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Abstract. The order of problems presented to students is an important
variable that affects learning effectiveness. Previous studies have shown
that solving problems in a blocked order, in which all problems of one
type are completed before the student is switched to the next problem
type, results in less effective performance than does solving the problems
in an interleaved order. While results are starting to accumulate, we have
little by way of precise understanding of the cause of such effect. Using
a machine-learning agent that learns cognitive skills from examples and
problem solving experience, SimStudent, we conducted a controlled sim-
ulation study in three math and science domains (i.e., fraction addition,
equation solving and stoichiometry) to compare two problem orders: the
blocked problem order, and the interleaved problem order. The results
show that the interleaved problem order yields as or more effective learn-
ing in all three domains, as the interleaved problem order provides more
or better opportunities for error detection and correction to the learning
agent. The study shows that learning when to apply a skill benefits more
from interleaved problem orders, and suggests that learning how to apply
a skill benefits more from blocked problem orders.

Keywords: learning transfer, learner modeling, interleaved problem or-
der, blocked problem order

1 Introduction

One of the most important variables that affects learning effectiveness is the or-
der of problems presented to students. While most existing textbooks organize
problems in a blocked order, in which all problems of one type (e.g. learning
to solve equations of the form S1/V=S2) are completed before the student is
switched to the next problem type, it is surprising that problems in an inter-
leaved order often yields more effective learning. Numerous studies have ex-
perimentally demonstrated this effect (e.g., [18, 6, 2, 9, 23, 4, 17, 7]). However, the
cause of the the effect is still unclear. A computational model that demonstrates
such behavior would be a great help in better understanding this widely-observed
phenomena, and might reveal insights that can improve current education tech-
nologies.
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•  Skill divide (e.g. -3x = 6) 
•  Perceptual information: 

•  Left side (-3x) 
•  Right side (6) 

•  Precondition: 
•  Left side (-3x) does not 

have constant term 
•  Operator sequence: 

•  Get coefficient (-3) of left 
side (-3x) 

•  Divide both sides with the 
coefficient (-3) 

Fig. 1. A production rule for divide.

In this paper, we conducted a controlled-simulation study using a machine-
learning agent, SimStudent. SimStudent was trained on real-student problems
that were of blocked orders or interleaved orders. We then tested whether the ad-
vantages of interleaved problem orders over blocked problem orders are exhibited
in all three domains. After that, we carefully inspected what causes such effect
by inspecting SimStudent’s learning processes and learning outcomes, which are
not easily obtainable from human subjects.

2 A Brief Review of SimStudent

SimStudent is a machine-learning agent that inductively learns skills to solve
problems from demonstrated solutions and from problem solving experience.
It is an extension of programming by demonstration [8] using inductive logic
programming [13] as an underlying learning technique. In the rest of this section,
we will briefly review the learning mechanism of SimStudent. For full details,
please refer to [10].

SimStudent learns production rules as skills to solve problems. During the
learning process, given the current state of the problem (e.g., -3x = 6), SimStu-
dent first tries to find an appropriate production rule that proposes a plan for
the next step (e.g., (coefficient -3x ?coef) (divide ?coef)). If it finds a plan and
receives positive feedback, it continues to the next step. If the proposed next
step is incorrect, negative feedback and a correct next step demonstration are
provided to SimStudent. The learning agent will attempt to learn or modify its
production rules accordingly. If it has not learned enough skill knowledge and
fails to find a plan, a correct next step is directly demonstrated to SimStudent
for later learning.

Figure 1 shows an example of a production rule learned by SimStudent in a
readable format1. A production rule indicates “where” to look for information in
the interface, “how” to change the problem state, and “when” to apply a rule. For
example, the rule to “divide both sides of -3x=6 by -3” shown in Figure 1 would

1 The actual production rule uses a LISP format.
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be read as “given a left-hand side (-3x) and a right-hand side (6) of the equation,
when the left-hand side does not have a constant term, then get the coefficient
of the term on the left-hand side and divide both sides by the coefficient.”

