Algorithms in Nature

(brief) introduction to biology

Organism, Organ, Cell

Types of Cells

- Eukaryots:
 - Plants, animals, humans
 - DNA resides in the nucleus
 - Contain also other compartments
- Prokaryots:
 - Bacteria
 - Do not contain compartments

Figure 1-17 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)

Cell signaling

- Cells communication is based on chemical signals & receptors
 - If you have the correct receptor, respond to signal; no receptor = no response
 - Single-celled organisms receive cues about the environment, status of other individuals
- Process termed the signal transduction pathway
 - From signal interacting with receptor to cellular response

Types of Signals

- Local signaling: short-distance
 - affect the cells that produce them
 - affect nearby cells (diffuse)
- Hormonal signaling: long-distance
 - Typically found in multicellular organisms & use circulatory system for distribution

Cell Signaling Stages

- Reception: signal molecule interacts with receptor
- 2. Transduction typically several steps that involve changes to responder molecules and downstream targets
- **3. Outcome:** often triggers a cellular response (*effect*)

Introduction to Molecular Biology

- Genomes
- Genes
- Regulation
- mRNAs
- Proteins
- Systems

Central dogma

Genome

- A genome is an organism's complete set of DNA (including its genes).
- However, in humans less than 3% of the genome actually encodes for genes.
- ... while a much larger % of the genome is transcribed (miRNAs, lincRNAs, ...)
- A part of the rest of the genome serves as a control regions (though that's also a small part).

Comparison of Different Organisms

	Genome size	Num. of genes
E. coli	.05*108	4,200
Yeast	.15*108	6,000
Worm	1*108	18,400
Fly	1.8*10 ⁸	13,600
Human	30*108	25,000
Plant	1.3*108	25,000

Biological data is rapidly accumulating

Next generation sequencing

Cost per Raw Megabase of DNA Sequence

Cost per Genome

Genes

What is a gene?

Promoter

Protein coding sequence

Terminator

Genomic DNA

Example of a Gene: Gal4 DNA

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAGAAGACCTTGACATGATT TTGAAAATGGATTCTTTACAGGATATAAAAGCATTGTTAACAGGATTATTTGTACAAGAT AATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTA ACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAACAAAGGT CAAAGACAGTTGACTGTATCGATTGACTCGGCAGCTCATCATGATAACTCCACAATTCCG TTGGATTTTATGCCCAGGGATGCTCTTCATGGATTTGATTGGTCTGAAGAGGGATGACATG TCGGATGGCTTGCCCTTCCTGAAAACGGACCCCAACAATAATGGGTTCTTTGGCGACGGT TCTCTCTTATGTATTCTTCGATCTATTGGCTTTAAACCGGAAAATTACACGAACTCTAAC GTTAACAGGCTCCCGACCATGATTACGGATAGATACACGTTGGCTTCTAGATCCACAACA TCCCGTTTACTTCAAAGTTATCTCAATAATTTTCACCCCTACTGCCCTATCGTGCACTCA CCGACGCTAATGATGTTGTATAATAACCAGATTGAAATCGCGTCGAAGGATCAATGGCAA ATCCTTTTTAACTGCATATTAGCCATTGGAGCCTGGTGTATAGAGGGGGAATCTACTGAT ATAGATGTTTTTTACTATCAAAATGCTAAATCTCATTTGACGAGCAAGGTCTTCGAGTCA

Genes Encode for Proteins

Second Letter

		U	С	Α	G	
1st letter	ט	UUU Phe UUC UUA Leu UUG	UCU Ser UCA UCG	UAU Tyr UAC Stop UAA Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	ပ	CUU Leu CUC Leu CUA	CCU CCC Pro CCA CCG	CAU His CAC GIn CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUC IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA AGA Arg	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG

