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Topics 

• Introduction (1 Week) 

• Classic algorithms (4 weeks) 

• Bi-directional studies (4 weeks) 

• Student presentations (4 weeks) 

• Poster session (1 week) 



Class overview 

• 2 problem sets 
• Project (and poster) 
• Class presentation of a paper (only for those 

registered to the masters / grad version) 
• Class attendance and participation 



Class grades 

• Project (40%) 
• Problem sets (20%) 
• Class participation (10%) 
• Class presentation (30%) 
• (for those not presenting, % will be adjusted 

according to the weighting above) 



Overview 

• Why learn from nature? 
• Nature inspired / learned algorithms 
    - Differential Evolution algorithm  
    - Other optimization 
    -Bi-directional studies 
• Applications  

 



Learning from nature 

• Nature evolved efficient methods to address 
information processing problems  

• Processes imitating such natural processes are 
often denoted as ‘nature inspired’ 

• Engineering example: Aircraft wing design  
 



(Another) engineering example: Bullet 
train 

Train's nose is designed after the beak of a kingfisher, 
which dives smoothly into water. (Source: Popular 
Mechanics) 



Optimization 
– An act, process, or methodology of making 

something as fully perfect, functional, or effective 
as possible. (webster dictionary)  

• Birds: Minimize drag.  
• Consider an optimization problem of the form: 
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Optimization problem: Example 

Fastest / cheapest way of visiting all 50 state capitals 



Characteristics of common 
optimization problems 

 
• Objective and constraint functions can be non-

differentiable.  
• Constraints nonlinear.  
• Discrete/Discontinuous search space.  
• Mixed variables (Integer, Real, Boolean etc.)  
• Large number of constraints and variables.  
• Objective functions can be multimodal with more than 

one optima 
• Computationally expensive to compute in closed form 

 



Iteratively solving optimization 
problems 



Solving optimization problems 

 
• Different methods for different types of problems.  
• Often get stuck in local optima (lack global perspective).  
• Some (for example regression based on gradient descent)  

need knowledge of first/second order derivatives of objective 
functions and constraints.  

 



Evolution 



Evolutionary algorithms 
• Offsprings created by 

reproduction, mutation, etc.  
• Natural selection - A guided search 

procedure  
• Individuals suited to the 

environment survive, reproduce 
and pass their genetic traits to 
offspring  

• Populations adapt to their 
environment. Variations 
accumulate over time to generate 
new species 



Evolutionary algortithms 

Terminology 
1.Individual - carries the genetic information 

(chromosome). It is characterized by its state in the 
search space and its fitness (objective function value).  

2.Population - pool of individuals which allows the 
application of genetic operators.  

3.Fitness function - The term “fitness function” is often 
used as a synonym for objective function.  

4.Generation - (natural) time unit of the EA, an iteration 
step of an evolutionary algorithm.  
 





Overall idea 
 
 

• Selection - Roulette wheel, Tournement, steady state, etc.  
• Motivation is to preserve the best (make multiple copies) and 

eliminate the worst  
• Crossover – simulated binary crossover, Linear crossover, blend 

crossover, etc.  
• Create new solutions by considering more than one individual  
           -  Global search for new and hopefully better solutions  
• Mutation – Polynomial mutation, random mutation, etc.  
• Keep diversity in the population  
            – 010110 →010100 (bit wise mutation)  

 



Evolutionary vs. gradient descent 
based methods 



Limitations 

• No guarantee of finding an optimal solution in finite time  
• Relatively little in terms of convergence guarantees  
• Could ne computationally expensive   

 



Bi-directional studies 

Navlakha and Bar-Joseph Nature MSB 2011 



Algorithms in nature: Shared principles 
between CS and Biology 



Movie 

http://cacm.acm.org/magazines/2015/1/181614-distributed-
information-processing-in-biological-and-computational-
systems/fulltext 



But there are also differences … 



Tradeoffs between key design issues 



Communication models for biological 
processes 



Network topologies 



Examples of bi-directional studies 



Details of models used 
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