As there are three main parts in a production rule, SimStudent’s learning
mechanism also consists of three parts: a “where” learner, a “when” learner,
and a “how” learner. The “where” learner acquires knowledge about where to
find useful information in the GUI. For example, for the step divide -3, -3x and
6 are the useful information, the GUI elements associated with them are Cell 21
and Cell 22. The learning task is to find paths that identify such elements. All
of the elements in the interface are organized in a tree structure. For instance,
if the GUI has a table in it, the table node has columns as children, and each
column has multiple cells as children. For each cell, SimStudent uses a deep
feature learning mechanism that acquires knowledge on how to further parse the
content in each cell into a cell parse tree. When given a set of positive examples
(i.e., GUI elements associated with useful information in the steps), the learner
carries out a specific-to-general learning process (e.g., from Cell 21 to Cell ?1 to
Cell ??). It finds the most specific paths that cover all of the positive examples.

The “when” learner acquires the precondition of the production rule that de-
scribes the desired situation to apply the rule (e.g. (not (has-constant ?var1)))
given a set of feature predicates. Each predicate is a boolean function of the
arguments that describes relations among objects in the domain. For example,
(has-coefficient -3x) means -3x has a coefficient. The “when” learner utilizes
FOIL [15] to acquire the precondition as a set of feature tests. FOIL is an in-
ductive logic programming system that learns Horn clauses from both positive
and negative examples expressed as relations. If a step is either demonstrated
to SimStudent or receives positive feedback, that step is a positive example for
FOIL; otherwise, a negative example.

The last component is the “how” learner which acquires knowledge about
how to change the problem state. Given all of the positive examples and a set of
basic operator functions (e.g., (divide ?var)), the “how” learner attempts to find
a shortest operator function sequence that explains all of the training examples
using iterative-deepening depth-first search.

3 Problem Order Study

To get a better understanding of how and why problem orders affect learning
efficiency, we carried out a controlled simulation study on SimStudent given
different problem orders.

3.1 Methods

To ensure the generality of the results, we selected three math and science do-
mains: fraction addition, equation solving, and stoichiometry. Both the training
and testing problems were selected from problems solved by human students in
classroom studies. SimStudent was tutored by interacting with automatic tutors
that simulate the automatic tutors used by human students.
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Fraction Addition: In the fraction addition domain, SimStudent was given a
series of fraction addition problems of the form

numerator1
denominator1

+
numerator2
denominator2

All numerators and denominators are positive integers. The problems are of
three types in the order of increasing difficulty: 1) easy problems, where the two
addends share the same denominators (i.e., denominator1 = denominator2, e.g.,
1/4 + 3/4), 2) normal problems, where one denominator is a multiple of the
other denominator (i.e., GCD(denominator1, denominator2) = denominator1
or denominator2, e.g., 1/2 + 3/4), 3) hard problems, where no denominator is a
multiple of the other denominator (e.g., 1/3 + 3/4). In this case, students need
to find the common denominator (e.g. 12 for 1/3 + 3/4) by themselves. Both the
training and testing problems were selected from a classroom study of 80 human
students using an automatic fraction addition tutor. The number of training
problems is 20, and the number of testing problems is 6.

Equation Solving: The second domain in which we tested SimStudent is equa-
tion solving. Equation solving is a more challenging domain since it requires more
complicated prior knowledge to solve the problem. For example, it is hard for
human students to learn what is a coefficient, and what is a constant. Also,
adding two terms together is more complicated than adding two numbers.

In this experiment, we evaluated SimStudent based on a dataset of 71 human
students in a classroom study using an automatic tutor, CTAT [1]. The problems
are also in three types: 1) problems of the form S1+S2V = S3, 2), V/S1 = S2, 3)
S1/V = S2, where S1 and S2 are signed numbers, and V is a variable. Note that
the terms in the above problem forms can appear in any order, and surrounded
with parenthesis. There were 12 training problems, and 11 testing problems in
the experiment.

