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1 Probability

1.1 Linearity of expectation

For any random variable X and constants a and b:
Ela+ bX]| =a+ bE[X]
For any random variables of X and Y, whether independent or not:
E[X +Y] = E[X] + E[Y]
Recall the definition of variance:
Var[X] = E [(X _E[X])?
Now let’s define Y = a + bX and show that Var[Y] = b? Var[X]:
E[Y] =a 4+ bE[X] by linearity of expectation
Now we can derive the variance:
Var[Y] =E {(Y - E[Y])Q} definition of variance
—E [([a FbX] — [a+ b]EX])Z]
~E {bQ(X - IEX)Q}
=V’E [(X -EX )2} linearity of expectation
=b* Var[X] definition of variance

This is why we often use the standard deviation (the square root of variance),
because StdDev[Y] = bStdDev[X], which is more intuitive.



1.2 Prediction, and expectation, and partial derivatives

Suppose we want to predict a random variable Y simply using some constant c.
What value of ¢ should we choose? Here we show that E[Y] is a sensible choice.

But first, we need to decide what a good prediction should look like. A
common choice is the mean-squared error, or MSE. We punish our prediction
ever more harshly the further it gets from the observed Y.

MSE = E [(Y - 0)2}

We now show that MSE is minimized at E[Y]. We set it up as an optimization
problem:

minE [(Y - 0)2}

—minE [Y2 —2E[Y]c + ¢
=minE[Y?] — 2E[Y]c + ¢?

(&

This is a quadratic function of ¢. We can find the minimum of this quadratic
by setting its partial derivative to 0, and solving for c:

9 2 2] _
[ EIY?) —2E[Y]e+c } -0
—2E[Y] + 2¢ =0
¢ =E[Y] This minimizes the MSE!

1.3 Sample mean and the Central Limit Theorem

Suppose we have n random variables X7y, ..., X, that are independent and iden-
tically distributed (iid). Suppose we don’t know what the distribution is, but
we do know their expectation and variance:

E[X;] = p and Var[X;]=0% fori=1,..,n

A common way to estimate the unknown p is to use the average (sample mean)
of our data:

How does this estimate behave? We can characterize its behavior by deriving
its expectation and variance.

E[X,) :E[X1+-?;-+Xn}

_ [Xa] + - + E[X,] linearity of expectation
n

:7:/4[,
n



This tells us that X,, is “unbiased” - its expected value is the true mean.

Var[X,] = Var [—Xl R Xn]

n

:%Var[Xl—k-n—an}
n

1
= (Var[Xl] +-- 4 Var[Xn]> only because X; are iid - variance isn’t linear!
n

1 o?
:E(n Var[X;]) = o

This tells us that the variance of the average decreases as n the number of
samples increases.

But it turns out we know something more about the distribution of X,,. It’s
distribution actually converges to a Normal distribution as n gets large. This is
called the Central Limit Theorem:
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2 Linear Algebra

I discussed problems taken directly from Section 4 of Linear Algebra Review.
Two other great online resources:

e YouTube tutorial on gradients

e Matrix Cookbook reference


http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.youtube.com/watch?v=ner95v7WRrs
http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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