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1 Probability

1.1 Linearity of expectation

For any random variable X and constants a and b:

E[a+ bX] = a+ bE[X]

For any random variables of X and Y , whether independent or not:

E[X + Y ] = E[X] + E[Y ]

Recall the definition of variance:

Var[X] = E
[
(X − E[X])2

]
Now let’s define Y = a+ bX and show that Var[Y ] = b2 Var[X]:

E[Y ] =a+ bE[X] by linearity of expectation

Now we can derive the variance:

Var[Y ] =E
[
(Y − E[Y ])2

]
definition of variance

=E
[(

[a+ bX]− [a+ bEX]
)2]

=E
[
b2(X − EX)2

]
=b2 E

[
(X − EX)2

]
linearity of expectation

=b2 Var[X] definition of variance

This is why we often use the standard deviation (the square root of variance),
because StdDev[Y ] = bStdDev[X], which is more intuitive.
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1.2 Prediction, and expectation, and partial derivatives

Suppose we want to predict a random variable Y simply using some constant c.
What value of c should we choose? Here we show that E[Y ] is a sensible choice.

But first, we need to decide what a good prediction should look like. A
common choice is the mean-squared error, or MSE. We punish our prediction
ever more harshly the further it gets from the observed Y .

MSE = E
[
(Y − c)2

]
We now show that MSE is minimized at E[Y ]. We set it up as an optimization
problem:

min
c

E
[
(Y − c)2

]
= min

c
E
[
Y 2 − 2E[Y ]c+ c2]

= min
c

E[Y 2]− 2E[Y ]c+ c2

This is a quadratic function of c. We can find the minimum of this quadratic
by setting its partial derivative to 0, and solving for c:

∂

∂c

[
E[Y 2]− 2E[Y ]c+ c2

]
=0

−2E[Y ] + 2c =0

c =E[Y ] This minimizes the MSE!

1.3 Sample mean and the Central Limit Theorem

Suppose we have n random variables X1, ..., Xn that are independent and iden-
tically distributed (iid). Suppose we don’t know what the distribution is, but
we do know their expectation and variance:

E[Xi] = µ and Var[Xi] = σ2 for i = 1, ..., n

A common way to estimate the unknown µ is to use the average (sample mean)
of our data:

X̄n =
1

n

n∑
i=1

Xi

How does this estimate behave? We can characterize its behavior by deriving
its expectation and variance.

E[X̄n] =E
[X1 + · · ·+Xn

n

]
=
E[X1] + · · ·+ E[Xn]

n
linearity of expectation

=
nµ

n
= µ
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This tells us that X̄n is “unbiased” - its expected value is the true mean.

Var[X̄n] = Var
[X1 + · · ·+Xn

n

]
=

1

n2
Var

[
X1 + · · ·+Xn

]
=

1

n2

(
Var[X1] + · · ·+ Var[Xn]

)
only because Xi are iid - variance isn’t linear!

=
1

n2
(nVar[Xi]) =

σ2

n

This tells us that the variance of the average decreases as n the number of
samples increases.

But it turns out we know something more about the distribution of X̄n. It’s
distribution actually converges to a Normal distribution as n gets large. This is
called the Central Limit Theorem:

X̄n  N
(
µ,
σ2

n

)
2 Linear Algebra

I discussed problems taken directly from Section 4 of Linear Algebra Review.
Two other great online resources:

• YouTube tutorial on gradients

• Matrix Cookbook reference
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http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.youtube.com/watch?v=ner95v7WRrs
http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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