we bound the running time of the list decoding algorithm, which has
two parts. The first part is the time needed to compute the weights as defined by (7). Computing
the weights in a brute-force manner takes time O(nNqs), which by the choices of n, N , q, N and s
is upper bounded by NO(1/γ). The second component of the running time, by Theorem 2 and the
choice of q and N is upper bounded by (s/ε)O(s)NO(1). The total running time is thus bounded by

14

(
N
γε

)O(1/γ)
. The bound on N implies a running time of O

(
K
γε

)O(1/γ)
, as desired. This completes

the proof of Theorem 13. �

4.2 Construction with Linear Dependence on Dimension

Using an alternate concatenated code construction, with a different inner code but again the PV
code as outer code, we prove the following result in this section.

Theorem 14. Given an integer K > 1 and reals 0 < γ, ε < 1/2, the following holds. There exists
a binary linear code of dimension at least K and block length N 6 O

(
K log(1/ε)
γ1+γε5+γ

)
with the following

properties:

(i) There is an algorithm that can list decode the code from a fraction 1/2 − ε of errors in time
at most (K/(γε))O(1/γ) and outputs a list of size at most O

(
(1/γ)O(1/γ) · (1/ε)3+γ

)
.

(ii) There is a deterministic construction of the code in time (K/(γε))O(1/γ).

(iii) The code is 3ε
4 -biased, that is, all nonzero codewords have Hamming weights in the range[

(1
2 −

3ε
4)N , (1

2 + 3ε
4)N

]
.

Proof . Given K, ε and γ, pick parameters r, q,K,N, s for the codes guaranteed by Corollary 3 as
follows. Let K =

⌈
2K

logK

⌉
, and s = d 3

γ e. Let r = 2 and take q to be the smallest power of 2 greater

than 32K(s+1)1+1/s

ε1+3/s , and pick N = q.

Let Cout be the F2-linear code guaranteed by Corollary 3 with dimension K and block length
N for parameter s. For the inner code Cin, we will use the code guaranteed by Corollary 6. In
particular, we can construct an [n, k]2 code that is ε2/4-biased (that is, all non zero-codewords
have relative Hamming weights in [1

2 −
ε2

4 ,
1
2 + ε2

4]) for k = s log2 q and n = O(k/ε4). Further,
Corollary 6 guarantees that we can construct such a code in time poly

(
2k, k/ε

)
= poly (qs, k/ε) =

(K/(γε))O(1/γ) time. This gives a polynomial time construction of our final code C∗, which is the
concatenation of Cout and Cin.

The proof that C∗ is ε-biased is similar to the argument in Theorem 13. By the choices of K
and N , K/N 6 ε, which by Theorem 2 implies that Cout has relative distance 1 − ε. Thus, all
the non-zero codewords have relative Hamming weights in the range

[
(1− ε)

(
1
2 −

ε2

4

)
, 1

2 + ε2

4

]
⊆[

1
2 −

3ε
4 ,

1
2 + 3ε

4

]
, as required.

The dimension of C∗ is Kk = Ks log q which is easily seen to be at least K. The block length
N = Nn of C∗ satisfies

N 6 64K(s+ 1)1+1/s

ε1+3/s
·O(logK + log(1/ε)) ·O(1/ε4) 6 O(s1+1/sK log(1/ε)/ε5+3/s)

6 O(1/γ1+γ · K log(1/ε)/ε5+γ) .

It remains to give a list decoding algorithm for C∗ that can correct a fraction (1/2−ε) of errors.
This follows from a rather standard method, and we give the details for completeness below. Let

15

y ∈ FN2 be a received word. If c ∈ C∗ agrees with y on at least (1/2 + ε)N positions, clearly on
at least εN/2 of the inner encoding blocks, c and y agree on at least

(
1
2 + ε

2

)
n positions. Since

Cin has relative distance at least
(

1
2 −

ε2

4

)
, by the Johnson bound (Lemma 4), we know that Cin

is ((1 − ε)/2, 4/ε2)-list-decodable. Therefore, we can decode y by decoding each inner block to a
radius of (1−ε)n/2, returning a set Si of at most 4/ε2 symbols of Fqs for each position of Cout. We
can then run the list recovery algorithm guaranteed by Corollary 3 for Cout and output all outer
codewords whose i’th symbols belong to Si for at least εN/2 positions.

