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1 The Gaussian Kernel

The RBF (Gaussian) kernel is one of most popular general-purpose kernels. Here
we show one reason for its popularity: it corresponds to an infinite-dimensional
feature mapping. The Gaussian kernel is defined as follows:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
= exp(−γ‖x− x′‖2).

The Gaussian kernel encourages similarity between inputs based on their Eu-
clidean distance. Because we’re not dealing with probabilities which must sum
to 1, we can omit the normalization constant found in the Gaussian distribu-
tion. But the shape is the same: we strongly encourage similarity among nearby
inputs, while as inputs get further away, we encourage similarity by an amount
that decreases exponentially to 0.

For simplicity, we prove that the feature mapping is infinite-dimensional for
one-dimensional inputs where 2σ2 = 1:

k(x, x′) = exp
(
−(x− x′)2

)
= exp(−x2) exp(−x′2) exp(2xx′)

= exp(−x2) exp(−x′2)

∞∑
k=0

2kxkx′k

k!
using exp(z) =

∞∑
k=0

zk

k!

=

∞∑
k=0

[φ(x)]k[φ(x′)]k, [φ(x)]k = exp(−x2)

√
2k

k!
xk

Thus, k(x, x′) is an inner product in an infinite-dimensional space.
What is so great about this? This means that if all samples in our training

set are unique, we can achieve 0 training error with a small enough bandwidth
σ. In other words, underfitting will only come from poor features (leading to
duplicate samples) or from poor choices for σ and C, rather than from the
model itself. Meanwhile, computing the kernel k(x,x′) for x ∈ Rd is just O(d).
Computationally, this is much better than adding non-linear features or using
an explicitly non-linear classifier, which will typically be harder to train.
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2 Convexity

For some simple machine learning models, like ridge regression, our estimated
parameters given training data can be written in closed form. For many ML
models, however, parameter estimation given a dataset requires solving an op-
timization problem. Optimization is an important topic when applying ML in
the real world:

• Our choice of model often depends on our computational resources com-
pared to the requirements of different models.

• Once we’ve chosen a model, analyzing our optimization problem can help
us choose a fast, more accurate method.

• Optimization can give us insight into the properties of different ML meth-
ods.

2.1 Convex optimization basics

Convex optimization problems are a special kind of optimization problems that
are easier to solve and analyze. Convex optimization problems have the following
form:

min
x
f(x) such that x ∈ C,

where f is a convex function and the constraint region C is a convex set. A
convex function has the following property:

f(tx + [1− t]y) ≤ tf(x) + [1− t]f(y) 0 ≤ t ≤ 1.

(x, f(x))

(y, f(y))

f

tf(x) + [1− t]f(y)

Similarly, a convex set C is defined as follows:

∀x, y ∈ C ⇒ tx+ [1− t]y ∈ C, 0 ≤ t ≤ 1.

Another important term in convex optimization is “convex hull”. For a set A
(possibly non-convex), its convex hull is the smallest convex set that contains
A.

2



Solving convex problems is much easier because once we find a local mini-
mum, we’re done: it’s guaranteed to be a global minimum. Fortunately, some of
the most common loss functions in ML (e.g. logistic loss, squared-error loss) are
convex. Also, maximizing a concave function f can always be written as mini-
mizing a convex function −f , so all of the nice properties of convex optimization
apply to those problems as well.

3 Lagrangians and Duality

The standard form for constrained optimization problems is the following:

min
x∈Rn

f(x)

such that

hi(x) ≤ 0 i ∈ [1,m]

`j(x) = 0 j ∈ [1, r].

The Lagrangian is defined as a function of the “primal variables” x and the
dual variables u and v:

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x).

We require u ≥ 0, ie ui ≥ 0∀i. We then define the dual function to be:

g(u, v) := min
x
L(x, u, v),

where we’ve been able to drop the constraints on x from the original problem.
The dual problem can be written in terms of the dual function:

max
u≥0,v

g(u, v).

Why would we care about solving the dual problem? It turns out that the
dual function is a lower bound on solution to the primal problem:

min
x∈C

f(x) ≥ g(u, v) if u ≥ 0,

so maximizing the dual gives another approach to solving the primal. It has
some other nice properties:

• The dual function is concave, and since we’re maximizing it, we can rewrite
it as minimizing a convex function. Thus, the dual problem can be written
as a convex problem, even if the primal can’t!

• For lots of problems, the solutions to the dual and primal are exactly
equal, f∗ = g∗. (“strong duality”)

• For some settings the dual may be nicer to solve.
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3.1 Example: subset selection and Lasso

Convexity and Lagrangians give us the intuition for the Lasso problem. For
feature selection, we might ideally like to solve the subset selection problem:

min
β

1

2
‖y −Xβ‖22 + λ

∑
i

I{βi 6= 0}

This is actually the Lagrangian form of the following constrained optimization
problem:

min
β

1

2
‖y −Xβ‖22 such that

∑
i

I{βi 6= 0} ≤ C.

The function to minimize is convex, but the set given by the constraint is non-
convex. So instead we substitute in the convex hull of the constraint:

min
β

1

2
‖y −Xβ‖22 such that

∑
i

I{βi 6= 0} ≤ C,

which gives us a convex problem. Writing this in Lagrangian form gives us our
familiar Lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

C

−C

C−C

β2

β1

C

−C

C−C

β2

β1

Figure 1: Illustration for two-dimensional problem: (left) Constraint region for∑
I{βi 6= 0} < C. (right) Constraint region for

∑
|βi| < C.
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4 SVMs: Dual and Duality

4.1 Deriving the dual

Our SVM primal problem is:

min
b,w,ξ

1

2
‖w‖22 + C

n∑
i=1

ξi such that (1)

ξi ≥ 0, i ∈ [0, n]

yi(w
Txi + b) ≥ 1− ξi, i ∈ [0, n].

