Hidden Markov Models II

Machine Learning 10-601B
Seyoung Kim

A Hidden Markov Model

The joint probability of (Q,O) is defined as

Learning HMMs

- Until now we assumed that the emission and transition probabilities are known
- This is usually not the case
 - How is "AI" pronounced by different individuals?
 - What is the probability of hearing "class" after "AI"?

Learning HMM When Hidden States are Observed

- Assume both hidden and observed states are observed
 - Data: $((O^1,Q^1), ..., (O^K,Q^K))$ for K sequences, where $O^k = (o_1^k,...,o_T^k)$ $Q^k = (q_1^k,...,q_T^k)$
- MLE for learning!

$$\underset{\text{arg max }}{\operatorname{log}} p((O^{1}, Q^{1}), \dots, (O^{K}, Q^{K}))$$

$$\underset{\text{arg max }}{\operatorname{log}} \prod_{k} p(q_{1}^{k}) p(o_{1}^{k} \mid q_{1}^{k}) \prod_{t=2}^{T} p(q_{t}^{k} \mid q_{t-1}^{k}) p(o_{t}^{k} \mid q_{t}^{k})$$

Learning HMM When Hidden States are Observed

MLE for HMM

$$\begin{split} &\log p((O^1,Q^1),...,(O^K,Q^K)) \\ &= \log \prod_k p(q_1^k) p(o_1^k \mid q_1^k) \prod_{t=2}^T p(q_t^k \mid q_{t-1}^k) p(o_t^k \mid q_t^k) \\ &= \sum_k \log p(q_1^k) + \sum_k \log p(o_1^k \mid q_1^k) + \sum_k \sum_t \log p(o_t^k \mid q_t^k) + \sum_k \sum_t \log p(q_t^k \mid q_{t-1}^k) \\ &\text{Involves only} &\text{Involves only} &\text{Involves only} \\ &\text{initial} &\text{emission} &\text{transition} \\ &\text{probabilities} &\text{probabilities} &\text{probabilities} \end{split}$$

Differentiate w.r.t. each parameters and set it to 0 and solve!
 Closed form solution

Example

- Assume the model below
- We also observe the following sequence:

 How can we determine the initial, transition and emission probabilities?

Initial probabilities

Q: assume we can observe the following sets of states:

how can we learn the initial probabilities?

A: Maximum likelihood estimation

Find the initial probabilities π such that

k is the number of sequences avialable for training

$$\pi^* = \arg\max \log \prod_{k} p(q_1^k) p(o_1^k | q_1^k) \prod_{t=2}^{T} p(q_t^k | q_{t-1}^k) p(o_t^k | q_t^k)$$

$$\pi^* = \arg\max \log \prod_{t} p(q_1^k)$$

$$\pi_A = \#A/(\#A+\#B)$$

Transition probabilities

Q: assume we can observe the set of states:

how can we learn the transition probabilities?

remember that we defined $a_{i,i}=p(q_t=s_i|q_{t-1}=s_i)$

A: Maximum likelihood estimation

Find a transition matrix a such that

$$a^* = \underset{t=2}{\operatorname{arg\,max}} \log \prod_{k} p(q_1^{k}) p(o_1^{k} | q_1^{k}) \prod_{t=2}^{T} p(q_t^{k} | q_{t-1}^{k}) p(o_t^{k} | q_t^{k})$$

$$a^* = \operatorname{arg\,max} \log \prod_{k} \prod_{t=2}^{T} p(q_t^k | q_{t-1}^k)$$

$$a_{A,B} = \#AB / (\#AB + \#AA)$$

Transition probabilities

Q: assume we can observe the set of states:

Moving window of size 2 ->#AA, #AB, #BA, #BB

how can we learn the transition probabilities?

remember that we defined

$$a_{i,j} = p(q_t = s_j | q_{t-1} = s_i)$$

A: Maximum likelihood estimation

Find a transition matrix a such that

$$a^* = \underset{t=2}{\operatorname{arg\,max}} \log \prod_{k} p(q_1^{k}) p(o_1^{k} | q_1^{k}) \prod_{t=2}^{T} p(q_t^{k} | q_{t-1}^{k}) p(o_t^{k} | q_t^{k})$$

$$a^* = \operatorname{arg\,max} \log \prod_{k} \prod_{t=2}^{T} p(q_t^k | q_{t-1}^k)$$

$$a_{A.B} = \#AB / (\#AB + \#AA)$$

Emission probabilities

Q: assume we can observe the set of states:

AAABBAA 1,2,2,5,6,5,1

AABBBBB 1,3,2,5,6,5,2

BAABBAB 3,2,1,3,6,5,4

how can we learn the transition probabilities?

remember that we defined $b_i(o_t) = P(o_t \mid s_i)$

A: Maximum likelihood estimation

Find an emission matrix b such that

$$b^* = \operatorname{arg\,max} \log \prod_{k} p(q_1^{k}) p(o_1^{k} | q_1^{k}) \prod_{t=2}^{T} p(q_t^{k} | q_{t-1}^{k}) p(o_t^{k} | q_t^{k})$$

$$b^* = \operatorname{arg\,max} \log \prod_{k} p(o_1^{\ k} | q_1^{\ k}) \prod_{t=2}^{T} p(o_t^{\ k} | q_t^{\ k})$$

Learning HMMs

- In most case we do not know what states generated each of the outputs (hidden states are unobserved)
 - ... but had we known, it would be very easy to determine an emission and transition model!
 - On the other hand, if we had such a model we could determine the set of states using the inference methods we discussed

Expectation Maximization (EM)

- Appropriate for problems with 'missing values' for the variables.
- For example, in HMMs we usually do not observe the states
- Assume complete data log likelihood and maximize expected log likelihood

arg max
$$E[\log p((O^1, Q^1), ..., (O^K, Q^K))]$$

arg max $E[\log \prod_k p(q_1^k) p(o_1^k | q_1^k) \prod_{t=2}^T p(q_t^k | q_{t-1}^k) p(o_t^k | q_t^k)]$

where the expectation is taken with respect to p(Q|O) parameters)

Expectation Maximization (EM): Quick reminder

- Two steps
 - E step: Fill in the missing variables with the expected values
 - M step: Regular maximum likelihood estimation (MLE) using the values computed in the E step and the values of the other variables
- Guaranteed to converge (though only to a local minima).

E Step

- In our example, with complete data, we needed
 - #A, #B to estimate initial probabilities and emission probabilities
 - #AA, #AB, #BA, #BB to estimate transition probabilities
- When hidden states are not observed, we need "expected counts" in E step

$$P(q_t = S_i \mid O_1, \dots, O_T) = S_t(i)$$

$$P(q_t = s_i, q_{t+1} = s_j | o_1, \dots, o_T) = S_t(i, j)$$

Forward-Backward

We already defined a forward looking variable

$$\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$$

We also need to define a backward looking variable

$$\beta_t(i) = P(O_{t+1}, \dots, O_T \mid S_t = i)$$

Forward-Backward Algorithm

We already defined a forward looking variable

$$\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$$

We also need to define a backward looking variable

Forward-Backward Algorithm

Backward step

$$\begin{split} \beta_{t}(i) &= P(O_{t+1}, \cdots, O_{T} \mid q_{t} = s_{i}) \\ &= \sum_{j} P(O_{t+1}, \cdots, O_{T}, q_{t+1} = s_{j} \mid q_{t} = s_{i}) \\ &= \sum_{j} P(q_{t+1} = s_{j} \mid q_{t} = s_{i}) P(O_{t+1}, \cdots, O_{T} \mid q_{t+1} = s_{j}, q_{t} = s_{i}) \\ &= \sum_{j} P(q_{t+1} = s_{j} \mid q_{t} = s_{i}) P(O_{t+1}, \cdots, O_{T} \mid q_{t+1} = s_{j}) \\ &= \sum_{j} P(q_{t+1} = s_{j} \mid q_{t} = s_{i}) P(O_{t+1}, \cdots, O_{T} \mid q_{t+1} = s_{j}) \\ &= \sum_{j} P(q_{t+1} = s_{j} \mid q_{t} = s_{i}) P(O_{t+1} \mid q_{t+1} = s_{j}) P(O_{t+2}, \cdots, O_{T} \mid q_{t+1} = s_{j}) \\ &= \sum_{j} a_{i,j} b_{j}(O_{t+1}) \beta_{t+1}(j) \end{split}$$

Forward-Backward

We already defined a forward looking variable

$$\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$$

We also need to define a backward looking variable

$$\beta_t(i) = P(O_{t+1}, \dots, O_T \mid q_t = s_i)$$

Using these two definitions we can show

$$P(q_t = s_i \mid O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} = S_t(i)$$