All that remains to be done is to check that the list recovery Condition (3) of Corollary 3 is met
with the choice α = ε/2, ` = 4/ε2, and the above choice of K,N, s. Of course the specific choice
above was made precisely in order to satisfy this. Indeed, we have K/N 6 ε1+3/s/(32(s+ 1)1+1/s),
so the required condition is met if

ε

2
> ε

s+3
s+1 (1/32)

s
s+1 (4/ε2)

1
s+1 =

ε

2
5s−2
s+1

,

which is true for every s > 1. The bound on the list size follows from Corollary 3 and noting that
s = O(1/γ), ` = O(1/ε2), r = 2 and N/K = O(s2/ε1+3/s). The decoding complexity consisting
of two parts: the time to decode the inner codes by brute-force which takes qO(s) time, and the
time to run the list recovering algorithm for the outer code, which takes time sO(s)(q`)O(1) by
Corollary 3. The combined runtime is thus bounded by (N/(γε))O(1/γ), which in turn is bounded
by (K/(γε))O(1/γ). �

5 A Negative Result

In this section, we will state the following limit on codes that are list decodable from a very high
fraction of errors. For the sake of completeness, we present its (standard) proof below.

Theorem 15. Let a > 0 be real. Let C be a binary code of block length n. If C is a
(

1
2 − a

√
logn
n , L

)
-

list decodable code then
|C| 6 L · n4a2 log e+1.

To prove Theorem 15, we will need the following lemma.

Lemma 16. Let x ∈ {0, 1}n be a fixed vector. Then for a vector y chosen uniformly at random
from {0, 1}n, the following is true for large enough n:

Pr
[
∆(x,y) 6

n

2
− a
√
n log n

]
>

1
n4a2 log e+1

.

The lemma follows (with slightly different constants) from a lower bound on the tail of a
Binomial distribution (cf. [21, Chap. 4]). For the sake of completeness, we present a proof in
Appendix C. Armed with the lemma above, let us prove Theorem 15.

Proof of Theorem 15: Fix an arbitrary codeword c ∈ C. Pick a received word y ∈ {0, 1}n
uniformly at random. By Lemma 16,

Pry
[
c ∈ B

(
y,
n

2
− a
√
n log n

)]
>

1
n4a2 log e+1

,

16

where B(y, e′) is the Hamming ball of radius e′ centered at y. Since the choice of c was arbitrary,

Ey

[∣∣∣C ∩B (y,
n

2
− a
√
n log n

)∣∣∣] > |C|
n4a2 log e+1

.

By the assumption on the list-decodability of C, for every y ∈ {0, 1}n,∣∣∣C ∩B (y,
n

2
− a
√
n log n

)∣∣∣ 6 L,
which implies that

|C|
n4a2 log e+1

6 L,

as desired. �

Note that if a code C has polynomial time list decoding algorithm, then the worst case list size
has to be bounded by a polynomial in the block length of the code. Thus, we have the following
corollary of Theorem 15:

Corollary 17. Let C be a binary code of block length n that can be list decoded from a fraction

1/2−O
(√

logn
n

)
of errors in time polynomial in n. Then C has a dimension of O(log n).

6 Open Questions

The most obvious question left open by our work is to design [n, k]2 binary linear codes that are list
decodable from a fraction 1/2−ε of errors in polynomial time with n = kO(1)/εa for some 2 6 a < 3.
One possible route to prove such a result would be list decode the construction of ζ-biased codes
based on the concatenation of Reed-Solomon (or appropriate algebraic) codes with the Hadamard
code [2] up to a radius of (1/2−O(ζ)). However, this seems beyond the reach of current techniques
(the current best algorithms only list decode up to a radius of (1/2 − O(

√
ζ)) [15]), and in fact it

is not clear if this is possible at all (even combinatorially, in terms of being guaranteed a small list
up to this radius).

