Recitation 10/8

Mixture Models, PCA



Gaussian Mixture Models (GMMs)

* Consider a mixture of K Gaussian components:
p(x,) = Ekp(xn \z, =k)p(z, =k)

Law of Total Probability = EkN(xn L2 ),
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Completely Observed Data |
Bishop Page 431

Since z uses a 1-of-K representation, we have

K
p(z) = | [ m¢*. (9.10)
k=1
K
p(x|z) = | [ NV (x|px, Zx)*. 9.11)
k=1
K
p(x) = > p(@)p(x|z) = D TN (X|1y, k) (9.12)
z k=1



MLE for GMM with fully observed data

If we are doing MLE for completely observed data

Data log-likelihood

6:D) =log] | p(z,.x,) = log]

__p(zn In)p(‘xn | Zn ’M’O)

= Elognn,i'lf + Elog" |
n k n

MLE

7y e =argmax  1(0;D),
g =argmax,, [(0;D)
Gy e =argmax,, [(0; D)

What if we do not know z,?
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What if we do not know 2Z,, ?

— Maximize the expected data log likelihood for (x; z;) based on p(x; z)
e Expectation-Maximization (EM) algorithm



Complete vs. Expected Complete Log
Likelihoods

* The complete log likelihood:
1(0;D) = logH p(z,,x,)= logn p(z, |m)p(x,|z,,u,0)
- Zloan,‘f_'A’ + ZlogH N(x,:u,,0)"
n k n k
= ZZZI/, logm, —ZZ:,/, s (X, - 1y )Y +C
n k n k

* The expected complete log likelihood

<Ic (O;X’Z)> - Z<10g p(z,, |ﬂ)>p(z\x) * Z<logp(x,, | Z”’ ‘LI’Z)>P(Z\X)

= Zz<znk>log7rk —%zz<znk>((xn —uw) (X, - ‘uk)+log‘2k‘ +C')
n k n k

* EM optimizes the expected complete log likelihood



The Expectation-Maximization (EM) Algorithm

E step:
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Example 2-d data points coming from K = 2 Gaussian distributions

K=2 1-d Gaussian distributions:
G1(u1,0%), Go(pg,03)

<X, y> pairs

rER,yE {Gl,GQ}

x=(2,4,7)




Example 2-d data points coming from K = 2 Gaussian distributions

K=2 1-d Gaussian distributions: Initialize
. p® = (3,6)
G1(u1,0%), Go(pg,03)
0y _ (1 1)
71' p— R —_
<X, y> pairs 2" 2
2% (1 1)
CCER,yE{Gl,GQ} 279

x=(2,4,7)




Example 2-d data points coming from K = 2 Gaussian distributions

x=(2,4,7)
iteration t =1
Initialize
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Example 2-d data points coming from K = 2 Gaussian distributions

x=(2,4,7)
iteration t =1
Initialize
(0) — Al el = qlp) = Pzl )plin ) _ IN@23, 7
u = (3,6) C= PG =) = e ) + pedipen) - IN@ 3, 5) FIN@6, &
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Example 2-d data points coming from K = 2 Gaussian distributions

x=(2,4,7)
iteration t =1
Initialize
1® = (3,6) . 5 4 .
() (%, %) T} 1—-10"7 | 0.953 10~7
ONE 1 1 T2 107 0.047 1-10"7
’ B (2, 2) 1.953
m = T = 0.651,71’2 — 0349

240.953%4+40

1y A 053 = 2.978 po ~ 6.88




PCA

Principal components are a sequence of projections of the data, mutually
uncorrelated and ordered in variance.



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

1st PC — direction of greatest variability in
data

2"d PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then

find next direction of greatest variability)

Andsoon ...
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Assume X is a normalized Nxp data matrix for N samples and p features

Assume data is normalized. <> each column of X is normalized.

N

1 - .
Variance of projected data — Z(UT-’Un — vTﬁ)Q — L' Sy | <- Want to maximize this over v

n=1

1 1
where S= — Z(a':z — f@)(xz — fz‘)T: — Z .CIL,,SU?



Computing the Components

Projection of vector x onto an axis (dimension) u is u™

Assume X is a normalized nxp data matrix for n samples and p features.
Direction of greatest variability is that in which the average square of the

projection is greatest:
Maximize  (1/n) u™X™Xu
s.t uu=1
Construct Langrangian (1/n) u™X™u —AuTu
Vector of partial derivatives set to zero
1/nX™Xu—-Au =0
or equivalently Su — Au =0 (S =1/n X"X: covariance matrix)
As u # 0 then u must be an eigenvector of S with eigenvalue A

— Ais the principal eigenvalue of the covariance matrix S
— The eigenvalue denotes the amount of variability captured along that dimension
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Example: projections onto orthonormal vectors

Example: X € R2000%3 and vy, v, v3 € R3 are the unit vectors

parallel to the coordinate axes
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The proportion of variance explained is a nice way
to quantify how much structure is being captured

Proportion of variance explained
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