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1 Semi-Supervised Learning

Consider learning a Gaussian Naive Bayes Classifier with both labeled and
unlabeled data. Suppose we have labeled data (x1, y1), ..., (xl, yl), and un-
labeled data xl+1, ..., xl+u, where each xn ∈ R f is a sample in f dimensional
space.

• For the labeled data n = 1, ..., l, we have yn ∈ {1, 2, ..., K} which are
the labels that determine the class of xn, i.e., zk

n = P(yn = k|xn; θ) =
δ(yn = k).

• For the unlabeled data n = l + 1, ..., l + u, we want to assign soft class
membership 〈zk

n〉 = P(zn = k|xn; θ) for each xn. Note that we handle
the unlabeled data using the Gaussian Mixture Model, where the soft
class membership corresponds to the latent component in GMM that
generates the observations.

After obtaining both memberships we can improve the parameter estima-
tion of θ = {πk, µik, σ2

ik} for each feature i and each class k, where πk is
the probability of class k, and µik, σ2

ik represent the Gaussian mean and
variance for the ith feature and kth class.

1. Write the objective function for semi-supervised EM.
For the labeled data, We want to maximize the log likelihood and
for the unlabeled data, we want to maximize the expected complete
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data log likelihood. Therefore, our objective is

max
θ

l

∑
i=1

log ∏
k

π
zk

i
k +

l

∑
i=1

log ∏
k
N (xi; µk, σ2

k )
zi

k

+
l+u

∑
i=l+1

log ∏
k

π
〈zk

i 〉
k +

l+u

∑
i=l+1

log ∏
k
N (xi; µk, σ2

k )
〈zi

k〉

= max
θ

l

∑
i=1

K

∑
k=1

zk
i log πk +

l

∑
i=1

K

∑
k=1

zi
k logN (xi; µk, σ2

k )

+
l+u

∑
i=l+1

K

∑
k=1
〈zk

i 〉 log πk +
l+u

∑
i=l+1

K

∑
k=1
〈zi

k〉 logN (xi; µk, σ2
k )

2. In the E-step, we assign probabilistic labels 〈zk
n〉 to the unlabeled data

using parameters from the previous M-step. Derive the formula for
estimating 〈zk

n〉 for the unlabeled data.

〈zk
n〉 =P(zn = k|xn; θ̂)

=
P(xn|zn = k; θ̂)P(zn = k)

∑K
j=1 P(xn|zn = j; θ̂)P(zn = j)

=
N (xn; µ̂k, σ̂2

k )π̂k

∑K
j=1N (xn; µ̂j, σ̂2

j )π̂j

where

N (xn; µ̂j, σ̂2
j ) =

1√
2πσ̂j

e
−

(xn−µ̂j)
2

2σ̂2
j

and θ̂ = {π̂k, µ̂k, σ̂2
j } are the parameters from the previous M-step.

3. In the M-step, derive the formula for updating parameters {πk, µik, σ2
ik}.

In the M-step, we retrain the classifier using both the labeled data
and unlabeled data. So we find the MLE estimates of {πk, µik, σ2

ik} by
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maximizing the objective function.

π̂k,new =
∑l

i=1 zk
i + ∑l+u

i=l+1〈z
k
i 〉

l + u

µ̂k,new =
∑l

i=1 zk
i xi + ∑l+u

i=l+1〈z
k
i 〉xi

∑l
i=1 zk

i + ∑l+u
i=l+1〈zk

i 〉

σ̂2
k,new =

∑l
i=1 zk

i (xi − µ̂k,new)
2 + ∑l+u

i=l+1〈z
k
i 〉(xi − µ̂k,new)

2

∑l
i=1 zk

i + ∑l+u
i=l+1〈zk

i 〉

where 〈zk
i 〉 is calculated in the previous E-step.
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2 Conditional Independence

X⊥Y|Z
⇔ P(X|Z)P(Y|Z) = P(X, Y|Z)
⇔ P(X|Z) = P(X|Y, Z)

2.0.1 Example

X,Y are independent flips of fair coin. Z = XOR(X, Y). Are X and Y inde-
pendent conditional on Z?

P(X = 0|Z = 0) =
P(X = 0, Z = 0)

P(Z = 0)
(1)

=
P(X = 0, Z = 0)

P(X = 0, Z = 0) + P(X = 1, Z = 0)
(2)

=
0.25
0.5

(3)

=
1
2

(4)

P(Y = 0|Z = 0) =
P(Y = 0, Z = 0)

P(Z = 0)
(5)

=
P(Y = 0, Z = 0)

P(Y = 0, Z = 0) + P(Y = 1, Z = 0)
(6)

=
0.25
0.5

(7)

=
1
2

(8)

P(X = 0, Y = 0|Z = 0) =
P(X = 0, Y = 0, Z = 0)

P(Z = 0)
(9)

=
P(X = 0, Y = 0, Z = 0)

P(Y = 0, Z = 0) + P(Y = 1, Z = 0)
(10)

=
0.25
0.5

(11)

=
1
2

(12)
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Therefore,
P(X|Z = 0)P(Y|Z = 0) 6= P(X, Y|Z = 0)

Independence does not imply conditional independence.

2.0.2 Example

A box contains two coins: a regular coin and one fake two-headed coin
(P(H)=1). Choose a coin at random and toss it twice. Define the following
events.
• A= First coin toss results in an H.
• B= Second coin toss results in an H.
• C= Coin 1 (regular) has been selected.
Note that A and B are not independent, but they are conditionally inde-
pendent given C. Therefore, conditional independence does not imply in-
dependence.
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