Example of a Gene: Gal4 AA

MKLLSSIEQACDICRLKKLKCSKEKPKCAKCLKNNWECRYSPKTKRSPLTRAHLTEVESR LERLEQLFLLIFPREDLDMILKMDSLQDIKALLTGLFVQDNVNKDAVTDRLASVETDMPL TLRQHRISATSSSEESSNKGQRQLTVSIDSAAHHDNSTIPLDFMPRDALHGFDWSEEDDM SDGLPFLKTDPNNNGFFGDGSLLCILRSIGFKPENYTNSNVNRLPTMITDRYTLASRSTT SRLLQSYLNNFHPYCPIVHSPTLMMLYNNQIEIASKDQWQILFNCILAIGAWCIEGESTD IDVFYYQNAKSHLTSKVFESGSIILVTALHLLSRYTQWRQKTNTSYNFHSFSIRMAISLG LNRDLPSSFSDSSILEQRRRIWWSVYSWEIQLSLLYGRSIQLSQNTISFPSSVDDVQRTT TGPTIYHGIIETARLLQVFTKIYELDKTVTAEKSPICAKKCLMICNEIEEVSRQAPKFLQ MDISTTALTNLLKEHPWLSFTRFELKWKQLSLIIYVLRDFFTNFTQKKSQLEQDQNDHQS YEVKRCSIMLSDAAQRTVMSVSSYMDNHNVTPYFAWNCSYYLFNAVLVPIKTLLSNSKSN AENNETAQLLQQINTVLMLLKKLATFKIQTCEKYIQVLEEVCAPFLLSQCAIPLPHISYN NSNGSAIKNIVGSATIAQYPTLPEENVNNISVKYVSPGSVGPSPVPLKSGASFSDLVKLL SNRPPSRNSPVTIPRSTPSHRSVTPFLGQQQQLQSLVPLTPSALFGGANFNQSGNIADSS

Structure of Genes in Mammalian Cells

- Within coding DNA genes there can be un-translated regions (Introns)
- Exons are segments of DNA that contain the gene's information coding for a protein
- Need to cut Introns out of RNA and splice together Exons before protein can be made
- Alternative splicing increases the potential number of different proteins, allowing the generation of millions of proteins from a small number of genes.

Comparative genomics

Mouse and Human Genetic Similarities

Oak Ridge National Laboratory

YGA 98-07582

Regulatory Regions

Promoter

The promoter is the place where RNA polymerase binds to start transcription. This is what determines which strand is the coding strand.

DNA Binding Motifs

- In order to recruit the transcriptional machinery, a transcription factor (TF) needs to bind the DNA in front of the gene.
- TFs bind in to short segments which are known as DNA binding motifs.
- Usually consists 6 8 letters, and in many cases these letters generate palindromes.

Example of Motifs

Messenger RNAs (mRNAs)

RNA

Four major types (one recently discovered regulatory RNA).

- mRNA messenger RNA
- tRNA Transfer RNA
- rRNA ribosomal RNA
- RNAi, microRNA RNA interference

Messenger RNA

- Basically, an intermediate product
- Transcribed from the genome and translated into protein
- Number of copies correlates well with number of proteins for the gene.
- Unlike DNA, the amount of messenger RNA (as well as the number of proteins) differs between different cell types and under different conditions.

Complementary base-pairing

- mRNA is transcribed from the DNA
- mRNA (like DNA, but unlike proteins) binds to its complement

Perturbation

- In many cases we would like to perturb the systems to study the impacts of individual components (genes).
- This can be done in the sequence level by removing (knocking out) the gene of interest.
- Not always possible:
 - higher organisms
 - genes that are required during development but not later
 - genes that are required in certain cell types but not in others

Proteins

From RNA to proteins: The Ribosome

- Decoding machine.
- Input: mRNA, output: protein
- Built from a large number of proteins and a number of RNAs.
- Several ribosomes can work on one mRNA

The Ribosome

Proteins

- Proteins are polypeptide chains of amino acids.
- Four levels of structure:
 - Primary Structure: The sequence of the protein
- Secondary structure: Local structure in regions of the chain
 - Tertiary Structure: Three dimensional structure
 - Quaternary Structure: multiple subunits

Secondary Structure: Alpha Helix

Protein Structure

Protein Interaction

In order to fulfill their function, proteins interact with other proteins in a number of ways including:

- Regulation
- Pathways, for example A -> B -> C
- Post translational modifications
- Forming protein complexes

Putting it all together: Systems biology

High throughput data

- We now have many sources of data, each providing a different view on the activity in the cell
 - Sequence (genes)
 - DNA motifs
 - Gene expression
 - Protein interactions
 - Image data
 - Protein-DNA interaction
 - Etc.

High throughput data

 We now have many sources of data, each providing a different view on the activity in the cell

- Canuanca (nanas)

How to combine these different data types together to obtain a unified view of the activity in the cell is one of the major challenges of systems biology