Stoichiometry: Lastly, we evaluated SimStudent in a chemistry domain, sto-
ichiometry. Stoichiometry is a branch of chemistry that deals with the relative
quantities of reactants and products in chemical reactions. We selected stoi-
chiometry because it is different from equation solving and fraction addition in
nature. In the stoichiometry domain, SimStudent was asked to solve problems
such as “How many moles of atomic oxygen (O) are in 250 grams of P4O10?
(Hint: the molecular weight of P4O10 is 283.88 g P4O10 / mol P4O10.)”. 8 train-
ing problems and 3 testing problems were selected from a classroom study of 81
human students using an automatic stoichiometry tutor [11].

To solve the problems, SimStudent needs to acquire three types of skills: 1)
unit conversion (e.g. 0.6 kg H2O = 600 g H2O), 2) molecular weight (e.g. There
are 2 moles of P4O10 in 283.88 × 2 g P4O10) , 3) composition stoichiometry
(e.g. There are 10 moles of O in each mole of P4O10). The problems are of three
types ordered in increasing difficulty, where each later type adds one more skill
comparing with its former type.
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Measurement: To measure learning gain, the production rules learned by Sim-
Student were tested on the testing problems each time tutoring was done on a
single training step. For each step in the testing problems, we measure a step
score for it. In math and science problems, there is often more than one way to
solve one problem. Hence, at each step, there is usually more than one produc-
tion rule that is applicable. In this case, among all possible correct next steps, we
count the number of correct steps that are actually proposed by some applicable
production rule, and report the step score as the number of correct next steps
covered by learned rules divided by the total number of correct next steps plus
the number of incorrect next steps proposed by SimStudent, i.e.,

#OfCorrectNextStepsProposed

Total#OfCorrectNextSteps + #OfIncorrectNextStepsProposed

For example, if there are four possible correct next steps, and SimStudent
proposes three, of which two are correct, and one is incorrect, then only two
correct next steps are covered, and thus the step score is 2/(4 + 1) = 0.4. We
report the average step score over all testing problem steps for each curriculum.

3.2 Blocked vs. Interleaved Problem Orders

To manipulate the order of problems given to SimStudent, for each domain, we
first grouped the problems of the same type together. Since there were three
types of problems, we had three groups in each domain: group -1, group - 2, and
group - 3. Then, there were six different orders of these three groups. For each
order (e.g. [group - 1, group - 2, group - 3]), we generated one blocked-ordering
curriculum by repeating the same type of problems2 in each group right after
that group’s training was done (e.g., [group - 1, group - 1’, group - 2, group -
2’, group - 3, group - 3’]). To generate the interleaved-ordering curriculum, the
same types of problems will be repeated once the whole set of problems were
done (e.g, [group - 1, group - 2, group - 3, group - 1’, group - 2’, group - 3’]).

After this manipulation, we ended up having 12 curricula of different orders
for each domain as shown in Table 1. Six of them were blocked-ordering curric-
ula, whereas the other six were interleaved-ordering curricula. SimStudent was
trained and tested on all these curricula, the results are the average step scores
over curricula of the same type (blocked or interleaved).

Blocked-Ordering Curricula Interleaved-Ordering Curricula

1, 1’, 2, 2’, 3, 3’ 1, 2, 3, 1’, 2’, 3’
1, 1’, 3, 3’, 2, 2’ 1, 3, 2, 1’, 3, 2’
2, 2’, 1, 1’, 3, 3’ 2, 1, 3, 2’, 1’, 3’
2, 2’, 3, 3’, 1, 1’ 2, 3, 1, 2’, 3’, 1’
3, 3’, 1, 1’, 2, 2’ 3, 1, 2, 3’, 1’, 2’
3, 3’, 2, 2’, 1, 1’ 3, 2, 1, 3’, 2’, 1’

Table 1. 12 curricula of different orders for each domain.

2 The problems will be of the same form, but with different values. For example, 3x
= 6 may be replaced by 4x = 8.
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Fig. 2. Learning curves of blocked-ordering curricula vs. interleaved-ordering curricula
in three domains, a) stoichiometry, b) equation solving, c) fraction addition, and the
average number of times SimStudent receives negative feedback for each skill across
three domains.