The known list decoding algorithms for concatenated codes run in two stages. In the first
stage the inner codes are decoded while ignoring the structure of the outer code. In the second
stage one uses the intermediate information from the first stage to decode the outer code. The
bottleneck with the analysis of most of these algorithms is that they treat the different inner
decodings independently, and do not exploit the fact that the various symbols being decoded arise
from an outer codeword and therefore have some global structure. Choosing soft information during
the inner decodings with a global view (see [19] for an example) might be one possible avenue for
further progress in list decoding concatenated codes.

Another open question is to obtain a construction that beats the quartic dependence of n on
1/ε over non-binary alphabets. Remark 1 explains why our construction with inner dual BCH
code, that achieves near-cubic dependence on 1/ε in the binary case, does not immediately extend
to larger alphabets.

17

Acknowledgments

The second author would like to thank Ken Regan and Alan Selman for helpful discussions. We
thank the anonymous reviewers for several useful suggestions that improved the presentation of the
paper.

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good low-
rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information
Theory, 38:509–516, 1992.

[2] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures and Algorithms, 3:289–304, 1992.

[3] A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-geometric codes.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science,
pages 191–197, 2009.

[4] E. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation,
24:713–735, 1970.

[5] R. A. Brualdi and V. Pless. Greedy codes. J. Comb. Theory, Ser. A, 64(1):10–30, 1993.

[6] J.-Y. Cai, A. Pavan, and D. Sivakumar. On the hardness of the permanent. Proceedings of the
16th International Symposium on Theoretical Aspects of Computer Science, March 1999.

[7] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,
37:5–12, 1991.

[8] U. Feige, M. Langberg, and K. Nissim. On the hardness of approximating NP witnesses.
Proceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), pages 120–131, September 2000.

[9] A. Gál, S. Halevi, R. J. Lipton, and E. Petrank. Computing from partial solutions. Proceedings
of the 14th Annual IEEE Conference on Computation Complexity, pages 34–45, 1999.

[10] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. Proceedings of the
21st Annual ACM Symposium on Theory of Computing, pages 25–32, May 1989.

[11] V. Guruswami. List decoding of error-correcting codes. Number 3282 in Lecture Notes in
Computer Science. Springer, 2004.

[12] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list
decoding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[13] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction
up to the Singleton bound. IEEE Transactions on Information Theory, 54(1):135–150, January
2008. Preliminary version appeared as “Explicit capacity-achieving list-decodable codes” in
Proceedings of STOC 06.

18

[14] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric
codes. IEEE Transactions on Information Theory, 45:1757–1767, 1999.

[15] V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pages
181–190, 2000.

[16] V. Guruswami and M. Sudan. Decoding concatenated codes using soft information. In Pro-
ceedings of the 17th Annual IEEE Conference on Computational Complexity (CCC), pages
148–157, 2002.

[17] T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
317–326, 2005.

[18] M. Kiwi. Testing and weight distributions of dual codes. ECCC Technical Report TR-97-010,
1997.

[19] R. Koetter. On optimal weight assignments for multivariate interpolation list-decoding. In
Proc. 2006 IEEE Information Theory Workshop, pages 37–41, March 2006.

[20] S. R. Kumar and D. Sivakumar. Proofs, codes, and polynomial-time reducibilities. Proceedings
of the 14th Annual IEEE Conference on Computation Complexity, 1999.

[21] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, 1991.

[22] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. Elsevier/North-
Holland, Amsterdam, 1981.

[23] E. Mossel and C. Umans. On the complexity of approximating the VC dimension. J. Com-
put. Syst. Sci., 65(4):660–671, 2002. Preliminary version in the 16th Annual Conference on
Computational Complexity (CCC), 2001.

[24] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM Journal on Computing, 22(4):838–856, 1993.

[25] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polyno-
mial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 285–294, 2005.

[26] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group testing schemes. In
Proceedings of the 35th International Colloquium on Automata, Languages and Programming
(ICALP), pages 748–759, 2008.

[27] A. Rudra. List Decoding and Property Testing of Error Correcting Codes. PhD thesis, Uni-
versity of Washington, 2007.

[28] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. Journal of the ACM, 52(2):172–216, 2005.

19

[29] D. Sheldon and N. E. Young. Hamming approximation of NP witnesses, November 2003.
Manuscript.

