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Evolvability

* Evolvability — capacity to rapidly adapt to novel environments

* Two organisms with the same phenotype and fitness in a current
environment may differ in their evolvability

How does evolvability arise?



Modularity contributes to evolvability

* Engineering — easier to design/rewire modules

With Modularity Without Modularity

* Biological entities are modular
* Brain
* Metabolic Pathways
* Protein interactions

Why does modularity evolve?



Why does modularity evolve?

* (Indirect) selection for evolvability (modularity)
* Leading Hypotheses

* Rapidly changing environments with common subproblems

A Fixed goal evolution B Modularly varying goals evolution
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Why does modularity evolve?

* (Indirect) selection for evolvability (modularity)

* Leading Hypotheses
e Rapidly changing environments with common subproblems

* Bacteria occupying diverse environments have more modular
metabolic networks

Is there a simpler/testable hypothesis?



Selection to reduce connection costs leads to
modularity?

* Connection costs in networks
* Neural networks — metabolic / energy
 Signaling pathways — delay in output of a critical response
* Gene regulation — Limit on DNA binding sites

* Evidence for cost selection
 Summed length of wiring diagram minimized in animal brains



modular problem

pixels for left
subproblem

pixels for right
subproblem

retina Ml |
<

R
"" “‘\
\ 7z

N

0\

evolutionary process

Computational evolution of modularity

non-modular networks

modular networks




Computational Evolution of Modularity

* Each individual is a network that takes stimuli and returns an output

Modular goal
input pattern left objects
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Two simulation experiments

PA P&CC
Maximizing Performance Maximizing Performance
alone and

Minimizing Connection Costs

e Connection Costs: Distance between the nodes

* Compare the modularity of optimal networks evolved in the two
simulations
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P- CC: Non-dominated Sorting Genetic Algorithm
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 Stochastic Pareto Dominance — use CC only 25% of the time

1. To select parent for mutation, leading to offspring
2. To select N fittest individuals for the next generation




Results

25,000 iterations/generations of evolution with fitness calculated
using the two different conditions

PA P&CC
Maximizing Performance Maximizing Performance
alone and

Minimizing Connection Costs

50 trials each

* Mutations — randomly adding or removing edges from the network;
modifying weights on edges, bias on the nodes of neural
network
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P-CC evolution produces more modular
networks
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P-CC evolution produces more modular
networks

* Best performing network becomes more and more Modular




s the modularity functional?

* Are the Left and Right subnetwork inputs in separate modules?
* 56% of networks evolved under P&CC
* 0 networks evolved under PA

With Modularity Without Modularity
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Why do P-CC networks achieve higher
performance than PA networks?

* P&CC has additional constraint (minimizing costs) but still does better
in terms of performance than PA

* Mutational effects are smaller, restricted to subcomponents

* Fewer connections — fewer parameters being optimized
* Faster optimization



Why do P-CC networks are more modular and
high-performing?
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P-CC moves populations towards low cost high
modularity solutions
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Evolvability

e How evolvable are the networks that were obtained from the
previous two simulation experiments?

 Which is suited better to adapt to a slightly different environment?
* L-OR-R vs L-AND-R



Modular networks are more evolvable
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Modular networks are more evolvable
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Computational Evolution of Modularity

modular problem

pixels for left
subproblem

pixels for right
subproblem

evolutionary process
selection on
performance alone
variation
selection on

performance and
connection costs

variation

non-modular networks

modular networks

evolutionary process
in new environment

slow adaptation

fast adaptation




Selection on connection costs leads to

modularity

(a) non-modular problem
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(c) hierarchical, separable problems
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summary

 Selection to reduce connection costs causes modularity, even in
unchanging environments

e Got a lot of media attention for discovering ‘holy grail’ of evolving
modular networks

* Significant advance in evolving modular design
* Faster adaptation/evolvability



