Evolutionary origins of modularity

Jeff Clune, Jean-Baptiste Mouret and Hod Lipson Proceedings of the Royal Society B 2013

Presented by Raghav Partha

Evolvability

- Evolvability capacity to rapidly adapt to novel environments
- Two organisms with the same phenotype and fitness in a current environment may differ in their evolvability

How does evolvability arise?

Modularity contributes to evolvability

Engineering – easier to design/rewire modules

- Biological entities are modular
 - Brain
 - Metabolic Pathways
 - Protein interactions

Why does modularity evolve?

Why does modularity evolve?

- (Indirect) selection for evolvability (modularity)
- Leading Hypotheses
 - Rapidly changing environments with common subproblems

Why does modularity evolve?

- (Indirect) selection for evolvability (modularity)
- Leading Hypotheses
 - Rapidly changing environments with common subproblems
 - Bacteria occupying diverse environments have more modular metabolic networks

Is there a simpler/testable hypothesis?

Selection to reduce connection costs leads to modularity?

- Connection costs in networks
 - Neural networks metabolic / energy
 - Signaling pathways delay in output of a critical response
 - Gene regulation Limit on DNA binding sites
- Evidence for cost selection
 - Summed length of wiring diagram minimized in animal brains

Computational evolution of modularity

Computational Evolution of Modularity

Each individual is a network that takes stimuli and returns an output

Fitness of a network = Fraction of input stimuli the network gets correct Modularity:

$$q(G,C) := \sum_{u,v \in V} (A_{uv} - k_u k_v / (2m))(1 - x_{uv})$$

Two simulation experiments

PA
Maximizing Performance
alone

P&CC

Maximizing Performance

and

Minimizing Connection Costs

- Connection Costs: Distance between the nodes
- Compare the modularity of optimal networks evolved in the two simulations

PA evolution

P- CC: Non-dominated Sorting Genetic Algorithm

- Stochastic Pareto Dominance use CC only 25% of the time
 - 1. To select parent for mutation, leading to offspring
 - 2. To select N fittest individuals for the next generation

Results

 25,000 iterations/generations of evolution with fitness calculated using the two different conditions

Maximizing Performance alone

Maximizing Performance and Minimizing Connection Costs

P&CC

50 trials each

 Mutations – randomly adding or removing edges from the network; modifying weights on edges, bias on the nodes of neural network

generation 0

Performance Alone(PA)

Performance and Connection Cost (P&CC)

P-CC evolution produces more modular networks

P-CC evolution produces more modular networks

Best performing network becomes more and more Modular

Is the modularity functional?

- Are the Left and Right subnetwork inputs in separate modules?
 - 56% of networks evolved under P&CC
 - 0 networks evolved under PA

P-CC produces better networks

Why do P-CC networks achieve higher performance than PA networks?

- P&CC has additional constraint (minimizing costs) but still does better in terms of performance than PA
- Mutational effects are smaller, restricted to subcomponents
- Fewer connections fewer parameters being optimized
 - Faster optimization

Why do P-CC networks are more modular and high-performing?

- Inverse correlation between
 Cost and Modularity for high
 performing networks
- Existence of high performing networks with low modularity

P-CC moves populations towards low cost high modularity solutions

Evolvability

- How evolvable are the networks that were obtained from the previous two simulation experiments?
- Which is suited better to adapt to a slightly different environment?
- L-OR-R vs L-AND-R

Modular networks are more evolvable

Modular networks are more evolvable

Computational Evolution of Modularity

Selection on connection costs leads to modularity

Summary

- Selection to reduce connection costs causes modularity, even in *unchanging* environments
- Got a lot of media attention for discovering 'holy grail' of evolving modular networks
- Significant advance in evolving modular design
 - Faster adaptation/evolvability