[30] D. Sivakumar. On membership comparable sets. J. Comput. Syst. Sci., 59(2):270–280, October
1999.

[31] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000.

[32] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Sys. Sci., 62(2):236–266, 2001.

[33] V. V. Zyablov and M. S. Pinsker. List cascade decoding. Problems of Information Transmis-
sion, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in English), 1982.

A Proof of Theorem 1

We first begin by instantiating the parameter h in the definition of the PV code with parameter
s > 1. Define h to be the smallest power of r larger than s+1

√
W/(K − 1)+2. Note that this implies

that
s+1

√
W

K − 1
+ 2 < h 6 r ·

(
s+1

√
W

K − 1
+ 2

)
. (10)

The map E corresponds to the PV code with the parameters above (where the evaluation points
are {β1, . . . , βN} ⊆ Fq). The discussion above Theorem 1 shows that the map is Fr-linear. The
explicitness follows from the fact that the PV code is explicit. The distance of the PV code is at
least the distance of the RS code with dimension K and block length N , which is N −K+1. Thus,
to complete the proof, we need to prove the claim about the soft decodability of the PV code.

In the remainder of the proof, we will assume that the reader is familiar with the notions of
weighted degree and multiplicities. (For more details see [25], [13], or [27, Chap. 3].)

For every 1 6 i 6 N , let Si denote the set of elements α ∈ Fqs such that wi,α > 0. Let

D =
⌈
s+1
√

(K − 1)s ·W
⌉

+ 1 . (11)

Then given as input the weights {wi,α} (1 6 i 6 N,α ∈ Fqs), the soft decoding algorithm is as
follows:

1. Interpolate a non-zero multivariate polynomial Q(X,Y1, . . . , Ys) with (1,K − 1, . . . ,K − 1)-
weighted degree at most D such that the polynomial has multiplicity wi,α at point (βi, α) for
every α ∈ Si.

2. Output all polynomials f(X) of degree at mostK−1 such thatQ(X, f(X), f1(X), . . . , fs−1(X)) ≡
0 and satisfy (1).

First, we argue that the algorithm above will output all codewords (c1, . . . , cN) = (f(β1), . . . , f(βN)) ∈
C that satisfy (1). Towards this end, we argue that there always exists a non-zero polynomial Q
with the required properties in Step 1. It is well-known that any polynomial Q(X,Y1, . . . , Ys) with

20

(1,K− 1, . . . ,K− 1)-weighted degree D has at least Ds+1

(s+1)!(K−1)s many monomials. Further, a con-
straint that Q(X,Y1, . . . , Ys) has multiplicity m at (β, α) ∈ Fq×Fqs implies

(
m+s
s+1

)
many constraints

in the coefficient of the monomials of Q (which we think of as variables). The proof of both these
facts can be found in [27, Sec. 3.5]. Since we are guaranteed a non-zero solution if the number of
variables exceed the number of constraints, we would be done if

Ds+1

(s+ 1)!(K − 1)s
>

N∑
i=1

∑
α∈Fqs

(
wi,α + s

s+ 1

)
,

which is satisfied by our choice of D.

Next, we argue that Step 2 of the algorithm is correct. Towards this we need to show that for
any f(X) of degree at most K − 1 such that

N−1∑
i=1

wi,(f(βi),f1(βi),...,fs−1(βi)) > d
s+1
√

(K − 1)sW e+ 1 , (12)

we have Q(X, f(X), f1(X), . . . , fs−1(X)) ≡ 0. Consider the univariate polynomial

R(X) def= Q(X, f(X), f1(X), . . . , fs−1(X)) .

Note that for every 1 6 i 6 N , R(X) has wi,(f(βi),f1(βi),...,fs−1(βi)) roots at βi. Thus, R(X) has

at least θ def=
∑N−1

i=1 wi,(f(βi),f1(βi),...,fs−1(βi)) roots. Further, note that R(X) has degree at most D.
Thus, R(X) ≡ 0 if we have θ > D, and this condition is met by (11) and (12).

