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A Hidden Markov Model
* The joint probability of (Q,0) is defined as

P(Q.,0) = p(q,) p(o, |q1)1_[p(qt lq,.)p(o, 1q,)
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Learning HMMs

 Until now we assumed that the emission and transition
probabilities are known

* This is usually not the case
- How is “Al” pronounced by different individuals?
- What is the probability of hearing “class” after “Al”?



Learning HMM When Hidden States are
Observed

Assume both hidden and observed states are observed
— Data: ((0%,Q%), ..., (0X,QX)) for K sequences, where Ok = (0,X,...,0,)
Qk:(qlk)--'/qu)

MLE for learning!

argmax log p((0',0Q),...,(0%,0"))

T
argmax log| | p(g)p(0," 1¢] | p(g,* 14, (0, 1.5
k t=2



Learning HMM When Hidden States are
Observed

MLE for HMM
log p((0',0"),....(0",0"))

T
= logl—[p(%k)p(olk |Q1k)1_[ p(%k |%—1k)p(0tk lqtk)
k t=2

= Ylogp(g")+ Dlog p(o 1)+ Y Ylog plo, 1¢,")+ Y Ylog p(q,' 14,.)
k k kK t k

Involves only Involves only Involves only
initial emission transition
probabilities probabilities probabilities

Differentiate w.r.t. each parameters and set it to 0 and solve!
Closed form solution



Example

Assume the model below

We also observe the following sequence:
1,2,2,5,6,5,1
1,3,2,5,6,5,2
3,2,1,3,6,5,4

How can we determine the initial, transition and emission
probabilities?

solio:



Initial probabilities

Q: assume we can observe the following sets of states:
:ZIAABBAA 1,2,2,5,6,5,1
:A}ABBBBB 1,3,2,5,6,5,2
LB:AABBAB 3,2,1,3,6,5,4
how can we learn the initial probabilities? k is the number of
seqguences avialable for

A: Maximum likelihood estimation
. . pers training
Find the initial probabilities i s at

T
x' =argmax log| | p(@")p(o/ 14.] | p@a 14,/ 9p(0," 14

k t=2

T =argmax log| __p(qlk)
k

7, = #A/ (#A+#B) Q ’



Transition probabilities

Q: assume we can observe the set of states:
AANBBAA 1,2,2,5,6,5,1
AABBBBB 1,3,2,5,6,5,2
BAABBAB 3,2,1,3,6,5,4
how can we learn the transition probabilities? remember that we defined

A: Maximum likelihood es:mation/ a,=p(0=s; | G1=S))
Find a transition matrix d such that
T
a =argmax lognp(%k)P(Olk Iqlk)l_[ p(a g, po* 1)
k =2

T
a =argmax logn np(qtk 1g,.,")
k t=2

0, 5 = #AB / (#AB+#AA) Q Q



Transition probabilities

Q: assume we can observe the set of states:
AAABBAA 1,2,2,5,6,5,1
AABBBBB 1,3,2,5,6,5,2
BAABBAB 3,2,1,3,6,5,4

how can we learn the transition probabilities? remember that we defined

A: Maximum likelihood es:rnaﬁon/ ai,j=p(qt=sj|qt_1=si)
Find a transition matrix @ such that

T
a =argmax logn p(q," )p(o* |6]1k)1_[ p(q, g, )po," 14,
k t=2

Moving window of size 2
->H#AA, #AB, #BA, #BB

T
a =argmax logn np(qtk 1g,.,")
k t=2

0, 5 = #AB / (#AB+#AA) Q Q



Emission probabilities

Q: assume we can observe the set of states:
AAABBAA 1,2,2,5,6,5,1
AABBBBB 1,3,2,5,6,5,2
BAABBAB 3,2,1,3,6,5,4
how can we learn the transition probabilities? remember that we defined

A: Maximum likelihood esti;nation/ b(o,) =P(o, | s))
Find an emission matrix ® such that
T
b" =argmax log| | p(g)p(o 14] | p@@, 14, (0, 14
k t=2

T
b = argmax logn p(olk Iqlk)n p(Otk |6]tk)
k

t=2

b,(5)= #A5 / (HAL+#A2 + ... +#A6)=H#A5/#A Q Q
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Learning HMMs

In most case we do not know what states generated each of
the outputs (hidden states are unobserved)

— ... but had we known, it would be very easy to determine an emission
and transition model!

— On the other hand, if we had such a model we could determine the set
of states using the inference methods we discussed



Expectation Maximization (EM)

Appropriate for problems with ‘missing values’ for the
variables.

For example, in HMMs we usually do not observe the states

Assume complete data log likelihood and maximize expected
log likelihood

argmax E[log p((0',0,...,(0*,0"))]
argmax E[log| | p(g)p(0 1] [ p(a, 19, p(0, 14,1

where the expectation is taken with respect to p(Q|O,
parameters)



Expectation Maximization (EM): Quick
reminder

Two steps
— E step: Fill in the missing variables with the expected values

— M step: Regular maximum likelihood estimation (MLE) using the values computed in the
E step and the values of the other variables

Guaranteed to converge (though only to a local minima).

expected values for
iSsing) variable

parameters .