3.3 Results

Figure 2 shows the learning curves of SimStudent trained on blocked-ordering or
interleaved-ordering curricula. As we can see in the graph, in all three domains,
the interleaved-ordering curricula yielded as or more effective learning than the
blocked-ordering curricula.

In the domain of stoichiometry, the step score of the interleaved-ordering
curricula was 0.944, whereas the step score of the blocked-ordering curricula
was 0.813. A sign test between pairs of step scores achieved by the associated
interleaved-ordering and blocked-ordering curricula (e.g., [group - 1, group - 2,
group - 3, group - 1’, group - 2’, group - 3’] vs. [group - 1, group - 1’, group -
2, group - 2’, group - 3, group - 3’]) showed that, after trained on 40 problems,
the interleaved-ordering curricula is significantly (p < 0.05) more effective than
the blocked-ordering curricula.

Similar results were also observed in the equation solving domain. The interleaved-
ordering curricula again showed a benefit (0.955 vs. 0.858) over blocked-ordering
curricula. The sign test also demonstrated significant (p < 0.05) advantages of
interleaved-ordering curricula over the blocked-ordering curricula.
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In fraction addition, SimStudent got an average step score of 0.995 when
trained with interleaved-ordering curricula, which is slightly higher than the step
score SimStudent received (0.993) when trained with blocked-ordering curricula.
There was no significant difference between the two conditions.

3.4 Implications for Instructional Design

We can inspect the data more closely to get a better qualitative understanding
of why the SimStudent model is better and what implications there might be
for improved instruction. In two of three domains, interleaved-ordering curricula
are more advantageous than blocked-ordering curricula. These results provide
theoretical support for the hypothesis that when teaching human students in
math and science domains, an interleaved problem order yields better learning
than a blocked problem order.

To better understand the cause of the advantages of interleaved-ordering
curricula, we further measured the amount of negative feedback received by
SimStudent, as it is one of the important factors in achieving effective learning.
The amount of negative feedback is assessed by the average number of times
SimStudent received negative feedback for each skill. As presented in Figure 2(d),
the SimStudent given interleaved-ordering problems receives significantly (p <
0.05, 31.5%) more negative feedback than the SimStudent trained on blocked-
ordering problems in stoichiometry, and 10.0% more negative feedback in fraction
addition.

One possible explanation for this is when problems are of an interleaved
order, SimStudent may incorrectly apply the production rules learned from pre-
vious problem types to the current problem, even if the current problem is of
another type. In this case, SimStudent receives explicit negative feedback from
the tutor. In contrast, when trained on blocked-ordering curricula, SimStudent
has fewer opportunities for incorrect rule applications, and thus receives less neg-
ative feedback. Since the negative feedback serves as negative training examples
of the “when” learning, more negative feedback in the interleaved problem order
case enables SimStudent to yield more effective “when” learning compared to
blocked problem orders. Although SimStudent received approximately the same
amount of negative feedback (p = 1, -1.9%) in the blocked problem order case
and interleaved problem order case, a careful inspection shows that negative ex-
amples from other problem types are sometimes more informative than those
from the same problem type. For example, in algebra, during the acquisition
of the skill “subtract”, the SimStudent given blocked-ordering problems learned
that when there is a constant term in either side of the equation (e.g., term S2

is a number in S1V+S2=S3), subtract both sides with that number (e.g., (sub-
tract S2)). But it failed to learn that there must be a plus sign before S2. In the
interleaved condition, SimStudent received negative feedback when it tried to
subtract both sides with S2 when given problems of type S1/V=S2. Then, the
SimStudent given interleaved-ordering problems modified its when-part. The up-
dated production rule became, “when there is a constant term that follows a plus
sign in either side of the equation, subtract both sides with that number.”
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We conjecture that the frequent use of blocked examples in textbooks might
relate to perceived memory limitations of students. SimStudent currently does
not have any severe memory (or retrieval) limitations (e.g., it remembers all
past examples no matter how long ago). SimStudent would need to have some
memory limitations if it were to have a bigger knowledge base or to better
model humans. If it did, the benefits for blocking may go up, and in particular
for “how” learning. Let’s consider a fixed memory size for SimStudent, which
means SimStudent is only able to remember a fixed number of most recent
training examples. SimStudent receives training examples of “how” learning only
when the current step is demonstrated or SimStudent applies a production rule
correctly. Hence, in the blocked problem order case, SimStudent maintains all
the training examples of the current problem type unless the number of training
examples exceeds the memory limit. In contrast, when trained on interleaved-
ordering curricula, SimStudent needs to remember training examples for multiple
problem types. For any specific production rule, the number of training examples
will be smaller than that given a blocked-ordering curricula, which could result
in less effective learning than the blocked-ordering case.