Finally, we bound the running time of the algorithm above (and at the same time show that
the algorithm outputs at most L codewords). Step 1 entails solving a system of linear equations in
at most Ds+1/(K − 1)s variables3 and W/(s+ 1)! constraints. This can be solved in time poly(W)
(e.g. by Gaussian elimination). Since W 6 ((K − 1) · L)1+1/s and K 6 q, we conclude that this
step takes time poly(q, L).

We now turn to Step 2 of the algorithm. By first dividing out Q(X,Y1, . . . , Ys) enough times by
E(X), we can assume that Q(X,Y1, . . . , Ys) is not divisible by E(X). Then we consider the poly-
nomial T (Y1, . . . , Ys)

def= Q(X,Y1, . . . , Ys) mod E(X) as a polynomial over FqK = Fq[X]/(E(X)).
Since we have fj = f(X)h

j
mod (E(X)), this implies that we would be done if we find all the

roots of R(Y1) def= T (Y1, Y
h

1 , . . . , Y
hs−1

1). We have to guard against the possibility that R(Y1) might
be the zero polynomial. But it is easy to see that this cannot happen if the degree of T in each
Yi is less than h (see, for example [25, Lemma 15].) Since the degree of T in each Yi is at most
D/(K − 1), this holds for the choice of h,D in (10) and (11).

Since R(Y1) has degree at most hs, the number of codewords output by the polynomial is upper
bounded by hs, which in turn is upper bounded by L by our choice of h. Finally, all roots (over
FqK) of R(Y1) can be found by the deterministic factoring algorithm from [4], which will run in
time poly(q, L), as desired. This completes the proof.

3It is easy to show that the number of monomials of (s+1)-variate polynomial with (1, K−1, . . . , K−1)-weighted
degree at most D is at most Ds+1/(K − 1)s.

21

B Proof of Lemma 8

The proof uses the MacWilliams transform and Krawtchouk polynomials, which we define next.

Definition 3 (Krawtchouk Polynomial). The Krawtchouk polynomial of degree j is defined as
follows:

Pnj (X) =
j∑
i=0

(−1)i
(
X

j

)(
N −X
j − i

)
.

The MacWilliams transform relates the weight distribution of of a binary linear code to the
weight distribution of its dual.

Theorem 18 (MacWilliams Transform [22]). For a binary linear code C of block length n,

Aj(C⊥) =
1
|C|
·
n∑
i=0

Ai(C)Pnj (i).

We will also need the fact that Krawtchouk polynomials are orthogonal:

Lemma 19 ([18]). Let i, j, r, s and n be non-negative integers. Then the following holds:
n∑
i=0

(
n

i

)
Pnr (i)Pns (i) = 2n

(
n

r

)
δr,s,

where δr,s = 1 if r = s and is 0 otherwise.

We will now present the proof of Lemma 8.

As the Krawtchouk polynomials form an orthogonal basis and f(X) is a polynomial of degree
at most 2t,

f(X) =
2t∑
j=0

αjP
n
j (X), (13)

for some suitable coefficients αk. In particular, Lemma 19 implies that

α0 =
1
2n

n∑
i=0

(
n

i

)
f(i). (14)

Thus, we have
n∑
i=0

Ai(C)f(i) =
2t∑
j=0

αk

n∑
i=0

Ai(C)Pnj (i) (15)

= |C|
2t∑
j=0

αkAi(C⊥) (16)

= |C| · α0 (17)

=
|C|
2n
·
n∑
i=0

(
n

i

)
f(i). (18)

In the above (15) follows from (13). (16) follows from Theorem 18. (17) follows from the assumption
that C⊥ has distance of at least 2t+ 1. Finally, (18) follows from (14). The proof is complete.

22

C Proof of Lemma 16

Note that we need to prove that

Pry
[
y ∈ B

(
c,
n

2
− a
√
n log n

)]
>

1
n4a2 log e+1

.

Since y is chosen uniformly at random,

Pry
[
y ∈ B

(
c,
n

2
− a
√
n log n

)]
=

∣∣B (c, n2 − a√n log n
)∣∣

2n
.