Our constraints written in standard form are:

−ξi ≤ 0

1− ξi − yi(wTxi + b) ≤ 0.

So our Lagrangian is:

L(b,w, ξ,v,α) =
1

2
‖w‖22 + C

n∑
i=1

ξi +

n∑
i=1

vi(−ξi) +

n∑
i=1

αi
(
1− ξi − yi(wTxi + b)

)
=

1

2
wTw + C1T ξ − vT ξ + αT1−αT ξ −wT [

N∑
i=1

αiyixi]− bαTy

=αT1 +
1

2
wTw + [C1− v −α]T ξ −wT [

N∑
i=1

αiyixi]− bαTy

(2)

The SVM dual problem is defined as

g(v,α) = min
b,w,ξ

L(b,w, ξ,v, α) (3)

such that v ≥ 0,α ≥ 0 ie. ∀vi ≥ 0,αi ≥ 0

To get rid of the primal variables, we’ll need to solve minb,w,ξ L(b,w, ξ,v,α)
analytically, by setting gradients to 0:

∇w[L(b,w, ξ,v,α)] = w −
n∑
i=1

αiyixi = 0 ⇒ w =

n∑
i=1

αiyixi (4)

∇b[L(b,w, ξ,v,α)] = −
n∑
i=1

αiyi = 0 ⇒ αTy = 0 (5)

∇ξ[L(b,w, ξ,v,α)] = C1− v −α = 0 ⇒ α = C1− v (6)

While we didn’t get formulas for b and ξ as we were expecting, we’ll try plugging
in the formula we got for w. But first, let’s define X̃ := diag(y)X, so we can
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write w =
∑
i αiyixi = X̃

T
α. Now we plug into Equation 2:

αT1 +
1

2
[X̃

T
α]T [X̃

T
α] + [0]T ξ − [X̃

T
α]T [X̃

T
α]− b ∗ 0

=αT1− 1

2
αT X̃X̃

T
α

Thus, our dual is:

max
α,v

αT1− 1

2
αT X̃X̃

T
α

such that α =C1− v

v ≥0

α ≥0

Finally, we typically simplify the constraints to remove v.

max
α,v

αT1− 1

2
αT X̃X̃

T
α

such that 0 ≤ αi ≤ C ∀i ∈ [1, n]

4.2 Discarding support vectors

So far, we’ve seen three different kinds of constraints which are satisfied by the
solution to an optimization problem. First, there are the primal constraints,
as in Equation 1. Second, there are the dual constraints, as given in Equation

3. Third, there are the “stationarity” constraints w = X̃
T
α,αTy = 0, and

α = C1 − v that arise when we minimize the Lagrangian in terms of the
primal variables. It turns out that there’s another class of conditions that
hold at the solution to the SVM optimization problem. These are called the
“complementarity” (or “complementary slackness”) conditions, as they relate
the dual solution to the primal solution:

uihi(x) = 0 ∀i ∈ [1,m]

These 4 sets of conditions are called the Karush-Kuhn-Tucker (KKT) conditions.
These 4 classes of conditions are guaranteed to hold if f∗ = g∗ (strong duality)
holds, which turns out to be the case for the SVM problem.

For the SVM problem, this implies the following:

viξi =0 i ∈ [1, n] ⇒ (C −αi)ξi = 0

αi(1− ξi − yi(wTxi + b)) =0 i ∈ [1, n]

We can use these conditions to consider different possible outcomes for a given
sample j.

Suppose αj = 0. Then w =
∑
i αiyixi =

∑
i 6=j αiyixi. This means that at

test time we can ignore the jth sample. Also, looking at the dual objective, we
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see that its value will not change if we simply remove the jth coordinate of α
from the problem. So if we retrained our model without the jth sample, our
solution would be the same.

But how do we know that we often have exactly αj = 0? Suppose αj 6= 0.
By the second complementarity condition, we have

1− ξj − yj(wTxj + b) = 0.

Now either ξj = 0 or ξj 6= 0. If ξj = 0, we have 1 − yj(w
Txj + b) = 0.

Geometrically, this means that our sample lies exactly on the edge of the margin.
If instead ξj 6= 0, by the first complementarity condition, we have C − αj =
0⇒ αj = C. Geometrically, this means that our sample lies on the wrong side
of the margin. Because these are the only two possible cases, we can conclude
that if our sample lies on the good side of the margin, αj = 0.

5 SVMs and LOOCV error

Suppose we train a linear SVM with no slack variables on a linearly separable
training set with N samples and D dimensions. Suppose after training we have
K support vectors. What is a upper bound on the leave-one-out cross-validation
error?

Answer: K
N . On the full training set, we are guaranteed to have 0 training

error since it was linearly separable. There are N−K non-SVs, and each of these
times we leave-out the training sample and re-train on the remaining samples.
Because these are not support vectors, the weight vector will be identical to the
original weight vector. Because the original weight vector had 0 training error,
each of these N −K times, the left-out samples will be classified correctly. On
each of the K SVs, we may or may not classify the left-out sample correctly. So
the total number of errors on left-out samples is at most K, and the LOOCV
error is at most K

N .
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