This also relates to VanLehn’s work on “learning one subprocedure per les-
son” [20]. If a subprocedure is achieved in the same way, that is, with the same
how-part in the production rule, then as Vanlehn suggested, problems of blocked
orders are more beneficial. However, for production rules/procedures to differ-
entiate across subgoals, the when-part needs to be acquired and in that case,
interleaving problems of different types is important.

In summary, the study shows that learning when to apply a skill benefits more
from interleaved problem orders, and suggests that learning how to apply a skill
benefits more from blocked problem orders. Therefore, when tutoring students
in domains that are more challenging in “how” learning, we suggest that the
problems presented to students should be of blocked orders. If the learning task
requires more rigorous “when” learning, interleaved-ordering problems should
be preferred.

4 Related Work

The main objective of this work is to better understand how and why problem
orders affect learning outcome using a learning agent. A considerable amount
of research has demonstrated the effectiveness of interleaved problem orders.
Shea and Morgan [18] were the first that showed problems of a random order
yields better performance in retention and transfer tests than students trained on
problems of a blocked order, and named this effect as the contextual interference
(CI) effect. The CI effect compares random problem orders and blocked problem
orders, not interleaved problem orders and blocked orders, but the results should
be similar since the main point is whether consecutive problems should be of the
same or different types. That is, random problem orders have lots of interleaving.
After that, a growing number of studies (e.g., [6, 2, 9, 23, 4, 17, 7]) have repeatedly
observed the CI effect in different tasks. Other studies on relatively complex
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tasks (e.g., [19]) or novices (e.g., [5]) have yielded mixed results. To explain
the CI phenomenon, researchers have proposed several hypothesis including the
elaboration hypothesis [18], the forgetting or reconstruction hypothesis [9], etc.
More details on these hypotheses are available in [22], however, all are described
in fairly ambiguous language and none have the precision of a computational
theory. In contrast, SimStudent provides a precise, unambiguous implementation
of how and why interleaving may be effective.

Research on task switching [12] shares a resemblance with our work. It shows
that subjects’ responses are substantially slower and more error-prone immedi-
ately after a task switch. Our work differs from this research in that we focus on
learning tasks. During the learning process, switching among problems of differ-
ent types also increases the cognitive load, but causes more effective learning.

Other research on creating simulated students [21, 3, 14] and simulating ex-
pert memory [16] also share some resemblance to our work. VanLehn [21] created
a learning system and evaluated whether it was able to learn procedural “bugs”
like real students. To the best of our knowledge, none of the above approaches
made use of the models to simulate the advantage of interleaved or random
problem orders over blocked problem orders.

5 Concluding Remarks

In spite of the promising results, there remain several fruitful future steps. First,
the current study used only one set of problems in each domain. To evaluate
the generality of the claim, we should carry out the same set of experiments
using other problem sets or in other domains. Second, we would like to carry
out more studies in which SimStudent has limited memory, and validate whether
“how” learning gains more from blocked problem orders in this case. Last, future
research could apply the theoretical implications in a study on human students,
and evaluate the validity of the recommended tutoring strategy.

In this paper, we carried out a controlled simulation study to gain a bet-
ter understanding of why interleaved problem orders generate more effective
learning than blocked problem orders. We measured the learning effectiveness
of a machine-learning agent, SimStudent, in three domains given different prob-
lem orders. The results show that since the interleaved problem order yields
more opportunities for error detection and correction, the SimStudent trained
by interleaved-ordering curricula achieved better performance than the SimStu-
dent trained by blocked-ordering curricula.
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