To complete the proof, we will show that for large enough n:

log
(∣∣∣B (c,

n

2
− a
√
n log n

)∣∣∣) > n− (4a2 log e+ 1) log n. (19)

It is easy to check that∣∣∣B (c,
n

2
− a
√
n log n

)∣∣∣ > (n
n
2 − a

√
n log n

)
=

n!
(n/2− a

√
n log n)!(n/2 + a

√
n log n)!

.

Before we proceed, we recall Stirling’s approximation for b!:

√
2πb

(
b

e

)b
eλ1(b) < b! <

√
2πb

(
b

e

)b
eλ2(b).

where
λ1(b) =

1
12b+ 1

and λ2(b) =
1

12b
.

Thus,∣∣∣B (c,
n

2
− a
√
n log n

)∣∣∣ > E(n) · nn(
n
2 − a

√
n log n

)n
2
−a
√
n logn (n

2 + a
√
n log n

)n
2

+a
√
n logn

,

where

E(n) =
1√

2π
(
n
4 − a2 log n

) · eλ1(n)

eλ2(n2−a
√
n logn)+λ2(n2 +a

√
n logn)

.

For large enough n, E(n) > 1
n , which implies that∣∣∣B (c,

n

2
− a
√
n log n

)∣∣∣ > nn−1(
n
2 − a

√
n log n

)n
2
−a
√
n logn (n

2 + a
√
n log n

)n
2

+a
√
n logn

,

Thus,

log
(∣∣∣B (c,

n

2
− a
√
n log n

)∣∣∣) > (n− 1) log n−
(n

2
− a
√
n log n

)(
log
(n

2

)
+ log

(
1− 2a

√
log n
n

))

−
(n

2
+ a
√
n log n

)(
log
(n

2

)
+ log

(
1 + 2a

√
log n
n

))

23

= n− log n−
(n

2
− a
√
n log n

)
log

(
1− 2a

√
log n
n

)

−
(n

2
+ a
√
n log n

)
log

(
1 + 2a

√
log n
n

)

> n− log n+ 2a log e

√
log n
n
·
(n

2
− a
√
n log n

)
− 2a log e

(n
2

+ a
√
n log n

)√ log n
n

(20)

= n− (4a2 log e+ 1) log n.

In the above (20) follows from the fact that for any 0 6 x < 1, ln(1 + x) 6 x, ln(1− x) 6 −x and

for large enough n, 2a
√

logn
n < 1. The proof is complete.

D Complexity-theoretic motivation: Approximating NP-witnesses

Every language L in the complexity class NP comes equipped with a polynomial-time decidable
witness predicate RL such that L = {x|∃y, |y| = |x|c ∧RL(x, y)}. Note that L might have multiple
witness predicates. For an NP-complete language L and given a string x ∈ L, unless P = NP, one
cannot find in polynomial-time a witness y such that RL(x, y) is true. One natural approximation
(considered in [9, 20]) is to try and find a string z that does not differ much from a satisfying
witness y.

Kumar and Sivakumar [20] showed the following connection of approximating NP witness to
list decodable codes.

Theorem 20. Let {Ci}i be a family of binary codes such that for every integer i > 1, Ci is an
[ni, i]2 code that can be list decoded from a fraction 1/2 − ε of errors (for some ε = ε(ni) > 0) in
poly(i, 1/ε) time. Then for any language L in NP, there exists a polynomial-time decidable witness
predicate R′L such that for x ∈ L the following holds. If one can compute a string z ∈ {0, 1}|y|
such that ∆(z, y) 6 |y|/2− ε|y| in polynomial time, where R′L(x, y) is true, then one can compute
a witness y′ that satisfies R′L(x, y′) in polynomial time.

We now briefly sketch the idea behind the proof of the theorem above. Let RL be a polynomial-
time decidable witness predicate for L. We define R′L as follows:

R′L(x, y) =
[
(|y| = |x|d) ∧

(
∃z
[
RL(x, z) ∧ |z| = |x|c ∧ y = C|z|(z)

])]
where C|z| is the code of dimension |z| referred to in Theorem 20.