Forward-Backward

- *forward* looking variable $\alpha_t(i) = P(O_1 ... O_t \land q_t = s_i)$
- backward looking variable $\beta_t(i) = P(O_{t+1}, \dots, O_T \mid q_t = s_i)$
- Using these two definitions we can show

$$P(q_t = s_i | O_1, \dots, O_T) = \frac{P(q_t = s_i, O_1, \dots, O_T)}{P(O_1, \dots, O_T)}$$

$$= \frac{P(O_1,...,O_t,q_t = s_i)P(O_{t+1},\cdots,O_T \mid q_t = s_i,O_1,...,O_t)}{P(O_1,\cdots,O_T)}$$

$$= \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} \stackrel{def}{=} S_t(i)$$

State and transition probabilities

Probability of a state given observations

$$P(q_t = s_i \mid O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} \stackrel{def}{=} S_t(i)$$

We can also derive a transition probability given observations

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | o_{1}, \dots, o_{T})$$

$$= \frac{\alpha_{t}(i)P(q_{t+1} = s_{j} | q_{t} = s_{i})P(o_{t+1} | q_{t+1} = s_{j})\beta_{t+1}(j) \stackrel{def}{=} S_{t}(i, j)}{\sum_{j} \alpha_{t}(j)\beta_{t}(j)} = S_{t}(i, j)$$

E step

• Compute $S_t(i)$ and $S_t(i,j)$ for all t, i, and j ($1 \le t \le n$, $1 \le i \le k$, $2 \le j \le k$)

$$P(q_{t} = s_{i} | O_{1}, \dots, O_{T}) = S_{t}(i)$$

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | o_{1}, \dots, o_{T}) = S_{t}(i, j)$$

M step (1)

Compute transition probabilities:

$$a_{i,j} = \frac{\hat{n}(i,j)}{\sum_{k} \hat{n}(i,k)}$$

where

$$\hat{n}(i,j) = \sum_{t} S_{t}(i,j)$$

M step (2)

Compute emission probabilities (here we assume a multinomial distribution):

define:

$$B_k(j) = \sum_{t|o_t=j} S_t(k)$$

then

$$b_k(j) = \frac{B_k(j)}{\sum_{i} B_k(i)}$$

Complete EM algorithm for learning the parameters of HMMs (Baum-Welch)

- Inputs: 1 .Observations O₁ ... O_T
 - 2. Number of states, model
- 1. Guess initial transition and emission parameters
- 2. Compute E step: $S_t(i)$ and $S_t(i,j)$
- 3. Compute M step
- 4. Convergence?
- 5. Output complete model

We did not discuss initial probability estimation. These can be deduced from the 1st observation in each of the multiple sequences of observations

No

States in HMM

- How to decide on the number of states in HMM
 - More states means a more complex model, overfitting!
 - Cross validation
 - Nonparametric Bayesian model

Building HMMs—Topology

No of matching states = average sequence length in the family

PFAM Database - of Protein families

(http://pfam.wfam.edu)

Building – from an existing alignment

A HMM model for a DNA motif alignments, The transitions are shown with arrows whose thickness indicate their probability. In each state, the histogram shows the probabilities of the four bases.

Dynamic Bayesian Networks (DBNs)

- Bayesian networks for modeling dynamic process. HMM is a special case of DBN
 - HMM represents the state with a single random variable: $P(Q_t|Q_{t-1})$
 - DBN represents the state with a set of random variables: $P(Q_t | Q_{t-1})$, where Q_t is a set of variables
- DBN often has a compact representation of HMM representations
 - DBN may have exponentially fewer parameters than its corresponding HMM
 - Faster inference and learning

Factorial HMMs

- DBN with D chains, each with K states
 - Three O(K²D) transition probabilities
 - 12 parameters
- HMM representations?
 - K^D states
 - O(K^{2D}) transition probabilities

Other Variants of HMMs as DBNs

Semi-Markov HMM

 Relax the Markov constraint to allow staying in the current state for an explicit duration of time L_t

$$P(Y_{t-l+1:l}|Q_t, L_t = l) = \prod_{i=1}^l P(Y_i|Q_t)$$

Hierarchical HMM

• Each state can emit another HMM that generate sequences

What you should know

- Why HMMs? Which applications are suitable?
- Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)
- Learning in HMMs
 - EM algorithm with inference as a subroutine