E Step

* In our example, with complete data, we needed
— #A, #B to estimate initial probabilities and emission probabilities
— HAA, #AB, #BA, #BB to estimate transition probabilities

 When hidden states are not observed, we need “expected
counts” in E step

P(q, =s;10,,-++,0;)=5,(i)

P(% =851 =9 |019"'90T) = St(i:j)



Forward-Backward

 We already defined a forward looking variable

a,(i)=P(0,...0 ng, =5,)

 We also need to define a backward looking variable

ﬁt(l) =P(Ot+19'“90T |St =l)



Forward-Backward Algorithm

 We already defined a forward looking variable

a,(i)=P(0,...0 ng, =5,)

 We also need to define a backward looking variable



Forward-Backward Algorithm

* Backward step
p,()=P@O,,, 0, 1q, =s,)

EP(OtH’ 07,4, .1 =3 lg, =s;)

- EP(qu =3 lq, =5)P(O,,,,.,0; 1q,,, = S, = $;)
J

- Ep(qm =95; lq, =s)P(O,,,» 0 lq,,, = Sj)
J

= Ep(qt+1 =3 lq, =5,)P(0,,, 1q,, = Sj)P(Ot+2v"'v0T 1q,,, = Sj)

Eaz b.(0,.)B,(J)

J



Forward-Backward

 We already defined a forward looking variable

a,(i)=P(0,...0 ng, =5,)

 We also need to define a backward looking variable
ﬁt(l) = P(0t+19”'90T | q; = Si)

e Using these two definitions we can show

/P(AI B)=P(A,B)/P(B)
P(g, =s,|0,,-,0,) OLAO R

=S
Saosm




Forward-Backward

* forward looking variable «,(i) = P(O,...0, Aq, =)
 backward looking variable f,(i) = P(O,,,,"-+,0; | q, =s.)
e Using these two definitions we can show

P(q, =5,,0,,+-,0;)

P(q, =5,10,-,0;) =
(Qt l 1 T) P(Ol,"',OT)

t+1""90T |gz =Si’01 ---- Oz)

_ P(O,,...,0,.q, =s,)P(O
P(Ol,'“,OT)

- LOPW T
DEAGI)




State and transition probabilities

* Probability of a state given observations

P =g. 019"'907“ _ at(i)ﬁt(i) difS .
o ) ¥ a,()B,()) 0

 We can also derive a transition probability given observations

P(q, = 5,9, = 5;10,,-+,07)

a,()P(q,,, = S, lq, =s)P(0,,,1q,,, = Sj)ﬁm(j) “ .
= . . —_— St(l’])
zat(J)/J’t(J)




E step

* Compute S,(i) and S,(i,j) for all t, i, and j (1<t<n, 1<i<k, 2<j<k)

P(q,=5;10,-+-,0r)=35,(i)

P(Qt =851 =9 |019°”90T) = St(laj)



M step (1)

Compute transition probabilities:

n(i, J)

a. . =
Zﬁ(i’k)

i, j) =Y 8,30, /)

where



M step (2)

Compute emission probabilities (here we assume a multinomial
distribution):

define:
B(j)= "3 S, (k)
tlo,=j
then
B, ())




Complete EM algorithm for learning the
parameters of HMMs (Baum-Welch)

* Inputs: 1.0bservations O, ... O;
2. Number of states, model
Guess initial transition and emission parameters

Compute E step: S,(i) and S,(i,j) «
Compute M step

Convergence? No

ok w e

Output complete model

We did not discuss initial probability estimation. These can be
deduced from the 15t observation in each of the multiple
sequences of observations
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States in HMIMM

* How to decide on the number of states in HMM
— More states means a more complex model, overfitting!
— Cross validation
— Nonparametric Bayesian model



Building HMMs—Topology

Matching states Deletion states

Insertion states

No of matching states = average sequence length in the family

PFAM Database - of Protein families M Q[P|]I L L L[V

. M L|R|- L L -|-

(http://pfam.wfam.edu) MEl-l1T L L Ll-
M P[P|V L I L|V]|




Building — from an existing alignment

ACA --- ATG
TCA ACT ATC

ACA C--]AGC
AGA ---|ATC
ACC G -- |ATC

insertion [am2

Output Probabilities

TR2

1.0

A HMM model for a DNA motif alignments, The transitions are

A

C a8
GRz2

T

1.0

i1.0 C

Transition probabilities

>

Gu2

A

C . 3
Guz2

T

shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four bases.
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Dynamic Bayesian Networks (DBNs)

Bayesian networks for modeling dynamic process. HMM is a
special case of DBN

— HMM represents the state with a single random variable: P(Q,|Q, ,)

— DBN represents the state with a set of random variables: P(Q,| Q. ,),
where Q, is a set of variables

DBN often has a compact representation of HMM
representations

— DBN may have exponentially fewer parameters than its corresponding
HMM

— Faster inference and learning



Factorial HMMs

 DBN with D chains, each with K
states

— Three O(K?D) transition
probabilities

— 12 parameters @
|

* HMM representations? E
29

— KP states
— O(K?P) transition probabilities




Other Variants of HMMs as DBNs

i
®oe O .\,
HMM . : :
Mixture of Autoregressive Input-output
Gaussian HMM HMM

HMM



Semi-Markov HMM

* Relax the Markov constraint to allow staying in the current

state for an explicit duration of time L,

ql Q2 q3

yl y2 y3 y4 y5 y6 y7 y8

P(Yi_141:|Qt, Lt = 1) = TIL—y P(Y;|Q¢)



Hierarchical HMM

* Each state can emit another HMM that generate sequences
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What you should know

* Why HMMs? Which applications are suitable?
* Inference in HMMs

- No observations

- Probability of next state w. observations

- Maximum scoring path (Viterbi)

* Learning in HMMs

— EM algorithm with inference as a subroutine