Consider an x ∈ {0, 1}n such that x ∈ L and define N = nd. Let y′ ∈ {0, 1}N be such that
∆(y′, CN (z′)) 6 N/2 − εN for some witness z′ ∈ {0, 1}nc such that RL(x, z′) is satisfied. By
running the list decoding algorithm for CN , one can obtain a polynomial-sized list {z′1, z′2, . . . , z′`}
that contains z′. One can then prune the list to find some satisfying witness for RL by checking if
RL(x, z′i) is satisfied for some 1 6 i 6 `.

24

Recall that our result implies that there are codes with n = O(k3/ε3+γ) that are list decodable in
poly(n) time up to 1/2− ε fraction of errors. Note that if we choose ε = n−1/3+γ , then n = poly(k)
(assuming γ is a constant). Thus, Theorem 20 immediately implies the following corollary:

Corollary 21. For every γ > 0 the following holds. For every language in NP, there exists a
polynomial time decidable witness predicate R′L with the following property: There is an algorithm
that given x ∈ L and an arbitrary string of length N that is promised to agree in at least N/2 +
N2/3+γ positions with some unknown N -bit witness y satisfying R′L(x, y), runs in poly(|x|, N) time
and outputs a witness y′ that satisfies R′L(x, y′).

Thus, for any NP-complete language, it is NP-hard to compute a string that agrees in at least
N/2 + N2/3+γ (for γ > 0) positions with some N -bit witness (for some witness predicate). This
improves upon the previous “hardness of approximation” result of N/2+N3/4+γ from [15]. The best
one could hope for via these methods is a bound of N/2 +O(

√
N logN), as we show in Section 5.

Related Work on NP Witness Approximation. The model of approximating NP-witness
of [20] has the slight disadvantage that the polynomial-time decidable witness predicate R′L for the
language L ∈ NP is somewhat unnatural. For example, for the SAT problem, we would like the
witness for R′L (and RL) to be a truth assignment. This model was first considered by Gál, Halevi,
Lipton and Petrank [9] (though their original notion of approximation was to correctly compute
some bits of a satisfying witness). Feige, Langberg and Nissim in [8] show that it is NP-hard to
compute an assignment that agrees with N/2+Nη many bits of a satisfying assignment for a 3CNF
formula (for some η > 0). Sheldon and Young extended this result to work for every η > 0 [29].
Similar results were shown for other specific NP-complete problems in [8, 29].

We now discuss the result of Sheldon and Young for SAT in some more detail. As was mentioned
earlier, one cannot hope to go beyond a “hardness of approximation” result of N/2 +

√
N using

Theorem 20. By contrast, the result for SAT in [29] shows a hardness of approximation result for
N/2 + Nη for any η > 0 (and hence, “beats” the list decoding approach). Sheldon-Young do not
use list decodable codes in their reduction. In particular, their reductions works by repeating an
input variable enough number of times (and suitably changing the SAT formula) so that assigning
the “wrong” value to the chosen bit will result in an assignment that agrees with any satisfying
assignment in strictly less than N/2 + Nη many positions. Thus, if there exists an algorithm
that can output an assignment that agrees in at least N/2 + Nη positions with some satisfying
assignment, then the assignment computed by the algorithm will assign the “correct” value to the
chosen bit. Repeating this procedure recovers a satisfying assignment (assuming one exists).

We note that the reduction outline above is specific to SAT (though the idea can be generalized
to some other “natural” NP-complete problems). By contrast, the reduction of Theorem 20 works
for arbitrary NP language L. (Further, the witness predicate R′L of Theorem 20 can be constructed
from any witness predicate RL for L.)

25

	Introduction
	Our Bounds and Comparison With Previously Best Known Bounds
	Organization of the Paper

	Coding Basics
	Coding Ingredients
	Parvaresh-Vardy codes and their soft decoding
	Johnson Bound
	Codes on the Gilbert-Varshamov Bound
	Dual BCH Codes
	Weight Distribution and Duals of Linear Codes
	Moments of Coset Weight Distribution of Dual BCH Codes

	Binary Codes List Decodable in Presence of High Noise
	Construction With Near-Cubic Dependence on
	Construction with Linear Dependence on Dimension

	A Negative Result
	Open Questions
	Proof of Theorem 1
	Proof of Lemma 8
	Proof of Lemma 16
	Complexity-theoretic motivation: Approximating NP-witnesses

